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Editorial on the Research Topic
Computational methods and systems to support decision making in
pharmacovigilance

The World Health Organization defines pharmacovigilance (PV) as “the science and
activities related to the detection, assessment, understanding, and prevention of adverse
events or any drug-related problem.” (World Health Organization, 2023) Government
agencies, clinical institutions, the pharmaceutical industry, and other entities manage PV
programs as vital safeguards for supporting the early detection and analysis of safety signals.
These rely primarily on expert judgment and concrete business practices specific to each
organization (Ball and Dal Pan, 2022). Computational methods and decision-support
systems may enable more timely, consistent, and comprehensive analysis and processing of
real-world data (RWD) and may free up time for domain experts to focus on higher-value
contributions. As a positive side-effect, their development can help standardize business practices
by specifying the steps human reviewers follow. In this Research Topic issue, we primarily invited
papers that assess contributions to PV which may improve efficiency in established business
practices, minimize manual effort, and maximize the quality of human decision-making by
enhancing existing processes transparently. We also welcomed case studies of method
implementation and perspectives that might significantly contribute to the domain.

Primary use cases in PV, such as case processing and prioritization or signal detection and
evaluation, incorporate several steps that the complete decision-support system should augment. As
data, user-related, and other challenges of the entire workflow vary, most efforts, to this date, have
delivered solutions addressing more narrowly defined tasks. Historically, computational methods
were initially proposed and deployed to enable signal detection and analysis in large databases using
only structured data. More recently, several studies have presented methods for processing
unstructured free texts, prioritizing case reports for clinical and regulatory review, and
improving data quality in spontaneous reporting systems. For example, Painter et al. conducted
ameta-analysis of a recent scoping reviewonmachine learning in PV (Kompa et al., 2022) and found
that the pharmaceutical industrymainly appliedmachine learning to processRWDand socialmedia.
They also highlighted the need to develop consistent systems that can learn and incorporate human-
in-the-loop mechanisms and called for best practices for adopting and validating these systems.

To build effective solutions, existing workflows and business practices must be understood.
These are rarely documented in stepwise algorithmic forms that can easily be translated into
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programmatic tools. It is, therefore, necessary to take a step back and, in
close collaboration with the end users, identify the overall desired
framework for a selected workflow. The papers in this Research Topic
highlight several important aspects of this. Fong et al. pursued a strategy
to support the medication error categorization workflow in the US Food
and Drug Administration Adverse Event Reporting System (FAERS).
Interestingly, they first defined a framework that helped them clarify the
use case and then developed a prototype user-centered Artificial
Intelligence (AI) application based on this framework. This process
might work both ways, i.e., the first version of the framework
implemented in a prototype tool could be informed by the pilot use
of this prototype and, subsequently, updated to support new rounds of
development.

Kreimeyer et al. focused on detecting duplicate cases in FAERS
using the complete structured and free-text information from FAERS
Individual Case Safety Reports (ICSRs). They built the confidence
required to operationalize it by engaging safety reviewers in
developing, evaluating, and validating their deduplication as a
supplement to human review. Dang et al. developed a natural
language processing approach to extract four demographic variables
(gender, weight, ethnicity, and race) from FAERS ICSR narratives and
complete the missing values in the corresponding structured fields.
While their approach excellently retrieved ethnicity, gender, and race, it
would meaningfully improve only gender information in the actual
practice, as reporters infrequently provide weight, ethnicity, or race in
the FAERS narratives. This demonstrates that operationalizing an AI
solution must evaluate multiple factors, not solely performance.

Dimitriadis et al. presented an open-source platform that
integrated ICSRs, synthetic clinical data, social media data from
Twitter, and scientific literature from PubMed. Their prototype web-
based tool allowed for various analyses in an interactive user interface.
However, a comparison with the EudraVigilance Data Warehouse and
Analysis System (EVDAS) provided by the European Medicines
Agency revealed that PV experts preferred the existing technology.
This study illustrates how implementing new tools in an actual work
environment requires significant effort in presenting complete and
validated systems and educating end users on their application.

When generative AI hits the headlines and heated discussions
ensue (Stokel-Walker, 2023), it is essential to emphasize that PV is a
tightly controlled, multi-step process. The rapid improvement of large
language models across multiple applications should benefit PV, but
to build trust with PV experts, we must systematically engage with

users when collecting requirements and designing decision-support
systems. Incorporating AI and other sophisticated algorithms into
these systems requires knowledgeable interdisciplinary teams,
including end-users and software developers, and several validation
rounds aligned with the supported tasks and business workflows.
Some of the studies in our Research Topic followed this strategy. This
is the recipe for success in most cases as long as the right expectations
are set from the beginning and the proposed solutions do not bring
dramatic changes to existing workflows without proven benefit.
Including a human-in-the-loop further ensures that a system’s
limitations are carefully examined and that a quality assurance
process to control them is in place. Ultimately, as no automated
solution is likely to be perfect, decision-support systems must be
constructed to take advantage of the respective strengths of machines
and humans to improve efficiency, improve quality, and add value
beyond what each might achieve on their own.
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