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Single-cell multiomics (sc-multiomics) is a burgeoning field that simultaneously
integrates multiple layers of molecular information, enabling the characterization
of dynamic cell states and activities in development and disease as well as treatment
response. Studying drug actions and responses using sc-multiomics technologies
has revolutionized our understanding of how small molecules intervene for specific
cell types in cancer treatment and how they are linked with disease etiology and
progression. Here, we summarize recent advances in sc-multiomics technologies
that have been adapted and improved in drug research and development, with a
focus on genome-wide examination of drug-chromatin engagement and the
applications in drug response and the mechanisms of drug resistance.
Furthermore, we discuss how state-of-the-art technologies can be taken forward
to devise innovative personalized treatment modalities in biomedical research.
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Introduction

Intra- and inter-tumoral heterogeneity has been recognized as a hallmark of cancer and
a crucial determinant contributing to drug resistance and cancer therapeutic failure
(Hanahan and Weinberg, 2011; Holohan et al., 2013). Despite progresses in molecular
biological or/and biochemical measurements can help detect and reveal the overall average
signals in malignant tumors (Parikh et al., 2019; Su et al., 2019), drug discovery and
development remain challenging due to the various range of treatment sensitivity in diverse
cellular subpopulations. Drug research and development (R&D) represents a long-term and
complicated process (Sun et al., 2022; Chen et al., 2018). The whole process of drug R&D
often starts with basic research for target identification in laboratory studies, followed by
drug screening, leading compound and optimization, preclinical and clinical trials in
humans, FDA approval and marketing (Loscher et al., 2013; Fidock et al., 2004)
(Figure 1). Given the failure in efficacy, unexpected side effects, and time/cost burdens
during drug development, many drug candidates that start the journey do not make it to the
end, with nearly 90% of human trials failing to achieve registration (Paul et al., 2010;
Alcantara et al., 2018). Traditional approaches in studying diseases and identifying
anticancer targets rely on bulk sequencing, leading to a limited understanding of
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diverse disease subtypes and the heterogeneity of cellular responses.
Therefore, the demand for new ways to develop drug targets has
become an urgent call to action.

In recent years, sc-multiomics enters the area of active and
growing investment in drug discovery and development, which
offers the capability for researchers to interrogate rare cell
subpopulations with minimal sample consumption and
multiplexed readouts (Baysoy et al., 2023; Lim et al., 2024;
Dimitriu et al., 2022; Macaulay et al., 2017; Hao et al., 2021).
The joint analysis of various molecular components using sc-
multiomics data can decipher gene regulatory relationships
related with tumor heterogeneity (Chen et al., 2023; Kallberg

et al., 2022). In this review, we explore advances in the utilization
of single-cell multi-omics in drug research and development.
Through this comprehensive review, we aim to shed light on the
strategies for identifying potential anticancer drug targets and
provide insights into unanticipated drug effects from the
perspective of sc-multiomics.

Emerging sc-multiomics technologies

Generally, sc-multiomics technologies jointly measure multi-
layered molecular modalities including genome, epigenome,

FIGURE 1
The pipeline of drug research and development. The drug research and development (R&D) process comprises several major steps including
identification of lead com- pounds, primary screen, counter screen and structure-activity relationship (SAR), testing the efficacy and toxicity preclinical by
in vitro/vivo studies and ADME (absorption, distribution, metabolism, excretion and toxicity) studies, clinical phases (phase I trials for safety and
pharmacokinetics; phase II trials for dose/efficacy/toxicity testing in small patient populations; phase III trials for dose/efficacy/toxicity testing in
large patient populations). Through all these processes, culminating data will be evaluated by drug regulatory industry like FDA (Food and Drug
Administration) to determine the approval for marketing and use. Single-cell multiomics, in combination with organoid/animal/cellular model and gene
editing technologies, is actively shaping drug discovery and promises to make a big difference in finding new drugs and validating drug targets.
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transcriptome, proteome, and/or metabolome in the same cells,
which has been proven to have the potential to offer a more
comprehensive dissection of underlying molecular mechanisms in
gene regulation and cellular diversity and function in physiology and
pathology (Ogbeide et al., 2022; Vandereyken et al., 2023; Bai et al.,
2021; Macaulay et al., 2015; Dey et al., 2015; Han et al., 2018; Yin
et al., 2019; Zachariadis et al., 2020; Kawaoka and Lomvardas, 2024;
Izzo et al., 2024; Tedesco et al., 2022; Liscovitch-Brauer et al., 2021;
Satpathy et al., 2018; Clark et al., 2018; Markodimitraki et al., 2020;
Xie et al., 2023; Bian et al., 2018; Hu et al., 2016; Peterson et al., 2017;
Stoeckius et al., 2017; Swanson et al., 2021; Fiskin et al., 2022; Lin
et al., 2023; Mimitou et al., 2021; Chamorro Gonzalez et al., 2023;

Wang et al., 2021; Gu et al., 2019; Liu et al., 2023; Rodriguez-Meira
et al., 2019; Chen A. F. et al., 2022) (Figure 2A). Great strides
have been made in the field of sc-multiomics in recent years. For
example, simultaneous detection of chromatin accessibility and
transcriptome in the same cell provides a direct link between
chromatin state and the level of the corresponding transcripts.
These approaches fall broadly into three categories based on the
single-cell barcoding strategy: (i) plate (or well)-based low-
throughput methods (scDam&T-seq (Rooijers et al., 2019),
scCAT-seq (Liu et al., 2019)); (ii) droplet-based high-throughput
methods (ASTAR-seq (Xing et al., 2020), SNARE-seq (Chen et al.,
2019)); (iii) combinatorial indexing-based high-throughput

FIGURE 2
Single-cell multi-omics technologies for mapping drug-target binding. (A) The strategy of single-cell multiomics for studying complex diseases. (B)
Single-cell multiomics for direct mapping of small-molecule binding sites in drug response. Cutting-edge technolo- gies achieve genome-wide
mapping of small molecule target sites at bulk (Chem-seq, Click-Chem-map, Chem-map) even single-cell level (scEpiChem).
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TABLE 1 Single-cell multiomics methods and the application in drug research and development.

Methods References Characteristics Applicable scenarios Advantages Disadvantages

Modality Single-
cell
strategy

scG&T-seq ref. (Macaulay et al.,
2015)

DNA, RNA plate/well/
tube-based

Biological
context with
limited cell
number

1. Disease
understanding.
2. Drug target
(biomarker)
discovery.
3. Drug
response and
resistance.
4. Personalized
medicine

1. Identification of
the cellular
heterogeneity at
single-cell resolution
beyond the
transcriptome.
2. High-throughput
single-cell
technologies allow
identification of rare
cell types.
3. Linking molecular
layers to explore the
machnisms of gene
regulation.
4. Single-cell
multiomics enables
the exploration of
combined effects
between different
layers and factors.
5. Predicting the
molecular features of
missing modality
based on machine
learning

1. Limited data quality
including sensitivity and
specificity for each
modality in single-cell
multiomics technologies.
2. Suffering from sparse
nature of the data due to
dropout events.
3. High cost compared to
bulk sequencing
4. High level of technical
noise leads to difficulties
in identifying true
biological signals.
5. There is no common
analysis pipeline for
different single-cell
multiomics techmologies

DR-seq ref. (Dey et al.,
2015)

DNA, RNA plate/well/
tube-based

Biological
context with
limited cell
number

Target-seq ref.
(Rodriguez-Meira
et al., 2019)

DNA, RNA plate/well/
tube-based

Biological
context with
limited cell
number

scSIDR-seq ref. (Han et al.,
2018)

DNA, RNA plate/well/
tube-based

Biological
context with
limited cell
number

sci-L3-RNA/DNA ref. (Yin et al., 2019) DNA, RNA combinatorial
indexing

Large sc-
multiomics
landsacpe

Perturb-seq ref. (Dixit et al.,
2016)

sgRNA
perturbation, RNA

droplet-based Large sc-
multiomics
landsacpe

CROP-seq ref. (Datlinger et al.,
2017)

sgRNA
perturbation, RNA

droplet-based Large sc-
multiomics
landsacpe

CRISP-seq ref. (Jaitin et al.,
2016)

sgRNA
perturbation, RNA

droplet-based Large sc-
multiomics
landsacpe

DNTR-seq ref. (Zachariadis
et al., 2020)

whole-genome, RNA plate/well/
tube-based

Biological
context with
limited cell
number

LiMCA ref. (Kawaoka and
Lomvardas, 2024)

3D genome, RNA plate/well/
tube-based

Biological
context with
limited cell
number

Got-ChA ref. (Izzo et al.,
2024)

Chromatin
accessibility, genome

droplet-based Large sc-
multiomics
landsacpe

scGET-seq ref. (Tedesco et al.,
2022)

Chromatin
accessibility,
heterochromatin

droplet-based Large sc-
multiomics
landsacpe

CRISPR–sciATAC ref.
(Liscovitch-Brauer
et al., 2021)

Chromatin
accessibility, genetic
perturbations

combinatorial
indexing

Large sc-
multiomics
landsacpe

T-ATAC-seq ref. (Satpathy et al.,
2018)

Chromatin
accessibility, TCR-
encoding genes

droplet-based Large sc-
multiomics
landsacpe

scCOOL-seq ref. (Guo et al.,
2017)

DNA methylation,
Nucleosome
occupancy, CNV

plate/well/
tube-based

Biological
context with
limited cell
number

(Continued on following page)
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TABLE 1 (Continued) Single-cell multiomics methods and the application in drug research and development.

Methods References Characteristics Applicable scenarios Advantages Disadvantages

Modality Single-
cell
strategy

sci-CAR ref. (Cao et al., 2018) Chromatin
accessibility, RNA

combinatorial
indexing

Large sc-
multiomics
landsacpe

scCAT-seq ref. (Liu et al., 2019) Chromatin
accessibility, RNA

combinatorial
indexing

Large sc-
multiomics
landsacpe

SNARE-seq ref. (Chen et al.,
2019)

Chromatin
accessibility, RNA

droplet-based Large sc-
multiomics
landsacpe

ASTAR-seq ref. (Xing et al.,
2020)

Chromatin
accessibility, RNA

droplet-based Large sc-
multiomics
landsacpe

Paired-seq ref. (Zhu et al.,
2019)

Chromatin
accessibility, RNA

combinatorial
indexing

Large sc-
multiomics
landsacpe

SHARE-seq ref. (Ma et al., 2020) Chromatin
accessibility, RNA

combinatorial
indexing

Large sc-
multiomics
landsacpe

scNMT-seq ref. (Clark et al.,
2018)

DNA methylation,
Nucleosome
occupancy, RNA

plate/well/
tube-based

Biological
context with
limited cell
number

scDam&T-seq ref.
(Markodimitraki
et al., 2020)

Protein–DNA
interactions, RNA

plate/well/
tube-based

Biological
context with
limited cell
number

Paired-Tag ref. (Zhu et al.,
2021)

Protein–DNA
interactions, RNA

combinatorial
indexing

Large sc-
multiomics
landsacpe

Droplet-based
Paired-Tag

ref. (Xie et al., 2023) Protein–DNA
interactions, RNA

droplet-based Large sc-
multiomics
landsacpe

CoTECH ref. (Xiong et al.,
2021)

Protein–DNA
interactions, RNA

combinatorial
indexing

Large sc-
multiomics
landsacpe

scMAbID ref. (Lochs et al.,
2024)

Multiple
protein–DNA
interactions

plate/well/
tube-based

Biological
context with
limited cell
number

uCoTargetX ref. (Xiong et al.,
2024)

Multiple
protein–DNA
interactions, RNA

combinatorial
indexing

Large sc-
multiomics
landsacpe

scMT-seq ref. (Hu et al., 2016) DNA
methylation, RNA

plate/well/
tube-based

Biological
context with
limited cell
number

Spear-ATAC ref. (Pierce et al.,
2021)

Chromatin
accessibility, sgRNA

droplet-based Large sc-
multiomics
landsacpe

Perturb-ATAC ref. (Rubin et al.,
2019)

Chromatin
accessibility, sgRNA

plate/well/
tube-based

Biological
context with
limited cell
number

(Continued on following page)
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TABLE 1 (Continued) Single-cell multiomics methods and the application in drug research and development.

Methods References Characteristics Applicable scenarios Advantages Disadvantages

Modality Single-
cell
strategy

REAP-seq ref. (Peterson et al.,
2017)

RNA, Cell surface
protein

droplet-based Large sc-
multiomics
landsacpe

CITE-seq ref. (Stoeckius et al.,
2017)

RNA, Cell surface
protein

droplet-based Large sc-
multiomics
landsacpe

ICICLE-seq ref. (Swanson et al.,
2021)

Chromatin
accessibility, protein

droplet-based Large sc-
multiomics
landsacpe

PHAGE-ATAC ref. (Fiskin et al.,
2022)

Chromatin
accessibility,
mtDNA, protein

droplet-based Large sc-
multiomics
landsacpe

scTrio-seq ref. (Hou et al.,
2016)

CNVs, DNA
methylation, RNA

plate/well/
tube-based

Biological
context with
limited cell
number

scTrio-seq2 ref. (Bian et al.,
2018)

SCNAs, DNA
methylation, RNA

plate/well/
tube-based

Biological
context with
limited cell
number

scNanoCOOL-seq ref. (Lin et al., 2023) CNVs, DNA
methylome,
Chromatin
accessibility, RNA

plate/well/
tube-based

Biological
context with
limited cell
number

TEA-seq ref. (Swanson et al.,
2021)

RNA, Cell surface
protein, Chromatin
accessibility

droplet-based Large sc-
multiomics
landsacpe

NEAT-seq ref. (Chen et al.,
2022a)

Chromatin
accessibility, Intra-
nuclear protein,
genome

droplet-based Large sc-
multiomics
landsacpe

PHAGE-ATAC ref. (Fiskin et al.,
2022)

Chromatin
accessibility,
mtDNA, protein

droplet-based Large sc-
multiomics
landsacpe

ASAP-seq ref. (Mimitou et al.,
2021)

Chromatin
accessibility,
mtDNA, RNA,
protein

droplet-based Large sc-
multiomics
landsacpe

DOGMA-seq ref. (Mimitou et al.,
2021)

Chromatin
accessibility,
mtDNA, RNA,
protein

droplet-based Large sc-
multiomics
landsacpe

scEC&T-seq ref. (Chamorro
Gonzalez et al.,
2023)

extrachromosomal
circular DNAs, RNA

plate/well/
tube-based

Biological
context with
limited cell
number

scNOMeRe-seq ref. (Wang et al.,
2021)

chromatin
accessibility, DNA
methylation
and RNA

plate/well/
tube-based

Biological
context with
limited cell
number

iscCOOL-seq ref. (Gu et al., 2019) chromatin
accessibility, DNA
methylation

plate/well/
tube-based

Biological
context with
limited cell
number

(Continued on following page)
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methods (Paired-seq (Zhu et al., 2019), sci-CAR (Cao et al., 2018),
SHARE-seq (Ma et al., 2020) and ISSAAC-seq (Xu et al., 2022))
(Table 1). The effect of chromatin potential on transcription can be
inferred and interpreted in terms of enhancer regulatory model as
well as cell-type specific regulatory impact on target gene expression
(Mitra et al., 2024; Kartha et al., 2022).

Of note, one aspect of sc-multiomics that is under-explored is
profiling of protein-DNA interactomics including genome-wide
mapping of histone modifications and transcription factor
binding sites. We and other groups in this field have developed a
series of single-cell multimodality epigenomic technologies
(Table 1). These techniques, Paired-Tag (Zhu et al., 2021) and
CoTECH (Xiong et al., 2021), both rely on the use of the protein
A-Tn5 (PAT) protein fusion for in situ antibody-targeted
tagmentation to histone modification loci, similar to the sole
single-cell protein-DNA method CUT&Tag (Kaya-Okur et al.,
2019) and CoBATCH (Wang et al., 2019) with high signal-to-
noise ratio. It is also exciting to witness the emergence of new
methods such as uCoTargetX for profiling multiple histone marks
and transcriptome at one time in single-cells (Xiong et al., 2024;
Lochs et al., 2024). Moreover, the sc-multiomics technologies with
the ability to simultaneously profile at least three molecular layers
including scNMT-seq (Clark et al., 2018), scCOOL-seq (Guo et al.,
2017), scTrio-seq (Bian et al., 2018; Hou et al., 2016), scNOMeRe-
seq (Wang et al., 2021) and DOGMA-seq (Mimitou et al., 2021) or
multiple histone modifications such as scMulti-CUT&Tag (Gopalan
et al., 2021), MulTI-Tag (Meers et al., 2022), nano-CUT&Tag (nano-
CT) (Bartosovic and Castelo-Branco, 2022), and nanobody-tethered
transposition followed by sequencing (NTT-seq) (Stuart et al., 2022)
at single-cell resolution greatly improves the study of highly complex
molecular events. Our intention here is to provide a brief overview of
current sc-multiomics technologies (Table 1), applications of sc-
multiomics in drug research and development are further
discussed below.

Genome-wide determination of drug-
chromatin engagement

Small molecules that target specific signaling pathways and
epigenetic processes have the potential to alter gene expression
and eventually influence cell states (Yuan et al., 2020; Zhang
et al., 2012). Many antitumor drugs directly or indirectly target
chromatin proteins, and these interactions are closely associated
with the DNA-related processes such as DNA repair, replication,

and topology maintenance (Neefjes et al., 2024). With the
development of next-generation sequencing and new chemical
library-screening approaches (Satam et al., 2023; Rodriguez and
Krishnan, 2023), the ability to map the genome-wide interactions
between small molecules with chromatin could provide new insights
into the mechanisms, by which small molecules influence cellular
behaviors and functions in anticancer treatment (Anders et al., 2014;
Rodriguez and Miller, 2014).

Excitedly, emerging technologies have realized detection of the
drug-DNA interaction in recent years. Chem-seq (Anders et al.,
2014; Jin et al., 2014) and Click-Chem-seq (Tyler et al., 2017),
leveraging affinity tags reacting with the functionalized drugs, enable
the identification of global interactions of small molecules with
chromatin genome-wide in bulk samples. Furthermore, Chem-map
was based on small-molecule-directed transposase
Tn5 tagmentation. They used Chem-map to reveal that
JQ1 binding sites were largely overlapped (93%) with peaks
identified by CUT&Tag for its putative protein target BRD4 in
K562 cell, and found that Chem-map outperformed Click-Chem-
seq in signal accumulation (Yu et al., 2023). However, these
technologies measure the drug-target engagement in bulk
samples, which requires millions of cells—not always an option.
To gain better understanding of the functional effect of small
molecules and where in the genome the drugs are located at
single-cell resolution, our laboratory just recently presented, for
the first time, a sc-multiomics method dubbed scEpiChem,
achieving joint measurement of drug-chromatin binding and
multimodal epigenome in the same cells (Dong et al., 2024).
Notably, scEpiChem allows for mapping of epigenomic and
drug-binding information from tens of thousands of single cells
in a single experiment by adopting split-and-pool barcoding
strategy, representing a highly sensitive and scalable approach to
dissect the interplay of drug-chromatin in single cells. Given the
tumor heterogeneity and molecular dynamics, we believe that the
application of scEpiChem holds great promises to explore the
mechanisms of drug action and drug specificity in single
cells (Figure 2B).

The application of sc-multiomics in
identifying drug targets

The identification of practical drug targets and cellular
distribution has significant implications in pharmaceutical
industries and research. The discovery of novel natural active

TABLE 1 (Continued) Single-cell multiomics methods and the application in drug research and development.

Methods References Characteristics Applicable scenarios Advantages Disadvantages

Modality Single-
cell
strategy

snm3c-seq ref. (Liu et al., 2023) chromatin
conformation, DNA
methylation

plate/well/
tube-based

Biological
context with
limited cell
number
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small molecule targets presents vast opportunities for advancing the
treatment of related diseases. Generally, conventional bulk
sequencing allows for systematically elucidating disease
pathogenesis and various phenotypes at the individual level.
However, bulk technologies provide averaged signals of
population of cells for each sample, which fails to capture the
heterogeneity and variations within cell populations. The advent
of sc-multiomics has opened up new avenues in drug screening,
efficacy evaluation, and pharmacological research through
comprehensive global analyses. These analyses encompass the
identification of drug targets within specific cell subclusters, the
elucidation of gene expression dynamics, the tracking of cell
trajectories, and the investigation of cell-cell interactions
(Spaethling and Eberwine, 2013; Yang et al., 2020; Erfanian et al.,
2022) (Figure 3A).

In the realm of drug discovery, changes in the cell function or
immunophenotype of drug candidates can be detected using single-cell
omics based on ex vivo or in vivo designs. The fields of single-cell
proteomics and transcriptomics offer significant capabilities in this
regard. A recent single-cell omics study, for instance, revealed that
LILRB4 was highly enriched in pre-matured plasma cells of patients

compared to those in durable remission, thereby establishing its potential
as a promising immunotherapy target for both tumor cells andmyeloid-
derived suppressive cells in multiple myeloma (Gong et al., 2024).
Recently, the field has witnessed exciting breakthroughs in single-cell
proteomics techniques, enabling the quantification of thousands of
proteins from single mammalian cells (Bennett et al., 2023; Slavov,
2023). These approaches have been applied to assess drug effects on
target proteins and explore the heterogeneous cellular responses to drugs
under different treatment conditions over time (Vegvari et al., 2022;
Ahmad and Budnik, 2023). Joint analyses of scRNA-seq and scATAC-
seq data demonstrated enhanced transcriptional activation of primitive
cells to other lineages besides myeloid in resistant and relapsed samples
and revealed MEF2C as a potential therapeutic target in pediatric acute
myeloid leukemia (Lambo et al., 2023). Qi et al. uncovered a potential
therapeutic strategy by disrupting FAP + fibroblasts and SPP1+
macrophages interaction to improve immunotherapy in colorectal
tumor using scRNA-seq and spatial transcriptomics (Qi et al., 2022).
In addition to the aforementioned study, Tietscher et al. analyzed
molecular characterization of depletion-like T cells and identified IL-
15 as a potential therapeutic target through sc-multiomics analysis
(Tietscher et al., 2023).

FIGURE 3
Applications of single-cell multi-omics in drug target identification, and deciphering of drug response and resistance. (A) Single-cell multiomics for
target identification in complex diseases. (B) Single-cell multiomics in drug response and precisionmedical. (C) Single-cell multiomics in drug resistance.
Minimal residual disease (MRD) might be capable of reinitiating tumors and causing recurrence. MDSC, myeloid-derived suppressor cell. CAF, cancer
associated fibroblast.
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Furthermore, single-cell technologies are invaluable at the
preclinical stage for elucidating how small molecules alter the
molecular dynamics and immunophenotype, facilitating the
assessment of the immunotoxicology of potential drug candidates
(Nassar et al., 2021). Comparison between human andmodel animal
using different modalities of sc-multiomics data may reveal
similarities and dissimilarities in tumor microenvironment
(TME), enabling data-driven selection of the most effective
tumor model at the preclinical stage (Author Anonymous, 2020).
In the clinical stage, sc-multiomics enables the assessment of specific
pharmacodynamic (PD) markers, the effects of toxicity, making
safety, and receptor occupancy (Nassar et al., 2021). These latest
discoveries based on sc-multiomics provide a unique understanding
of complex biological processes, from target identification to clinical
decision-making, which paves the way for innovative strategies in
improving and personalizing treatments.

The application of sc-multiomics in drug
response and resistance

Single-cell multiomics, a rapidly evolving technology, has
significantly advanced our understanding of cellular responses to
drugs, yielding an unambiguous view of drug efficacy and resistance
mechanisms. A pioneer study by Trapnell laboratory developed sci-
Plex for enabling high-content screening of exposure of
188 compounds in three cancer cell lines in up to 650,000 cells
to detect genetic requirements for individual cells’ response to a drug
exposure. This method has been particularly effective in evaluating
the synergistic effects of drug combinations (Srivatsan et al., 2020). A
similar strategy was employed to develop sciPlex-ATAC-seq to
investigate drug-altered distal regulatory sites that were predictive
of compound- and dose-dependent effects on transcription (Booth
et al., 2023). Moreover, integrating Sci-Plex with CRISPR screening
(sci-Plex-GxE) establishes connections between gene and drug
perturbations, providing insights into how specific genetic
modifications influence drug responses (McFaline-Figueroa et al.,
2024). These efforts in studying drug response and resistance at
single-cell level have been further boosted by the recent progresses
made in patients. Through the identification and analysis of therapy-
induced clonal evolution and resistance pathways in minimal
residual clones at the single-cell level, it has been demonstrated
that cancer cells rapidly adapt to induction treatment through
transcriptional adaptation, metabolic adaptation, and specialized
immune evasion in multiple myeloma (Cui et al., 2024). Another
study also provided a basis to learn drug resistance by identifying
resistance pathways and therapeutic targets in relapsed multiple
myeloma patients using single-cell multi-omics (Cohen et al., 2021).
These studies reveal the mechanisms in patient prognosis and
drug response.

Several innovative methodologies have recently been developed
to improve the utility of single-cell technologies in drug response
evaluation. Using the strategy of single-stranded
oligodeoxynucleotides with poly-A tails to uniquely label each
drug-treated sample, SBOs-scRNA-seq facilitated the detection of
cellular responses over varying time points and drug concentrations
(Shin et al., 2019). Notable technical advancements such as DRUG-
seq have proven effective in classifying compounds based on their

mechanisms of action (Ye et al., 2018). PLATE-seq offered a cost-
effective alternative for such analyses by incorporating sample-
specific barcodes with specialized oligo-dT primers (Pang et al.,
2022). Additionally, single-cell resolution imaging of drug molecules
has been achieved by CATCH, revealing their distribution across
various brain regions and the cell types targeted by small molecules
(Pang et al., 2022), and TraCe-seq provided a comprehensive
comparison of different treatments at both subgroup and single-
cell resolution (Chang et al., 2022). Furthermore, emerging single-
cell epigenomic methods have been employed to investigate the
heterogeneity of chromatin states in cancers. For example, Grosselin
et al. used single-cell ChIP-seq to uncover the heterogeneity of
chromatin states in cancers, finding that a small population of tumor
cells with resistance chromatin signatures could also be detected in
the sensitive tumor, which supports the selection of treatment-
resistant cells already present in the initial tumor (Grosselin
et al., 2019). This finding aligns with the conclusion that the
acquisition of malignant phenotypes after treatment results from
the selection of pre-existing drug-resistant subpopulations as
revealed by single-cell transcriptome analysis (Brady et al., 2017;
Sharma et al., 2018). Therefore, sc-multiomics provides mechanistic
insights into the mechanisms of therapy-induced resistance and
cellular plasticity in targeting tumor evolution (Figures 3B, C). These
technologies are opening new avenues for understanding complex
drug-cell interactions, paving the way for more effective and
personalized therapeutic approaches.

The combination of single-cell multi-omics
and artificial intelligence

Artificial intelligence (AI)/database-driven sc-multiomics is
already making an impact in drug discovery, powering a new
generation of companies and laboratories in the search for
effective treatments. Computational frameworks are required to
address the limited exploration power of existing experimental
methods and discover promising therapeutic drug candidates
(Sadybekov and Katritch, 2023; Abel et al., 2017).

Large volumes of published researches and numerous clinical
trials have illustrated the reliability and practicality of AI-driven
sc-multiomics approaches (Kp Jayatunga et al., 2024). Drug2cell
can identify specific cellular targets of bioactive molecules based
on single-cell RNA-seq data, potentially revealing hidden
mechanisms of action and predicting the impact of medicines
on specific cell types. Applying Drug2cell to human heart single-
cell data, researchers mapped drugs to target-expressing cells
(Kanemaru et al., 2023). Several single-cell studies use drug-
response transcriptional signatures obtained from cell line
experiments and data mining to predict drug effects. For
example, scDrug is a bioinformatics workflow using a one-step
pipeline to generate cell clustering for scRNA-seq data and two
methods to predict drug treatments (Hsieh et al., 2023). In
addition, scDEAL predicted the cancer drug response at the
single-cell level by integrating large-scale bulk cell line data
based on a deep transfer learning framework (Chen J. et al.,
2022). Furthermore, AI-driven sc-multiomics has also made it
possible in auto-detection and classification of benign nuclei
from cancer cells (Mousavikhamene et al., 2021), precision
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medicine matching trials (Baysoy et al., 2023), and drug
repurposing (Jonker et al., 2024; Prasad and Kumar, 2021).

Various tools related to drug discovery have been developed, and
a vast amount of database are now readily available for public use.
Many archives and databases for drug-target interaction, drug
combination, and drug response have also been established, such
as Therapeutic Target Database (TTD) (Zhou et al., 2024), Drug
Combination Database (DCDB) (Liu et al., 2010), SC2MeNetDrug
(Feng et al., 2024), and SuperTarget (Hecker et al., 2012)
(Supplementary Table 1). Based on these databases and archives,
many studies combine MRI and/or CT imaging with biological
pathways and cellular morphology to further characterize a disease
(Woloszyk et al., 2019), which could potentially aid in identifying
the molecular subtypes of cancer. Together, suitable methods
should predict the response to unobserved perturbations or
combinations of perturbations. Therefore, AI/database-driven sc-
multiomics is reshaping current researches in drug discovery.
Such predictive models would be helpful for understanding
disease progression and drug response in known and novel cell
populations.

Conclusion and perspectives

In conclusion, sc-multiomics provides a multi-molecular
readout that has proven its potential for powerful and
comprehensive dissection of the complex molecular mechanisms
in gene regulation, resulting in a more accurate depiction of
individual cell states. Sc-multiomics is particularly well-suited for
applications involving rare cell types, as it maximizes the
information obtained from each individual cell. Such approaches
have immense potential applications in a wide range of research
fields, from developmental biology to cancer biology and precision
medicine related to drug research and development.

Sc-multiomics, while in its infancy, is still in the early stages of
development. One of key challenges for sc-multiomics is balancing
single-cell data quality and throughput. The coverage of epigenome
and transcriptome for individual cells obtained from current high-
throughput methods is still low, hindering the identification of
biological cell-to-cell variability beyond technical noise. Thus,
many applications have so far been restricted to proof-of-concept
stages. More sensitive and highly efficient sc-multiomics
technologies are required and expected to facilitate discovering
better drugs. Importantly, newly developed CRISPR/Cas9-
mediated single-cell tools allow for the manipulation of the
specific molecules in different modalities (Dixit et al., 2016;
Rubin et al., 2019; Datlinger et al., 2017; Jaitin et al., 2016; Pierce
et al., 2021), and the sc-multiomics approaches are vital for ensuring
the safety and efficacy of CRISPR-based therapeutics, particularly in
detecting potential unintended outcomes (Chehelgerdi et al., 2024).

The combination of AI and sc-multiomics aims to address
complex problems related to understanding disease mechanisms,
target identification, and predicting potential therapeutic drug
efficacy. AI’s ability to derive actionable insights from enormous
and complex datasets significantly reduces the risk, cost, and
time associated with traditional drug discovery methods. As we
witness the blending of AI and multi-omics, a significant shift in our
current approaches is expected in healthcare, transforming it from a

one-size-fits-all model to a more personalized, precision-
driven approach.
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