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Understanding and mitigating medication errors is critical for ensuring patient

safety and improving patient care. Correctly identifying medication errors in the

United States Food and Drug Administration (FDA) Adverse Event Reporting

System (FAERS) reports can be difficult because of the complexities of

medication error concepts. We took a user-centered design approach to

support the medication error categorization workflow process with artificial

intelligence (AI). We developed machine learning models to categorize

medication error terms. The average F1-score, precision, recall, and area

under the precision recall curve for 18 Medical Dictionary for Regulatory

Activities (MedDRA) Lower Level Term (LLT) relating to medication errors

were 0.88, 0.92. 0.85, and 0.83 respectively. We developed a framework to

help evaluate opportunities for artificial intelligence integration in the

medication error categorization workflow. The framework has four

attributes: technical deployment, process rigidity, AI assistance, and

frequency. We used the framework to compare two AI integration

opportunities and concluded that the quality assurance (QA) opportunity to

be a more feasible initial option for AI integration. We then extended these

insights into the development and user testing of a prototype application. The

user testing identified the highlighting and commenting capabilities of the

application to be more useful and sliders and similar report suggestions to

be less useful. This suggested that different AI interactions with human

highlighting should be explored. While the medication error quality

assurance prototype application was developed for supporting the review of

direct FAERS reports, this approach can be extended to assist in the workflow

for all FAERS reports.
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1 Introduction

The United States Food and Drug Administration (FDA)

Adverse Event Reporting System (FAERS) receives more than

100,000 reports each year associated with a suspected

medication error. A medication error is generally defined as

any preventable event that may cause or lead to inappropriate

medication use or patient harm while the medication is in the

control of the health care professional, patient, or consumer

(National Coordinating Council for Medication Error

Prevention and Reporting, 2022); medication errors are one

of the leading causes of avoidable adverse events in global

healthcare systems, with costs estimated at $42 billion

annually (The World Health Organization, 2017). Accurate

coding of the medication error information in the reports is

critical for the FDA to identify and mitigate the errors to

minimize the risk of adverse events. However, coding the

information in the reports can be challenging because of the

complexities of medication error concepts (e.g., individual

definitions of a medication error, understanding of root causes

and contributing factors related to errors, or incomplete or

overlapping coding terminologies). These challenges can

result in inconsistent and incorrect coding of the

medication error information, which necessitates exploring

artificial intelligence techniques to improve coding practices.

1.1 Workflow for medication error
categorization

It is important to first understand the workflow for medication

error categorization at a high level to provide context for AI system

integration opportunities. Medication error reports are voluntarily

submitted by healthcare providers and consumers to FAERS either

directly through the MedWatch program (referred to as “direct

reports”) using various channels (e.g., online reporting, postal mail,

email, fax) (United States. Food and Drug Administration, 2022) or

through drug manufacturers who submit the reports electronically

using standardized regulatory reporting forms. Workflow for

medication error categorization of direct reports primarily consists

of three steps: Intake and triage, Case processing, and Data analytics

and publishing, Figure 1. These processes are supported by the

transactional platform in FAERS. Intake and triage: First, direct

reports are reviewed by a pharmacist to make sure the report has

the necessary elements (e.g., identifiable reporter, event, and drug

product) for a valid report to be entered into FAERS (reports not

involving a drug product such as a dietary supplement or device are

forwarded to the appropriate FDA center to be entered in their

respective reporting systems). Case Processing: The reports are then

sent to case processing where the report information (approximately

50 different data fields) is entered into the FAERS system, and the

drug product name(s) and manufacturer name is validated. The

reports are then routed to clinicians who read the free-text case

narrative and use the Medical Dictionary for Regulatory Activities

(MedDRA) to manually select the appropriate medication error,

adverse event, and product quality Lower Level Terms (LLT). Data

Analytics and Publishing: After the case processing is complete, the

reports are available to safety analysts who rely on the codes to screen

and retrieve reports for safety signal detection and evaluation to

determine if regulatory action is needed to mitigate a medication

error. The coded reports are also used by the public in a variety of

ways to support the analysis, research, and identification issues or

trends that may impact public safety. In addition, the reports are

manually reviewed by the FDA for coding, quality assurance, and to

provide feedback to the coders to help with training and learning.

1.2 Natural language processing

There have been several calls for using natural language

processing (NLP), machine learning (ML), and artificial

intelligence (AI) approaches to help identify and categorize

adverse events and medication errors. Much work has been done

on the development of algorithms and techniques to categorize and

identify adverse drug events in FAERS reports (Botsis et al., 2014;

Combi et al., 2018; Eskildsen et al., 2020). A recent review of

14 publications provided examples where NLP supported the

identification of adverse drug reactions (Pilipiec et al., 2022). In

FIGURE 1
Summary of medication error categorization workflow for direct FAERS reports. Two opportunities for AI integration are identified as (A) human
MedDRA coding of FAERS reports and (B) quality assurance review process.
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addition to FAERS reports adverse drug events were able to be

extracted from drug labels and Vaccine Adverse Event Reporting

System (VAERS) reports using NLP and rule-based techniques

(Botsis et al., 2013; Ly et al., 2018; Bayer et al., 2021; Du et al.,

2021). VaccineAdverse Event TextMiner (VaeTM) is an example of

a text mining system developed to extract safety concepts from

VAERS reports (Botsis et al., 2011; Botsis et al., 2012; Baer et al.,

2016).More recent works have explored the contributions of NLP to

support adverse event reporting workflows and operational insights

through the use of decision support systems and information

visualization applications (Botsis et al., 2016; Spiker et al., 2020).

These recent works aims to tackle the important challenges of

translating technical advances into operations to support

workflow (Ball and Dal Pan, 2022).

1.3 Challenges with AI workflow
integration

Complexities in real-world workflows often contain important

information external to reports that impact both the modeling

process and application of such models (Kreimeyer et al., 2021).

In fact, challenges with AI initiatives and integration of AI into

workflow had been discussed as early as the 2000s (Myers and Berry,

1999). More recently, discussions have focused on strategies and

frameworks to help software and application developers and

stakeholders evaluate AI workflow integration. A four step

approach has been proposed for understanding the technologies

that are involved, creating a portfolio of projects, piloting projects,

and scaling up (Davenport and Ronanki, 2018). Additionally,

Translational Evaluation of Healthcare AI (TEHAI) has been

developed as a framework to evaluate the operationalization of

clinical AI models (Reddy et al., 2021). TEHAI has a foundation in

translational research and contains three main components:

capability, utility, and adoption. TEHAI can support starting

steps in a user-centered design process by providing a framework

to help identify user needs and the specific context of an

application’s use. Although TEHAI is a very comprehensive

framework, it is lengthy and resource intensive to use in its

entirety. In this work, we created a high-level framework to

specifically help decision makers and stakeholders evaluate early

prototyping opportunities for integrating AI models into a ‘human-

in-the-loop’ workflow. We leverage TEHAI and other software

development frameworks with a socio-technical lens to infer the

value, benefit over cost, associated with integrating AI models into a

real-world workflow (Norman and Draper, 1986; Sittig and Singh,

2010; Reddy et al., 2021).

1.4 Contributions

In this paper, we leverage the vast knowledge of adverse drug

reaction ML and NLP work to address the challenges of

categorizing medication errors. The contributions of this

paper are three-fold. First, we develop ML models to

categorize MedDRA LLTs relating to medication errors in

FAERS free-text narratives. Second, we present a framework

to help evaluate AI workflow integration opportunities and

challenges in the medication error workflow. Third, we

present and evaluate an AI prototype design to support the

medication error quality assurance process.

2 Materials and method

2.1 Lower level term modeling

2.1.1 Data source
We used FAERS direct reports received between 1/1/

2017 and 10/29/2021 that were coded with at least one

MedDRA medication error LLT for the modeling. For the

initial development, we focused on the modeling of

medication error LLTs that occurred in at least 1% of reports.

2.1.2 Free-text processing
We extracted free-text between templated language from

the free-text case narratives. Templated language is

introduced to narratives when reporters use a form or

templates when completing their report. When these

reports are submitted to FAERS, the free-text responses as

well as the templated language (i.e., headers) in the structured

forms or templates are concatenated together into a string. We

accounted for different templates and structured languages

amongst all form types. Reports will have different amounts,

variations, and spacing of templated language depending on

how the report was completed. We took a dynamic

programming approach to extract text between templated

language. We first created a list of possible templated

language. We then indexed the beginning and end location

in the string of all occurring templated language with more

than five words. We lastly ordered the index and extracted the

text between sequential templated language. Conditions are

included to check and include narratives with both templated

language and narratives that do not start with templated

language. The extracted free-text is lowercased and

stemmed. Stemming is the process of reducing derived or

inflected words to a base form (Friedman and Johnson, 2006).

For example, “fly,” “flying,” and “flies” will be stemmed as

“fli.” Numbers, punctuations, and extra white space are

removed. We then generated term frequency-inverse

document frequency (TF-IDF) feature vectors from the

cleaned free-text. TF-IDF is a statistical measure that

evaluates how relevant a word is to a document in a

collection of documents (Ramos, 2003). The TF-IDF score

of a word in a document is calculated by multiplying two

metrics: the number of times a word appeared in a document
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and the inverse document frequency of the word across a set of

documents. TF-IDF is a popular method to translate text to

numerical features and is used in the subsequent model

development (Ramos, 2003).

2.1.3 Model development
Each LLT (label) model was developed using an 80/20 split of

the data: 80% of the data was used for training and validation and

20% reserved for testing. Models were developed using eXtreme

Gradient Boosting (XGBoost). We choose XGBoost because it

had better performance during initial sample testing when

compared to logistic regression and random forest, two other

popular machine learning algorithms. XGBoost is a decision tree-

based boosting ensemble machine learning algorithm (Chen and

Guestrin, 2016). In a boosting algorithm, many weak learners,

which are simple classification models that perform only slightly

better than random chance, are trained to correctly classify the

observations that were incorrectly classified in the previous

rounds of training. XGBoost uses shallow trees as weak

learners (Chen and Guestrin, 2016). Each model was trained

using 5-fold cross validation and evaluated on test precision,

recall, F1-score, and area under precision-recall curve.

2.2 AI workflow integration framework

We leveraged TEHAI and AI integration frameworks to infer

value components, defined as technical deployment, process

rigidity, AI assistance, and frequency to identify opportunities

to prototype an AI system into a medication error categorization

workflow.

2.2.1 Technical deployment
The time and resources required to develop and deploy an AI

system are similar to software product development

considerations in real-world settings (Myers and Berry, 1999;

Davenport and Ronanki, 2018). However, AI system product

design is different from regular software product design, largely

in the maintenance of data, models, and user feedback

(Davenport and Ronanki, 2018). In general, integrating an AI

system into existing software systems would be a higher technical

deployment cost compared to deploying a stand-alone AI system.

2.2.2 Process rigidity
We define process rigidity as the level of variability of

how end-users accomplish tasks, a reflection on

understanding workflow in social technical systems

(Myers and Berry, 1999). Challenges with integrating AI

projects with existing workflows and processes is a

common problem faced by AI initiatives (Davenport and

Ronanki, 2018). Established workflows where end-users all

follow the same process and use the same tools could show

high process rigidity. On the other hand, workflows where

end-users can have more autonomy would be low process

rigidity.

2.2.3 AI assistance
The assistance of an AI system in an existing workflow can be

realized in time and resource savings or other measures of

support (Reddy et al., 2021). This attribute is viewed in

consideration of current workflows and the additional benefit

or support an AI system can provide. In the exploratory

evaluation process, assistance can be reflective of both

measured and perceived benefits by an end-user.

2.2.4 Frequency
We define frequency of a deployed AI system as the number

of end-users and regularity of use (Reddy et al., 2021). An AI

system that is used by many end-users daily would have high

frequency. An AI system used by one or two individuals monthly

would have low frequency. We conducted semi-structured

interviews with stakeholders involved in the medication error

categorization workflow to evaluate and identify opportunities

for AI system integration using the AI workflow integration

framework.

2.3 Iterative prototype design and testing

We used guerilla usability testing, sometimes referred to as

hallway usability testing, for initial iterative design process

development of the prototype AI system to support the

medication error categorization workflow. Guerilla usability

testing is used to gather immediate feedback on interactions

or the flow of an application or website when needed. The

benefits of this form of testing are best realized during the

initial low-fidelity design to influence further iterations

(Nielsen and Guerrilla, 1994). Guerilla testing was used

among four participants who were experienced in reviewing

FAERS reports. This testing involved the utilization of a

scenario followed by a series of short tasks to guide

participants through a workflow comprised of placeholder text

and did not contain medication error report data. Participants

were asked to use the ‘think aloud’ method to provide feedback

on the prototype and open discussion related to the interaction

that the user was experiencing. These responses were then

analyzed and used to change existing interactions and modify

future prototype designs to prepare for formal usability testing

with participants of the target users.

After the iterative design development of a functional

prototype, 1-h long formal usability testing sessions were

conducted with participants involved in the medication error

categorization workflow. These sessions were comprised of a

scenario and tasks to walk the participants through the prototype.

Like the guerilla testing stage, participants were asked to “think

aloud” and pause between tasks to provide feedback during the
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session. The placeholder text was replaced with synthetic report

information to provide a more realistic experience for the

participants. During testing, participants’ responses were

recorded through digital notetaking and were then synthesized

to influence future tool updates with a focus on design and

workflow. After the completion of the session tasks, each

participant was asked to complete the System Usability Scale

(SUS). The SUS is a post-test questionnaire that is commonly

used to perceive the usability of an entire system and can suggest

problematic parts of a design (Bangor et al., 2008).

3 Results

3.1 Lower level term models

The 11,524 free-text case narratives were used in the

development of 18 medication error LLT models, summarized in

Table 1. The most common LLTs were “product storage error,”

“incorrect dose administered,” and “inappropriate schedule of drug

administration” 6.9%, 5.9%, and 5.3% respectively. The average F1-

score was 0.88 (0.89 median, 0.06 standard deviation) with “wrong

technique in product usage process” and “wrong injection

technique” having the highest F1-score, 0.99 and

0.98 respectively. The average precision was 0.92 (0.93 median,

0.05 standard deviation). The average recall was 0.85 (0.85 median,

0.08 standard deviation). The average area under the precision-recall

curve was 0.83 (0.88 median, 0.18 standard deviation). “Wrong

technique in product usage process” and “wrong injection

technique” consistently had the highest performance across

metrics. On the other hand, “drug prescribing error” and “drug

dose prescribing error” tended to have the worst performance across

metrics.

3.2 Consideration for AI support of
“human-in-the-loop” workflow process

Semi-structured interviews were conducted with six

stakeholders involved in the medication error workflow

integration process. Using the AI workflow integration

framework, two primary opportunities for the integration of AI

into the current workflow were considered. The first opportunity is

during the initial human coding of FAERS reports, Figure 1A. The

second opportunity is during the quality assurance review process,

Figure 1B. These two options were identified by the stakeholders as

TABLE 1 Performance metrics for 18 medication error related MedDRA Lower Level Terms.

Lower level
terms

Frequency (%) Precision Recall F1-score Auprc

Product storage error 800 (6.9) 0.97 0.91 0.94 0.95

Incorrect dose administered 679 (5.9) 0.91 0.71 0.80 0.88

Inappropriate schedule of drug administration 607 (5.3) 0.80 0.80 0.80 0.71

Wrong technique in drug usage process 503 (4.4) 0.94 0.79 0.86 0.76

Wrong drug strength dispensed 365 (3.2) 0.91 0.72 0.80 0.94

Recalled product administered 360 (3.1) 0.90 0.74 0.82 0.65

Wrong drug administered 356 (3.1) 0.96 0.96 0.96 0.95

Incomplete dose administered 356 (3.1) 0.90 0.94 0.92 0.88

Wrong drug dispensed 296 (2.6) 0.95 0.84 0.89 0.96

Wrong injection technique 225 (2.0) 0.99 0.97 0.98 0.99

Incorrect dose administered by device 169 (1.5) 0.82 0.85 0.83 0.82

Accidental overdose 154 (1.3) 0.93 0.92 0.93 0.83

Drug prescribing error 149 (1.3) 0.92 0.85 0.89 0.33

Wrong technique in product usage process 143 (1.2) 0.99 0.99 0.99 0.99

Product label confusion 143 (1.2) 0.97 0.90 0.93 0.98

Transcription medication error 140 (1.2) 0.85 0.85 0.85 0.77

Drug dose prescribing error 139 (1.2) 0.88 0.76 0.82 0.51

Product packaging confusion 135 (1.2) 0.96 0.90 0.93 0.97

TABLE 2 Summary of AI system integration options.

Human coding QA

Technical deployment High Medium-Low

Process rigidity High Low

Assistance Medium High

Frequency High Medium-Low
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being able to directly benefit from the medication error

categorization models. We review both options using the

developed framework, Table 2.

3.2.1 Initial human coding
During the semi-structured interviews, it was determined

that a direct integration of an AI system into the human coder

system would be significant (Technical deployment: High) and

that the coding process between the intake and coders was well

established (Process rigidity: High). After data entry, the reports

were routed to the coders. This was where the free-text case

narrative was read by human clinicians and the appropriate

medication error, adverse event, or product quality issue was

manually coded at the MedDRA LLT level. The current process

occurs frequently although the number of reports submitted to

FAERs can greatly vary week to week (Frequency: High). Coders

can refer to MedDRA supporting documentation for guidance

with coding medication errors (Medical Dictionary for

Regulatory Activity, 2022). An AI system to support in this

coding process could be beneficial to ensure consistency in

selecting appropriate LLTs and reduce the need to refer to

additional documentation, however human coders will still

need to input and manually review other information about

the report (Assistance: Medium).

3.2.2 Quality assurance integration
The quality assurance (QA) process is highlighted with the

dashed red box in Figure 1. Stakeholders interviewed described

this as a very labor intense process with varying frequency. As a

result, an AI system to support the QA process would have high

assistance (Assistance: High) though the frequency of use would

be lower (Frequency: Medium-Low). In addition, the current

manual QA process largely relies on structured data elements to

first filter reports in the FAERS applications (Process rigidity:

FIGURE 2
Medication error quality assurance prototype application screens. The arrow indicates the transition between the “Report Overview” screen and
the report annotation screen. In the example figure, the human coded the report using the “underdose” LLT while the AI model suggests the
“overdose” LLT.
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Low). Instead of spot checking for QA, the AI system could

function as a surveillance system to push disagreements to users

for review. Lastly, through stakeholder discussions, it was

determined the cost associated with the technical deployment

and overcoming process rigidity is much lower for QA. We

concluded the QA opportunity to be a more feasible opportunity

and incremental step for AI integration (Davenport and Ronanki,

2018).

3.3 Medication error quality assurance
prototype application

We present the design and functionality of the Medication

Error QA prototype application, in Figure 2. The prototype will

integrate into the QA workflow by providing a stand-alone

application to help quality assurance reviewers and safety

analysts more quickly inspect, comment, and alert coders to

reports that may need recoding. The intention is that this

application can serve as a stand-alone platform to both extract

reports from the FAERS database and provide feedback to coders

thereby replacing the need to use different applications to

accomplish the same task. The features of the prototype

discussed below are: report overview, flagging slider and

similarity slider, highlighting and comment on reports, and

feedback to coders.

3.3.1 Report overview
The “Report Overview” screen will give the user the ability to

review each report prior to annotating as well as reviewing any

information that was previously coded, Figure 2. The reports will be

separated by “Reports Needing Review” and “Completed Reports”

to indicate which reports still need to be completed by the user. By

selecting a report, the user can review the summary of the report and

previously coded information, as well as review coding suggestions

from the algorithm for similar reports. As the reports are annotated,

they are shown as completed using a check mark on the ‘Report

Overview’ screen and are available for review under completed

reports. This will provide the user the ability to review the completed

reports for reference or if any further changes need to be made. This

feature can be used as a final review step and will provide the ability

to correct possible coding errors.

3.3.2 Flagging slider and similarity slider
The flagging slider and similarity slider available on the “Report

Overview” screen, Figure 2, will allow the user to interact with the AI

models. The flagging slider will change the threshold at which a report

is flagged, or identified, as having inconsistent or incorrect MedDRA

LLT codes. A flagged report would need additional human review. A

higher flagging threshold will result in fewer reports being flagged

(more specific and higher precision) while a lower flagging threshold

will result in more reports being flagged (higher recall) as inconsistent

or incorrect LLT codes. The similarity sliderwill impact the amount of

similar reports that are presented to users in the ‘Similar Reports’

window. A high similarity threshold will result in few similar reports

and a low similarity threshold will result in more similar reports. The

highlighting of phrases in the reports is intended to help users identify

meaningful phrases as prioritized by the algorithm.

3.3.3 Highlighting and commenting on reports
This application provides the user the ability to highlight and

comment on specific phrases in a case narrative. The user can

comment on a highlighted section of the report which will be saved

in the “Comment Window.” These comments can be edited or

deleted. The “Coded Information” window will provide an easy

reference for the user to understand further context surrounding the

report. The “Algorithm Suggestions”window will provide suggested

codes to apply to the report based on information from similar

reports as well as the context of the current report being reviewed.

3.3.4 Feedback to coders
Once the user completes reviewing and commenting on

the reports, the option of sending or exporting the annotated

reports will become available on the “Report Overview”

screen. Although this feature was not implemented at the

time of user testing, the intention of this feature is to construct

an e-mail containing the completed annotated reports that can

then be reviewed by designated users. This will accomplish the

goal of sharing annotated information from an expert to

coders.

3.3.5 Usability testing
Individual usability testing sessions were conducted virtually with

six participants. The average years of experience with coding or

reviewing postmarketing reports amongst the participants was

7.1 years (6.5 median). The participants included one regulatory

scientist, one informatic pharmacist, two managers, and two

directors involved in the medication error categorization workflow.

Several usability themes emerged from the feedback during the hour-

long usability testing sessions.

3.3.6 Positive feedback for highlighting and
commenting on reports

The feature of highlighting and commenting on the text within

the report summary was easy and useful for many of the participants.

Participants could follow the on-screen instructions and stated that

this feature was useful in identifying specific regions of the report that

would justify a different code related to directly submitted reports.

[P2] and [P6] remarked that the interaction and multi-colored notes

were easy to keep their comments organized and reminded them of

other software that they were familiar with. In addition, participants

made several recommendations for improvement. [P3] and [P5]

wanted to have the ability to make comments without highlighting

text and commenting on the codes that were documented.

Maintaining the order and color consistencies of the comments

was also important to several participants [P1, P3, P4, and P6].
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3.3.7 Need more information for reports
All participants noted the need for additional context within both

the report overview and report comment screens. All participants

stated that the report summary alone did not contain enough

information for proper analysis and feedback. Providing more

context about the report would reduce the ambiguity of the

individual report summary. [P1], [P3], and [P6] requested further

information regarding the suspect drug product labeling and the full

FAERS report in an PDF format when available. With this

information, the context surrounding the initial codes could be

further understood while justifying any changes. In addition, more

information related to the number of reports that were flagged as

miscoded was also requested by all participants. [P1] remarked that

having a count of reports “needing review” and “completed reports”

would help “stay on track with the number of reports to review.”

Clearer color coding of the completed reports was also suggested by

[P4] and [P6] and the gray boxes and gray font would need to be

changed to reflect principles of accessibility within the design.

3.3.8 Threshold sliders
No participants used the threshold sliders while reviewing

the report narrative. [P1], [P3], and [P3] believed its use to be

unclear and that the terminology used was not similar to that

used by the coders of the report. [P1] mentioned that a legend

or a way to find more information about the use of the sliders

could help with any confusion, however it was also stated that

he or she still would not use them within their review

workflow.

3.3.9 Reviewing of similar reports
All participants were not certain of the purpose of the

similar reports that were available to review under the report

summary. [P3] and [P6] believed them to be interesting,

though noted that they would not be useful within their

workflow for report review. The highlighted text within the

similar report window was not considered helpful to many of

the participants, as it was unclear how the highlighted text

was associated with the report summary. [P2] and [P3]

recommended a different way to observe the similarities

among the reports by highlighting specific words or

phrases within the similar reports that were closely related

to the coder’s terminology. This would allow the reviewer the

ability to understand similar reports that were related to the

case narrative. However, the similar reports would not have

been used within several of the participants’ workflows [P1,

P2, P4, and P5].

3.3.10 System usability scale score and
interpretation

The SUS is considered a valid and reliable questionnaire andwas

given to the participants after the usability test. All six participants

completed the SUS, where each question was given an adjective

rating that was associated with a numerical score of 1–5, Figure 3.

The overall SUS score after testing was 50, which fell within the

marginal acceptability range for use and shows a need for further

design iteration to increase user experience and usability (Bangor

et al., 2009).

4 Discussion

The feedback of the stand-alone prototype application has been

positive. One of the more useful features was the highlighting and

commenting capabilities. These features helped participants focus

FIGURE 3
Average SUS scores among all six participants.
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their attention and communicate their intentions in the feedback

loop. It is interesting to note that this feature parallels the motivation

behind the AI highlighting of text in similar reports. However,

participants generally did not find the similar reports to be useful

and did not use the sensitivity and specificity sliders. This suggests that

different AI interactions with human highlighting should be explored,

such as AI evaluation of human highlighted text.

While the medication error prototype application is designed to

support the medication error categorization workflow for direct

reports, this application and associated models can be expanded to

support the review and analysis for all FAERS reports, including those

submitted bymanufacturers. There is considerable focus on usingML

to support the pharmacovigilance lifecycle and understanding how an

integrated AI system can help with the ingestion and data integrity of

data is paramount to both realizing practical impact and operational

insights (Bate and Luo, 2022). The majority of FAERS reports are

electronically submitted to the FDA from manufacturers and

consistent analysis and review of these reports can help ensure

data and coding integrity both between and within manufacturers.

As consumer and healthcare behaviors change, proactively

monitoring all FAERS reports will be crucial in helping safety,

healthcare, and regulatory personnel identify and address new and

emerging medication errors and patient safety concerns.

We recognize that the AI workflow integration framework

generalizes many of the variables and interactions between

variables involved in the deployment of an AI system. We also

recognize that this framework does not include considerations like

AI ethics and privacy highlighted by other frameworks (Reddy et al.,

2021). However, for AI system to be useful and accepted by users,

evaluating the AI alone is not sufficient. It is critical to also consider

how the AI system was implemented (Li et al., 2020). The AI

workflow integration framework provided a ‘light-weight’ method

to help facilitate discussion amongst decision makers in the early

prototype phase. This framework is not to replace formal usability

testing, product development cycles, and implementation scientific

methods but rather provide a stepping-stone in the process. Lastly, we

recognize the limitations with usability testing with synthetic data and

will include real-world data in subsequent usability sessions.

5 Conclusion

We used a user-center design approach to integrate AI in the

medication error categorization workflow. As AI models improve,

technologies advance, and workflows change, there will be new and

different opportunities for human machine integration. The AI

workflow integration framework was helpful in the initial

decision making for prototyping and prioritizing a stand-alone

application over a more integrated option. This framework builds

upon and can complement existing product development and

usability frameworks for stakeholders when exploring options

early in the integration cycle.
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