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As new data sources have emerged, the data space which Pharmacovigilance (PV)
processes can use has significantly expanded. However, still, the currently available
tools do not widely exploit data sources beyond Spontaneous Report Systems built to
collect IndividualCaseSafetyReports (ICSRs). This article presents anopen-sourceplatform
enabling the integration of heterogeneous data sources to support the analysis of drug
safety related information. Furthermore, the results of a comparative study as part of the
project’s pilot phase are also presented. Data sources were integrated in the form of four
“workspaces”: (a) Individual Case Safety Reports—obtained fromOpenFDA, (b) Real-World
Data (RWD) —using the OMOP-CDM data model, (c) social media data—collected via
Twitter, and (d) scientific literature—retrieved from PubMed. Data intensive analytics are
built for each workspace (e.g., disproportionality analysis metrics are used for OpenFDA
data, descriptive statistics for OMOP-CDM data and twitter data streams etc.). Upon these
workspaces, the end-user sets up “investigation scenarios” defined by Drug-Event
Combinations (DEC). Specialized features like detailed reporting which could be used to
support reports for regulatory purposes and also “quick views” are provided to facilitate use
where detailed statistics might not be needed and a qualitative overview of the available
informationmight be enough (e.g., clinical environment). The platform’s technical features
are presented as Supplementary Material via a walkthrough of an example “investigation
scenario”. The presented platform is evaluated via a comparative study against the EVDAS
system, conducted by PV professionals. Results from the comparative study, show that
there is indeed a need for relevant technical tools and the ability to draw recent data from
heterogeneous data sources is appreciated. However, a reluctance by end-users is also
outlined as they feel technical improvements and systematic training are required before
thepotential adoptionof thepresented software. As awhole, it is concluded that integrating
such a platform in real-world setting is far from trivial, requiring significant effort on training
and usability aspects.
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1 Introduction

Adverse Drug Reactions (ADRs) emerge as a major public health
issue as they are a significant causal factor for health morbidity and
mortality, also leading to vast healthcare system costs. ADRs are
estimated to cause an increase on the duration of hospitalization
stays for 9.2 ± 0.2 days for outpatient setting and 6.1 ± 2.3 days for
inpatient setting (Formica et al., 2018). Furthermore, ADRs financial
costs estimated for the inpatient setting range from €2851 to
€9015 and from €174 to €8515 for the outpatient setting (Formica
et al., 2018). Similarly, in a study regarding the Veteran Affairs
ecosystem in United States, the cost of ADRs was estimated from
$6951 to $29535 (median costs) (Aspinall et al., 2022).

Pharmacovigilance (PV) is defined as the “science and activities
relating to the detection, assessment, understanding and prevention of
adverse effects or any other possible drug-related problems” (World
Health Organization, 2002). The main data source currently used for
PV purposes is the so-called “Individual Case Safety Reports” (ICSRs)
(a.k.a. “yellow cards”), voluntarily submitted by healthcare
professionals (HCPs) or even patients via “Spontaneous Reporting
Systems” (SRSs) or other communication channels (sometimes via
direct communication with pharma industry). Typically, SRSs are
hosted in a national IT system, e.g., FDA Adverse Event Reporting
System (FAERS) hosted by the Food and Drug Administration (FDA)
in the United States. Data collected on a national level are eventually
aggregated in the VigiBase system by the Uppsala Monitoring Centre
(WHO-UMC), the World Health Organization Collaboration Centre
for International Drug Monitoring (Lindquist, 2008). These data are
statistically elaborated, typically via ‘disproportionality analysis’ (DA)
approaches (Arnaud et al., 2017) to identify potential PV “signals”. PV
signals are defined as “information that arises from one or multiple
sources (including observations and experiments), which suggests a new
potentially causal association, or a new aspect of a known association,
between an intervention and an event or set of related events, either
adverse, or beneficial, that is judged to be of sufficient likelihood to
justify verificatory action” (Council for International Organizations of
Medical Sciences, 2010). Potential PV signals’ evaluation processes can
include various steps (e.g., signal detection, triage, validation, etc.).

Despite the substantial progress in terms of “intelligent” and data-
intensive technical paradigms, these developments have not yet been
widely adopted in the context of PV every-day activities. Hence, there
is an increasing need for the development of new tools aiming to
integrate “intelligent” data processing approaches to support drug
safety (Trifirò et al., 2018; Bate and Hobbiger, 2020). Moreover, the
emergence of additional data sources such as biochemical databases,
electronic health records (EHRs), insurance claims or other “Real-
World Data” (RWD) and social media (Hussain, 2021; Knowledge
Base workgroup of the Observational Health Data Sciences and
Informatics (OHDSI) collaborative, 2017) have led to relevant
research initiatives (Natsiavas et al., 2019b; Ball et al., 2022). To
this end, Machine Learning (ML) algorithms are also under
investigation (Lee et al., 2022; Imran et al., 2022), including the use
of Natural Language Processing (NLP) which is elaborated to identify
ADR mentions in EHRs/clinical notes or other free text/unstructured
data. Other Knowledge Engineering approaches (e.g., the use of
Semantic Web technologies, ontologies and “reasoning” upon
Knowledge Graphs etc.) are also actively investigated (Natsiavas
et al., 2019b). Recently, the need to exploit AI upon distributed

RWD networks like the OHDSI ecosystem of data providers has
also been highlighted as a potential line of work (Wong et al., 2022).

Along these lines, drug-safety focusing organizations actively
investigate the use of these emerging data sources. Indicatively, the
IMI WEB-RADR and WEB-RADR2 projects’ consortia1 have
investigated the use of social media for signal identification (Caster
et al., 2018). Beyond research, focusing on the evaluation of RWD,
FDA has developed the Sentinel system2 to include clinical data and
other RWD in its drug safety-oriented activities and the European
Medicines Agency (EMA) has recently initiated an initiative called
DARWIN EU® (EMA website, 2022a). However, the currently
available software tools are mostly focusing on the use of ICSRs
and do not typically engage data sources like RWD and social
media. While research initiatives have actively investigated the use
EHR as part of the PV signal management processes with notable
results [e.g., (Harpaz et al., 2013; Li et al., 2014; Pacurariu et al., 2015;
Harpaz et al., 2017; Tavares-Da-Silva et al., 2020)], still, it seems that
there is a gap in terms of relevant software tools development.

In this article, we introduce a web platform which integrates ICSRs
and emerging data sources, namely clinical data and social media
along with the use of scientific publications to support the
investigation of potential signals. The presented platform was
developed in the context of a project named PVClinical3, aiming to
provide a software tool suitable for use both by PV professionals and
also HCPs in the clinical setting (Natsiavas et al., 2019a; Natsiavas
et al., 2020). The paper focuses on the presentation of the results of a
comparative study conducted in the context of the project engaging
PV professionals, and discusses challenges in terms of integrating such
tools in every-day PV activities.

2 Methods and materials

2.1 Technical approach

The PVClinical platform (available as an open-source project4)
employs Knowledge Engineering as its main technical paradigm, using
Resource Description Framework (RDF) as one of its main data
representation formalisms5. More specifically, the referenced terms
are organized in the form of RDF-based Knowledge Graphs, enabling
syntactic and semantic interoperability, but also enabling reasoning
based on the respective conceptual structures and their semantics (e.g.,
super- or sub-class relationships), a process which is not available on

1 The IMI WEB-RADR and WEB-RADR2 consortia include several regulatory
and drug-safety focusing organizations, e.g., the United Kingdom Medicines
and Healthcare products Regulatory Agency—MHRA, the WHO-UMC, the
Spanish Agencia Espanola De Medicamentos Y Productos Sanitarios, the
Croatian Agencija Za Lijekove I Medicinske Proizvode and the LAREB based in
the Netherlands.

2 https://www.fda.gov/safety/fdas-sentinel-initiative#:~:textSentinel%20is%20the
%20FDA’s%20national,FDA%20launched%20the%20Sentinel%20Initiative.

3 The PVClinical project’s web site: https://pvclinical-project.eu/.

4 The GitHub code repository: https://github.com/inab-certh/PVClinical.

5 A walkthrough of the PVClinical platform is available as supplementary
material and a demonstration video can be found in https://youtu.be/
BJB4OPlKmUM.
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raw data available in non-RDF format [e.g., DrugBank6 (Wishart et al.,
2018) data in XML format].

More specifically, two widely adopted reference terminologies are
used to semantically organize the respective information,
i.e., Anatomical Therapeutic Chemical classification system (WHO-
ATC)7 to refer to drugs, and the Medical Dictionary for Regulatory
Activities (MedDRA)8 to refer to adverse drug reactions. WHO-ATC
is a hierarchical conceptual structure organizing active ingredients
according to the organ or system on which they act and their
pharmacological profile. Similarly, MedDRA is a conceptual
hierarchy organizing ADRs, extensively used as a de facto standard
in the context of drug safety. Based on these main terminologies, other
data sources are also used in the respective Knowledge Graph
(i.e., DrugBank data were used to retrieve drug information) in
order to expand the relevant data space and include information
useful to identify drugs (e.g., via synonyms, including commercial/
brand names)9. The RDF version of MedDRA and the ATC was
retrieved via NCBO BioPortal (Salvadores et al., 2013)10, and the RDF
version of DrugBank was retrieved using the Bio2RDF (Callahan et al.,
2013) transformation script11,12.

Semantic annotation of the raw data integrated in such tools is a
typical challenge, usually tackled via NLP approaches including at least
a Named Entity Recognition (NER) process. In the presented
platform, an annotation approach of the raw data was not applied
per se. In the presented platform, an extensive list of synonyms is
included in the project’s RDF-based Knowledge Graph built based on
DrugBank to retrieve brand names etc. and well-defined conceptual
hierarchies (e.g., ATC, MedDRA etc.) to collect synonyms for drugs
and ADRs. This synonyms’ list is used to identify drugs and ADR
mentions in the raw data and map them to ATC and MedDRA, the
main terminologies used to formulate the respective Drug-Event
Combination (DEC) scenario and disambiguate relevant terms.
During the definition of the DEC-based scenario, multiple ATC
and MedDRA codes can be used to overcome the existing
complexity of potential multiple links between drugs and ATC codes.

As data management is a cross-cutting concern, some details are
provided regarding how data were handled for each data source/
workspace:

- FAERS data: Data were originally retrieved from regular XML
files published by FDA and then they were stored in a non-
relational database, i.e., a MongoDB instance13. During this
process, the original free text data were fed in a NER pipeline
to identify drugs and ADRs using RxNorm and the already
outlined Knowledge Graph containing “synonyms”.

- OMOP-CDM data: OMOP-CDM data have (at least in
principle) their basic information (i.e., diagnosis and
medication) already semantically annotated using the OHDSI
vocabulary terms which are mapped in ATC and MedDRA
(among other thesauri). The various fields of the OMOP-
CDM which could contain “unstructured” information (e.g.,
clinical notes fields) were ignored. To facilitate pilot testing of
the platform, synthetic clinical data from SynPuf database in
OMOP-CDM format were also integrated.

- PubMed: The synonyms identified in the Knowledge Graph
were used to retrieve relevant papers using the respective
PubMed Application Programming Interface (API). More
specifically, the PubMed API is used to retrieve papers
containing the DEC-related synonyms in the titles/abstracts.

- Twitter: Indeed, this is the most challenging data source given that
people do very frequently use slang language, abbreviations of any
kind, hashtags etc. The synonyms contained in the Knowledge
Graph are given as arguments in Twitter streaming API calls to
retrieve relevant tweets and store them also in MongoDB format.
Example tweets mined during the pilot study are:
+ “I think we need to go up to 100 mg of my Sertraline. I’d already
requested 50 mg, but I’m supposed to take the second dose daily
of my Valproic Acid before I can have 100 mg (to prevent
hypomanic/manic episodes) and I’m wary of that as it can
damage the liver. Have to do it though. (sad face emoticon)”

+ “Read the latest from Guo in Annals of Pharmacotherapy:
Valproic Acid After Neurosurgery Induces Elevated Risk of
Liver Injury: A Prospective Nested Case-Control Study
https://t.co/UJBUIXt3fa”

+ “@medical_xpress @BrJCancer. Adding to the epidemic of liver
disease. Valproic acid has a black box warning for
hepatotoxicity, pancreatitis, and fetal abnormalities Valproic
acid may cause serious or life-threatening damage to the liver
that is most likely to occur with the first 6 months of therapy.”

+ “@FirstPogMoThoin @felix_masibay Valproic acid does a lot of
damage to the liver as well; it is a very harmful drug for the body
in general.”

2.2 Analytical approaches

Upon these data sources, a data intensive web user interface has
been developed to enable user exploration and drill-down via
interactive analytics, based also on other open source software
components (e.g., the tools provided by the Observational Health
Data Sciences and Informatics (OHDSI) initiative community14

6 DrugBank web site: https://go.drugbank.com/.

7 WHO-ATC classification web site: https://www.who.int/tools/atc-ddd-
toolkit/atc-classification.

8 MedDRA terminology web site: https://www.meddra.org/.

9 This Knowledge Graph is based on data which are not freely available but
they come with specific usage licenses, i.e., MedDRA and DrugBank come
with their own licenses. Thus, while the PVClinical platform’s source code is
openly available, we selected to leave the Knowledge Graph out of the
GitHub repository.

10 https://bioportal.bioontology.org/.

11 https://download.bio2rdf.org/files/release/3/drugbank/drugbank.html.

12 The DrugBank raw data source includes information for ADRs based on the
information provided in the drugs’ product labels/leaflets. However, this
information was not used in our platform as our main use case was to
facilitate PV signal elaboration and thus, already confirmed ADRs were
considered out of scope. It should be clarified that DrugBank data
integrated in our Knowledge Graph are not used as to provide
information for ADRs but it is only used to facilitate in terms of
synonym’s finding and query space expansion to facilitate the analysis of
data sources which could be used to identify novel ADR signals, i.e., the data
sources elaborated in the workspaces of the PVClinical platform

13 ICSRs from FAERS are also available via the OpenFDA API. However, the
OpenFDA API only supports specific kinds of requests/queries and thus, the
solution of locally storing FAERS data was selected.

14 The OHDSI initiative web site: https://www.ohdsi.org/.
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(Dimitriadis et al., 2021), openly available web analytics apps using
openFDA data15 etc).

- OpenFDA workspace: Several interactive analytics were
deployed, mostly focusing on disproportionality analysis
metrics which are extensively used to support decision
making processes in PV. These methods include the
calculation of Reporting Odds Ratio (ROR) (Rothman
et al., 2004; Evans et al., 2001), Proportional Reporting
Ratio (PRR) (Evans et al., 2001), Change Point Analysis
(CPA) (Xu et al., 2015) and other user interaction
functionalities. For example, the “dynamic PRR” and the
“Change Point Analysis” views depict how the PRR metric
evolves over time, a Bayesian and a variance CPA
approach16 while in various views the PVClinical
platform enables the identification of medium values for
specific time windows, dynamic data filtering, navigating in
potential other adverse effects reported in the same ICSRs
and data export (including the relevant ICSR reports) in an
excel file format.

- OHDSI workspace: In the OHDSI workspace, analytics tools
used for observational studies were integrated to support the
exploration of RWD sources as they are typically used in the
context of the ATLAS tool built and supported by the OHDSI
community. To this end, the following analysis tools were
integrated (Dimitriadis et al., 2021)17:
+ “Incidence rate” is defined as a measure of the frequency
with which some event, such as a disease diagnosis or
other incidence, occurs over a specified time period.
Typically, the incidence rate is calculated based on the
ratio of the “target cohort” (i.e., the set of patients under
investigation, e.g., all the patients of the hospital which

the specific drug was administered to) and the “outcome
cohort” (i.e., the set of patients which have been diagnosed
with the respective adverse condition).

+ “Cohort characterization” is defined as the process of
generating cohort level descriptive summary statistics from
person level covariate data.

+ “Drug exposure” depicts the distribution of the population
exposed to a specific drug.

+ “Condition occurrence” quantifies the distribution of the
population diagnosed with the respective health conditions
(illness, side effects, side effects, etc.).

+ “Cohort pathway” provides an aggregated sequence of events
(e.g., diagnosis, treatment decisions etc.) for the set of patients
which have been treated with the specific drug (target cohort).

- PubMed workspace: The papers retrieved can be marked in
terms of relevance with the DEC under question as
“selected”, “border-line” or “rejected”. Furthermore, the
papers can be filtered via publication date and annotated
with comments.

- Twitter workspace: Data are retrieved using twitter’s API simple
keyword search and upon the collected tweets, interactive
visualization techniques and simple NLP-like operations are
employed to identify hashtags, retweets etc. In terms of user
interface, counters of relevant tweets indicating the number of
retweets are presented in a timeline, enabling dynamic
interaction and filtering or sorted by their the platform’s UI
by manually selecting a specific time period or clicking on a
specific timepoint (see the walkthrough presented as part of the
Supplementary Material for screenshots). Furthermore, a
heatmap visualization is presented to highlight any twitter
accounts heavily posting about the specific DEC and
potentially being highly influential. Finally, the top hashtags
can be inspected in a separate streamgraph (Kakalou et al.,
2022).

2.3 Design of platform’s usage pathways

The user can interact with the system via two independent
pathways (Figure 1):

FIGURE 1
PVClinical platform end user pathways.

15 An open-source repository of web apps developed to support the analysis
of OpenFDA data: https://github.com/jonathanglevine/openfdashinyapps.

16 A lot of these statistical approaches were implemented in the respective
code provided directly by Jonathan G. Levine’s openly available source
code https://github.com/jonathanglevine/openfdashinyapps.

17 The Book of OHDSI https://ohdsi.github.io/TheBookOfOhdsi/.
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- (a) Data exploration: this pathway is designed to be typically
used by PV professionals who would like to analyze vast
amounts of data to support the need for regulatory action
or not.

- (b) Individual case management: this pathway is designed to
be typically used by HCPs in the clinical setting who
would like to decide whether a specific patient is
suffering from an ADR or not.

It should be noted though that these usage pathways can also be
used complementary or interchangeably as many times the PV
professionals are analyzing each ICSR individually (steps b.2 and
b.3). Similarly, HCPs could also need to have access to a wider data
space (e.g., ICSRs, RWD etc.) to support their clinical decisions
regarding potential ADRs.

The “data exploration” pathway can be outlined in 3 steps:

- Step 1: the drug event combination (DEC) for the "investigation
scenario” is defined

- Step a.2: the available data sources are explored
- Step a.3: an overall aggregative report is produced for further use
(e.g., regulatory or quality assurance purposes)

Similarly, for the “individual case management” pathway, there
are also 3 steps outlined:

- Step 1: similarly, with the “data exploration” pathway, the DEC
for the ‘‘investigation scenario” is defined

- Step b.2: the questions defined in the “Liverpool’s algorithm”

(Gallagher et al., 2011) are answered
- Step b.3: based on the answers given in step b.2, the system
provides a hint on whether there is an ADR for the specific
individual case per se or not

Based on early interaction with potential end-users, it was clear
that the presented analytics could be too complicated and thus
overwhelming for non-PV professionals, thus, the platform also
provides simplified “quick views”. “Quick views” aim to
provide access to the most intuitive available statistics/figures,
while a “detailed view” is always available providing access to the
full stack of available analytics and statistical measures. For
example, the “quick view” in the Open FDA workspace does
not include the “Bayesian change point analysis”. Similarly, in the
OHDSI workspace the ‘‘quick view” only provides access to the
“Incidence Rate” and “Cohort Characterizations” functionalities,
leaving out the “Drug Exposure”, “Condition Occurrence” and
“Cohort Pathways” analysis views.

In the case where the use of multiple synonyms might lead to
multiple potential combinations of drugs and/or adverse effect
terms, all the potential combinations of keywords are presented
and analyzed independently. For example, in a scenario
where 5 synonyms for the drug and 5 synonyms for the adverse
effect are selected, there are 5 × 5 = 25 “pairs” of DEC terms
identified. For each pair of DEC terms, all the relevant
disproportionality measures are calculated and the relevant
analytics are presented.

2.3.1 Pathway A: Data exploration
• Step 1: Definition of investigation scenario

Each time a new potential PV signal is to be investigated, a new
“investigation scenario” is defined as a DEC, which could potentially
refer to multiple drugs or (adverse) effects of interest.

• Step a.2: Data exploration

As each data source has its own unique features and
characteristics, the respective analytics views provided by the
platform are adapted accordingly. For example, while
disproportionality analysis ratios (e.g., PRR, ROR etc.) might be
highly relevant for ICSR data, their use in RWD is currently under
investigation and there are no (yet) widely accepted statistical
metrics to be used. Thus, a “workspace” is defined for each data
source, leading to a total of four data intensive workspaces to
support the investigation of a potential signal, i.e., the OpenFDA
workspace enabling the interaction with ICSR data collected via
FAERS, the OHDSI workspace enabling the use of data available in
OMOP-CDM format, the PubMed workspace for the investigation
of scientific publications and the Twitter workspace for social
media posts.

• Step a.3: Reporting

A summary report is produced, containing the results of the
analysis conducted in the various workspaces, including relevant
figures, data tables and potential notes.

2.3.2 Pathway B: Individual case management
• Step 1: Definition of investigation scenario

The “individual case management” pathway begins with the
definition of the relevant DEC (step 1 is common between pathway
A and pathway B).

• Step b.2: Questionnaire answering

The user answers the “Liverpool algorithm” questions to evaluate a
potential ADR on an individual case basis18 (see walkthrough of
platform in the Supplementary Figures S8A–C). These questions
focus on the adverse response and its relation with drug
administration pattern, e.g. a question related with the
“dechallenge” process is “Did the event improve when the drug
was stopped or dose reduced?”.

• Step b.3: Individual case hint

The system provides a hint regarding whether this case refers to an
adverse reaction or not, based on the outcome of the “Liverpool
algorithm” (Gallagher et al., 2011).

18 The Liverpool algorithm acts conditionally, applying an “if-then-else”
rationale, guiding the end-user among questions based on his/her
previous answer(s). The exact navigation path, the number of the
questions finally answered and the outcome of the algorithm depends
on the answers given on each step.
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2.4 Comparative study

In order to identify gaps and potential benefits of the presented
system in real-world settings, a comparative study was conducted,
aiming to compare the presented platform and the EVDAS system
provided by the EMA.

EVDAS (EudraVigilance DataWarehouse and Analysis System) is
an online service provided by EMA to facilitate the analysis over the
ICSRs collected at a European level, providing access to various reports
displaying data in different formats, tables and graphs. Typically, data
outputs are aggregated but EVDAS also provides the ability to review
details of individual case reports. As a whole, EVDAS provides
analytics tools comparable to the ones built in the PVClinical
platform in terms of ICSR data analysis (e.g., identify reports
related with the drug-event combination in question, drill down to
the submitted ICSR per se etc.). On the other hand, the two
environments also differ quite significantly regarding the provided
analytics, for example the EVDAS platform does not provide view for
dynamic PRR or CPA. Finally, it should be noted that EVDAS only
focuses on ICSRs and does not include any other kind of data sources.

The comparative study was conducted by the “Signal Management
Team (SMT)” of a Contract Research Organization (CRO) acting as a
subcontractor to support PV activities. The SMT comprised of a total
of 4 PV professionals conducting the study during a 2-month period.
Based on the Standard Operating Procedures (SOPs) related with PV
signal management, three investigation scenarios, i.e., case studies
were created and implemented: (a) The first scenario focused on a
commonly known adverse event presented during the use of an active
substance for the treatment of a chronic disease, during a 6-monthly
period (b) the second scenario investigated reports associated with an
adverse event (AE) presented during the use of an advanced therapy
medicinal product, during a 6-monthly period, and (c) the third
scenario concentrated on an already identified, by the EMA
Pharmacovigilance Risk Assessment Committee (PRAC), signal
associated with an active substance.

The assessment started by exploring EVDAS and continued with
the newly developed platform in the context of the PVClinical project.
CERTH’s team provided the SMT with the study validation protocol
and questionnaire, aiming to assess the platform’s perceived usability
and user-satisfaction. The steps of the investigation process can be
summarized as follows:

- Examination of the FDA ICSRs for potential duplicates and the
identification of potentially incomplete reports

- Thorough review of the related FDA ICSRs (narrative, medical
history, age, concomitants)

- Comparison of the literature data collected from PubMed a)
through the dedicated literature workspace of PVClinical
platform and b) the SMT’s own check of the literature on the
PubMed website

- Thorough evaluation of the relevant literature data regarding the
signal-at-hand

- Detailed review and evaluation of the EVDAS ICSRs (with the
exception of scenario #3 that is an already validated signal)

- Completion of the signal reporting form with the signaling
results, according to the internal SOPs of the CRO

- Completion of the comparative questionnaire (see
Supplementary Material Table S1). The comparative
questionnaire is comprised of preferential ratings with a 7-

rating scale (strongly prefer currently available tools, prefer,
slightly prefer, prefer both equally, slightly prefer, prefer,
strongly prefer PVClinical platform) based on specific factors;
those factors are:
o complexity,
o optimal time,
o confidence of decision,
o perceived data quality,
o user experience, and
o overall preference.

- Comprehensive report containing the results and conclusions
with regards to the platform’s validity, accessibility and usability.

Notably, each scenario’s results were further evaluated by the SMT
if presenting ROR larger than 1, in at least one of the two platforms.
Finally, the SMT provided detailed tables of the effort (hours) for each
platform in order to assess the impact of PVClinical platform in
reducing the investigation time burden.

3 Results

In this section, the end-users’ evaluation results are presented. It
should be noted that as there were no real-world OMOP-CDM data
available to be used during the evaluation process, the evaluation of the
OHDSI workspace was considered to be out of scope for this paper19.

3.1 Comparative study

In Table 1 we present the answers to the comparative
questionnaire for each scenario.

In Table 2 we present the overall evaluation of the compared tools
and the relevant PVClinical platform’s workspaces after their use in
the context of the CRO’s SOPs.

In Table 3 below we present the effort distribution as time spent
per task per scenario.

3.2 Qualitative evaluation

As a whole, based on discussions with the PV professionals they
clearly prefer the use of EVDAS and the tools they currently use,
mostly due to technical issues. However, they have also clearly
acknowledged the additional capabilities of the presented platform,
and reported, that they would happily migrate to it, as long as it is
more technically mature and complimented with necessary
educational material/training courses. In this section a summary of
the strengths and weaknesses identified for each workspace is
presented.

19 Real hospital data have been converted to OMOP-CDM in the context of
the project to evaluate the feasibility of the presented platform. However, as
these data are sensitive, they could not be shared with out-of-hospital end-
users due to legal and ethical barriers, and thus, they were not used during
the evaluation of the system by the SMT’s PV professionals.
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3.2.1 OpenFDA workspace
3.2.1.1 Strengths

The end users clearly acknowledged the value of using FAERS data in
their evaluation process. Even though PV regulation in Europe emphasizes
on the need to exploit EudraVigilance data (andnot data by FDA), still, FDA
is an important and very credible organization and thus, the end users highly
value the integration of these data in their PV signal management pipeline.

Moreover, the user interface of the OpenFDA workspace was
relatively well accepted as it provides analytics comparable to the ones
provided by EVDAS.

3.2.1.2 Weaknesses
However, given that the SMT team is used to work with the

EVDAS analytics (graphs etc.), sometimes they seemed
overwhelmed by the new graphs and the additional statistical
metrics available in the OpenFDA workspace. The issue of
whether extra analytics can be perceived as a strength (partially
it was), or as a weakness/barrier for the overall acceptance is an
issue open to interpretation.

In terms of data management, the fact that OpenFDA publicly
releases the data with delay, does not allow the system to retrieve the

TABLE 1 Results of the comparison questionnaire.

Scenario 1 Scenario 2 Scenario 320

Complexity Prefer currently available tools Prefer currently available tools Slightly prefer currently available tools

Optimal time Slightly prefer currently available tools Slightly prefer currently available tools Prefer currently available tools

Confidence of decision Prefer currently available tools Prefer currently available tools Prefer currently available tools

Perceived data quality Prefer currently available tools Prefer currently available tools Prefer currently available tools

User experience Prefer PVClinical platform Prefer currently available tools Slightly prefer currently available tools

Overall preference Slightly prefer currently available tools Prefer currently available tools Prefer currently available tools

TABLE 2 Performance of each approach based on the CRO’s SOPs.

Scenario 1 Scenario 2 Scenario 321

Currently
available tools

PVClinical platform Currently
available tools

PVClinical platform PVClinical platform

Validated Signal Yes Yes Yes No Yes

Reported ROR 3.62 1.77 3.52 3.13 56.31

Signal Validation Details

ICSRs identified
(EVDAS and
OpenFDA)

Yes, ICSRs identified
and contributed to the
decision

No case reports were identified
during the References period22

Yes, ICSRs identified
and contributed to the
decision

No case reports were identified
during the References period

Yes (with technical
problems23)

Twitter n/a 70 tweets identified. The SMT
found the tool useful to further
evaluate and substantiate the signal

n/a 1 tweet identified which
strengthened the association
between the active substance and
the event,

15 tweets identified. Twitter
was considered a useful tool
for this scenario.

Scientific
Literature PubMed

Yes Yes, it provided more articles Yes Yes, it provided more articles Yes, it provided more
articles

TABLE 3 Effort distribution per task, scenario and platform (Hours dedicated by SMT).

Scenario 1 Scenario 2 Scenario 3

Currently available
tools

PVClinical
platform

Currently available
tools

PVClinical
platform

Currently available
tools

PVClinical
platform

Overall Time-
spent

23.5 h 14 h 18 h 16.5 h 5 h 27.5 h

Scenario setting 3.5
424

4 n/a 0.5

ICSRs 4 8 7 n/a 14

PubMed 16 5 6 4 5 11

Twitter n/a 5 n/a 0.5 n/a 1
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most recent information which is necessary for PV professionals to
detect and further validate a potential signal.

Finally, some technical bugs and the need for more technical
maturity were also pointed out. For example, the SMT reported
their inability to identify and easily retrieve the ICSRs in some
cases.

3.2.2 Twitter
3.2.2.1 Strengths

Twitter was very positively accepted by the SMT. The end-users
generally agreed that social media data could provide a valuable
complementary data source to support PV signal management and
the user interface was also positively accepted. The end-users also
suggested that beyond the mentions of potential ADRs by citizens/
patients, the retweets of relevant scientific literature could also
highlight influential literature.

3.2.2.2 Weaknesses
There are no established statistical metrics widely used to quantify

the impact of social media posts and thus, it is not clear how these data
could be used in a quantifiable manner as part of the overall PV
management processes.

3.2.3 PubMed
3.2.3.1 Strengths

The number of citations retrieved during the search through
PVClinical platform was significantly larger compared to the results of
the simple search via PubMed web interface, also providing scientific
papers which were evaluated as “important” for the overall signal analysis
process and had beenmissed viamanual search. This could be attributed to
the query expansion mechanism using the synonyms produced via the
KnowledgeGraph. For example, for thefirst scenario/DEC evaluated in the
comparative study, 303 papers were retrieved via direct/manual search and
392 papers were retrieved via the use of the PVClinical platform.Out of the
extra papers identified via the PVClinical platform, at least two of them
were evaluated as important for the overall signal evaluation process.

3.2.3.2 Weaknesses
While having more results could be considered beneficiary for the

overall signal management approach, still the SMT noted that it also
required more time to analyze the extra findings. Furthermore, the SMT

reported slow response times while retrieving PubMed papers due to
technical issues.

4 Discussion

As RWD and other emerging data sources have been widely
identified as a key data source able to feed the vision of a
“Learning Healthcare System”, enabling quicker and richer decision
making processes in the clinical context and beyond (Friedman et al.,
2015; Dash et al., 2022), they could also play a key-role in terms of
pharmacovigilance. To this end, EMA has recently announced that it
will update its regulatory activities to include RWD until 2025 (Arlett
et al., 2021) and thus, integrating RWD in via software tools aiming to
support drug safety activities emerges as a key feature.

Currently, the available commercial software tools aiming to support
PV processes, including products from widely established industrial
vendors (e.g., Oracle25, ArisGlobal26 etc.), do not support the
integration of emerging data sources, like RWD. Similarly, the open (or
almost open) tools aiming to support PV activities are built upon SRSs/
ICSRs. EVDAS27 and OpenFDA28 are prominent examples and they come
with the same limitation of not combining SRS data with RWD.

4.1 Principal results

Addingmore data sources beyond ICSRs has been identified as a useful
feature as they could complementary support the PV signal management
processes. However, the risk of overwhelming end-users with vast amounts
of data which cannot be clearly interpreted has also been clearly identified.

Along the same lines, there is a need for clarifications on how these
emerging data sources can be used as part of every-day PV signal
management activities (e.g., reporting to regulatory organizations etc.)
and a clear need for training for the respective PV professionals.
Currently, even though the end-users are confident that these data
sources could be useful, still, they are not really sure on how they could
use them as part of their every-day practice.

A key methodological issue is the lack of widely accepted statistical
measures regarding the use of RWD for PV. There is active research on
howOMOP-CDM data can be used for PV purposes (Arnaud et al., 2017;
Schuemie, 2011; Yu et al., 2019; Thurin et al., 2020), unsurprisingly
exploiting disproportionality analysis approaches. However, as there is
not yet a widely accepted approach on which methodology/statistical
metrics should be used, the presented platform is using OMOP-CDMdata
in a rather generic manner, based on software components already built in
the context of OHDSI initiative. Similarly, while social media have been
widely elaborated, they are only able to support PV signal management in
an ancillary manner (Caster et al., 2018) and thus, there are no widely
accepted statistical metrics developed (yet).

20 The scenario of this study is “Alemtuzumab and Cytomegalovirus”, which is
an already identified signal according to the European Medicines Agency
(EMA) Pharmacovigilance Risk Assessment Committee (PRAC).

21 Since Scenario’s 3 focuses on an already identified signal
Pharmacovigilance Risk Assessment Committee (PRAC), only the
PVClinical platform was used.

22 As already explained in the manuscript, the comparison study was built
upon the SOPs applied in the specific CRO. Based on these SOPs, they
periodically evaluate potential signals taking into account the ICSRs of the
last 6 months. In the time when the comparative study was conducted
(late 2021) there were no data available for the two scenarios via the FDA
XML downloads.

23 308 reports reviewed (out of a total of 449) due to a technical system error.
In 69 reports Alemtuzumab was not identified as a suspect drug, while in
239 reports (out of 308) a causal association between the drug and the
adverse reaction was identified.

24 Merged cells occur when the SMT did not partitioned clearly the time spent
based on the corresponding categories on the table

25 https://www.oracle.com/industries/life-sciences/pharmacovigilance/.

26 https://www.arisglobal.com/lifesphere/fda-drug-safety-solution/?utm_
source=pardot&utm_medium=email&utm_campaign=AGMKT-24&utm_
content=button.

27 https://www.ema.europa.eu/en/human-regulatory/research-development/
pharmacovigilance/eudravigilance/eudravigilance-system-overview.

28 https://open.fda.gov/.
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In technical terms, data access is a crucial point. While OMOP-CDM
can be an emerging de facto standard which could be used as a reference
data model to integrate RWD, it is not yet a universally accepted data
model. Furthermore, ICSR data access is also crucial. While EMA and
WHO-UMC aggregate data from various sites all over the world, they are
not openly available. The presented platformusesOpenFDA stack to access
FAERS data which should be commended for their free access provision,
but still, the data provided are available in a quarterly fashion—published in
3 months bulks—, leading to a significant delay “window”. The fact that
OpenFDA publicly releases the data with delay, does not allow PVClinical
platform to retrieve current information which is necessary for
professionals to detect and further validate a potential signal. Regarding
the semantic annotation of raw data, it is also acknowledged that
sophisticated NLP pipelines could also improve the overall process.

4.2 Limitations and challenges

The presented platform was planned to reach Technological
Readiness Level 529 in the context of the PVClinical project. Thus,
there are various technical, methodological and also usability issues
which could be further elaborated and these issues could be considered
to hinder end user acceptance as a whole. Integrating “intelligent” or
data intensive tools in the healthcare context is far from trivial (Li et al.,
2020) and to this end, some crucial aspects and challenges regarding
the acceptance of such tools for drug safety operations were already
identified during the project’s design phase (Gavriilidis et al., 2021).

Finally, regarding the pilot approach there are some limitations worth
to be mentioned. The end-users participating on the pilot test were project
partners and this could have influenced their judgement as they cannot be
considered “independent”. Furthermore, the use of synthetic data could be
identified as a potential limitation. In the context of the PVClinical project,
real EHR data have also been converted to OMOP-CDM to showcase the
feasibility of the process. However, since the project’s goal was to provide a
technical platform and not to conduct a PV study, these “real” data were
not used during the pilot phase of the project, also in order to avoid legal
and administrative implications.

5 Conclusion

To the best of our knowledge, the presented platform is a novel open-
source tool aiming to integrate ICSRs/SRS data, OMOP-CDM data, social
media and scientific literature, enabling the use of these data sources in a
unifiedmanner to facilitate the identification andmanagement of potential
PV signals. The fact that this is published as an open-source platform,
enables further collaborative development aligned with the principles of
open research. Admittedlywhile the results of the comparative study depict
the benefits that such tools could offer, a reluctance for their adoption is
also highlighted, identifying the need to improve regarding technical
maturity, user experience but also the need for further PV
professionals’ education in terms of data science and its caveats.

As part of the future platform development plans, the
investigation of potential alternative user interaction

paradigms to enhance usability is a key goal. Moreover, the
use of more AI/ML paradigms and the data space widening is
actively explored. New potential data sources are also under
investigation, including clinical trial data, aggregative PV
signal reports produced by drug-safety organizations (e.g., via
the OpenPVSignal model (Natsiavas et al., 2018)) and also lower-
level biochemical information (e.g., pathway information).
Furthermore, the integration of more sophisticated statistical
approaches, especially regarding the evaluation of OMOP-
CDM data to support PV signal management has also been
outlined as a future work line. Finally, systematic validation of
the platform, both regarding of technical robustness but also in
terms of its integration in PV operational processes is also
planned.
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