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Understanding drug–drug interactions (DDIs) plays a vital role in the fields of drug
disease treatment, drug development, preventing medical error, and controlling
health care-costs. Extracting potential from biomedical corpora is a major
complement of existing DDIs. Most existing DDI extraction (DDIE) methods do
not consider the graph and structure of drug molecules, which can improve the
performance of DDIE. Considering the different advantages of bi-directional
gated recurrent units (BiGRU), Transformer, and attention mechanisms in DDIE
tasks, a multimodal feature fusion model combining BiGRU and Transformer
(BiGGT) is here constructed for DDIE. In BiGGT, the vector embeddings of
medical corpora, drug molecule topology graphs, and structure are
conducted by Word2vec, Mol2vec, and GCN, respectively. BiGRU and multi-
head self-attention (MHSA) are integrated into Transformer to extract the
local–global contextual DDIE features, which is important for DDIE. The
extensive experiment results on the DDIExtraction 2013 shared task dataset
show that the BiGGT-based DDIE method outperforms state-of-the-art DDIE
approaches with a precision of 78.22%. BiGGT expands the application of
multimodal deep learning in the field of multimodal DDIE.
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1 Introduction

With increasing numbers of diseases and new drugs, drug combination therapy is
growing in popularity. However, taking multiple drugs at the same time often causes
undesired drug–drug interactions (DDIs), with adverse drug reactions (ADRs) such as
headache, nausea, shock, and even death (Makiani et al., 2017). Understanding DDIs is
critical to improving drug safety and efficacy to avoid the risk of ADRs before clinical
combination therapy. However, the number of known DDIs is limited because laboratory
and manual DDI testing is difficult, expensive, and time-consuming (Hammoud and
Shapiro, 2022). Extracting potential DDIs from a biomedical corpus is a good complement
to existing DDI datasets. Several DDI extraction (DDIE) methods that use drug
characteristics and the biomedical corpus have better results on the known datasets, but
they have some limitations (Han K. et al., 2022; Wang et al., 2024). Due to the lack of a
uniform language format in the biomedical corpus, such as drug entity combinations and
abbreviations, and the unsatisfactory performance of existing DDIE methods in long and
complex sentences, DDIE from the biomedical corpus remains challenging (Han K. et al.,
2022; Wang et al., 2024; Luo et al., 2024). BiGRU is a typical feature extractor and has been
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widely applied to DDIE tasks. It can extract local features efficiently,
but it is less effective in capturing global features (Zhang et al., 2023).
Compared to BiGRU, Transformer is another powerful feature
extractor that can extract context global information by self-
attention (Zaikis and Vlahavas, 2021).

Inspired by BiGRU, GCN, Transformer, and multimodal deep
learning models that have achieved better DDIE (Deng et al., 2020),
a hybrid deep learning model called BiGGT is here constructed for
DDIE. It makes use of the medical corpus and the graph and
structure of drug molecular to improve the performance of
DDIE. The main contributions are described as follows.

A hybrid deep-learning model, BiGGT, is constructed to capture
the local, global, and contextual features of DDIE and overcome the
limitation of single-model based DDIE methods.

The graph and structure of drug molecules is utilized to improve
the performance of DDIE from the medical corpus.

Integrating BiGRU into Transformer enhances its ability to
aggregate local drug molecule information.

The rest of this paper is organized thus. Section 2 reviews recent
advances in DDIE. Section 3 describes BiGGT for DDIE in detail.
Experiments and analysis are performed in Section 4. Section 5
makes some conclusions and proposes future research.

2 Related research

DDIE is a fundamental task that has several important applications
in clinical and drug decisionmaking. Various DDIEmethods have been
recently proposed to extract the correct type of DDI between two drugs
in the input biomedical corpus (Deng et al., 2020). They generally
consist of two steps: drug naming entity identification and relationship
extraction. We here focus on DDIE, assuming that the drug entity pair
is given according to existingmethods and that each drug is represented
as a graph and structure of the drugmolecule (Niu et al., 2024; Lin et al.,
2023). For example, the risk or severity of osteomalacia can be increased
when acetazolamide is combined with phenytoin. Moreover,
acetazolamide can reduce phenytoin excretion, resulting in increased
serum levels of the latter and increased adverse effects, including
osteomalacia. Their medical corpus, chemical formula, drug
molecule topology graph, and drug molecular structure are shown
in Figure 1, where the molecular structure can be encoded by simplified
molecular-input line-entry system (SMILES), and the nodes of the
molecule topology graph are atoms and the edges are the bonds between
the atoms. RDKit is used to generate a drugmolecule topology graph by
SMILES4, where the details of two drugs are described on Webs:
acetazolamide (https://go.drugbank.com/drugs/DB00819) and
phenytoin (https://go.drugbank.com/drugs/DB00252).

There have been a number of recent DDIE approaches which
can be broadly divided into three categories: traditional machine
learning (Han K. et al., 2022; Wang et al., 2024), deep learning (Luo
et al., 2024; Zhang et al., 2023), and multimodal hybrid learning
(Zaikis and Vlahavas, 2021; Deng et al., 2020).

2.1 Traditional machine learning

Traditional machine-learning-based DDIE methods have three
main steps: data preprocessing, feature extraction, and classification.

Han K. et al. (2022) reviewed machine-learning-based DDIE
approaches, including widely used datasets, multiple DDIE
methods, their advantages and disadvantages, and challenges and
prospects of DDIE methods. These are useful for promoting DDIE
research. Wang et al. (2024) systematically reviewed the DDIE
problem from three perspectives—classical DDI datasets,
commonly used drug features, and popular machine-learning-
based DDIE methods—summarized and compared relevant
studies, and identified existing problems, potential opportunities,
and future challenges and research directions.

Based on the DDIE results of these traditional machine-learning
methods, it is apparent that their performance mainly relies on
tedious feature engineering, and their results are generally limited
because it is difficult to extract robust features from complex
irregular medical texts.

2.2 Deep learning

Due to the ability of deep learning to learn deep-level features
from the corpus, many DDIE approaches based on deep learning
have been proposed. Luo et al. (2024) introduced the existing
biomedical data and drug-related public databases, discussed
existing DDIE methods using deep learning, and examined the
knowledge graph (KG), which is divided into three categories:
deep learning, KG, and a combination of deep learning and KG.
Zhang et al. (2023) reviewed recent deep-learning methods applied
to DDIE from the biomedical literature, briefly described each
method, systematically compared their performance in the
medical corpus, summarized their advantages and disadvantages,
and discussed some of the challenges and future research in DDIE.
This review provided useful guidance to further advance DDIE
algorithms from the literature. Niu et al. (2024) proposed a DDIE
method based on substructure fine-representation learning and self-
attention mechanism, and designed drug-similarity features to
extract potential DDIs which can improve the robustness of
substructure features, determine drug properties, and thus
improve DDIE performance.

Compared with traditional DDIE methods, the above deep
learning-based DDIE methods have achieved remarkable results
by using a large number of annotated training samples. However, it
is unrealistic to annotate a large amount of training samples because
this would likely be costly and time-consuming, and high-level
understanding DDI requires domain knowledge on drugs and DDI.

2.3 Multimodal hybrid learning

To improve DDIE performance, drug information such as
detailed drug description, molecular structure, and graph of
drugs are employed for DDIE. Several multimodal DDIE
methods have been presented using a variety of drug
information. Zaikis and Vlahavas (2021) proposed a multimodal
deep learning framework for DDIE. This framework based onmulti-
drug characteristics has high accuracy on the known datasets but
also has some limitations. The hypothesis that drugs with similar
chemical structures have similar DDI has not been scientifically
tested. Therefore, in actual clinical verification, there may be a large

Frontiers in Drug Discovery frontiersin.org02

Yu et al. 10.3389/fddsv.2024.1460672

https://go.drugbank.com/drugs/DB00819
https://go.drugbank.com/drugs/DB00252
https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2024.1460672


deviation in DDIE results. Lin et al. (2023) introduced the widely
used molecular representations and described the theoretical
framework of graph convolutional networks (GCNs) to represent
drug molecular structures, discussed potential challenges, and
highlighted future directions for deep graph learning models that
accelerate DDIE. Asada et al. (2021) proposed a multimodal DDIE
method by effectively utilizing large-scale raw text information, drug
description, and drug molecular structure information. Their results

verified that this drug-related information can further improve
DDIE performance. Zhao et al. (2019) proposed a multi-type
feature fusion GCN (MFFGNN) for DDIE, where the intra-drug
features and external DDI features are fused by GCN encoder to
update drug representation, and multi-layer perceptron (MLP) is
used to predict the missing DDIs in the DDI graph. Zhang et al.
(2020) constructed a large-scale multimodal DDIE approach,
employed four operators to represent drug–drug pairs, and

FIGURE 1
Example of medical corpus with a topology graph and structure of the drug molecule. (A) Corpus, (B) Chemical Formula, (C) Molecular graph, and
(D) Molecular structure.
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adopted the random forest classifier to train the DDIEmodel. Huang
et al. (2022) proposed a hybrid deep-learning framework for DDIE
using the biomedical information of drugs. In this model, multi-
drug similarities between drug substructures, targets, and enzymes
and two different-level fusion strategies are combined to predict
DDI events. Gan et al. (2023) proposed a multimodal feature fusion
network for DDIE. They introduced an attention-gated GCN to
capture the global features of the molecule topology graph and the
local features of each atom and introduced sparse GCN to learn the
DDIE topology information.

Transformer is a global feature extractor based on multi-head
self-attention (MHSA). It has been applied to DDIE tasks. Jiang et al.
(2023) constructed a TranGRU model by integrating BiGRU into
Transformer. It can encode the local and global information of
molecules and employs a gated mechanism to effectively fuse two
molecular features. Gu et al. (2024) proposed a multimodal feature
fusion-based deep learning model for DDIE by integrating the
multimodal features of drug molecular structure and graphs
extracted through GCN. Han X. et al. (2022) constructed a
multimodal SmileGNN model for DDIE by integrating drug
structural features and drug topological features.

The many approved drugs contain medical corpora and drug
molecule topology graph and structure, and these data are closely
related to DDI. However, the above DDI methods are rarely fully
integrated for DDIE, particularly drug chemical structure. Of the
above multimodal DDIE methods, BiGRU is effective at capturing
local dependencies in sequences for DDIE tasks when dealing with
shorter sequences, but it is not effective in extracting and fusing the
multimodal DDIE dependencies. Transformer is good at capturing
global information to effectively alleviate the sequence
dependencies in BiGRU but weak at capturing local information
from medical texts. Considering the different behaviors of BiGRU
and Transformer in extracting DDI features, we aim to integrate
the BiGRU into the encoder layer of the original Transformer to
better capture local and global DDIE features simultaneously. The
graph and structure of drug molecules are useful for further
improving the performance of DDIE. Due to the complexity,
irregularity, and even fuzziness of medical texts, drug
descriptions, and drug molecular structure and graphs, some
existing models rarely consider semantic translation from entity
to relationship, and low-dimensional embeddings learned by
relationship do not capture enough DDI information from
drugs and the medical corpus, resulting in incorrect multidrug
DDIs between drug pairs. A multimodal hybrid deep learning
model BiGGT is constructed to explore the potential correlations
between the multimodal features and improve DDIE performance.
BiGGT focuses on modeling the local–global contextual features
for DDIE by integrating BiGRU and MHSA into Transformer and
can effectively learn the local and global DDIE feature
representation simultaneously.

3 Hybrid deep learning model (BiGGT)

BiGGT’s framework is shown in Figure 2, consisting of the
following main modules: data representation and preprocessing,
vector embedding and principal component analysis (PCA)
reduction, attention gating multi-modal feature fusion,

Transformer and BiGRU (TransBiGRU), and DDI classification,
and model training, which are introduced as follows.

3.1 Data representation and preprocessing

Data representation and preprocessing includes negative
instance filtering, drug blinding, and tokenization. Suppose n ≥

2 drug references appear in an input sentence with
n
2

( ) drug pairs.

In the DDIE task, each input sentence is preprocessed to specify the
target drug pair and other drugs. The target drug pairs are replaced
with tokens drug1 and drug2 in sentence order, the other drugs with
tokens drug0, and all punctuation marks and some meaningless
stop-words are removed. This drug blind pretreatment effectively
overcomes the overfitting problem (Lin et al., 2023; Asada
et al., 2021).

Given a sentence of biomedical corpus Sw �
[wor1, wor2, ..., worn] with two target drug entities named
drug1 and drug2, the SMILES sequences of molecular structures
of drug1 and drug2 are noted Sm1 and Sm2, and the corresponding
entire drug molecule topology graphs are represented as G1=(V1, E1)
and G2=(V2, E2), where Vi is the set of atoms within the drug
molecule and Ei is the set of edges in the drug molecule topology
graph adjacency matrix (i = 1,2).

3.2 Vector embedding and PCA reduction

In the sentence of the biomedical corpus, two molecule
structures and two molecule topology graphs of drug1 and
drug2 are encoded into vector embeddings—that is, low-
dimensional vectors, respectively, which are extracted by a
medical concept embedding algorithm.

Vector embedding of the biomedical corpus is done by Word2vec.
The given input sentence Sw � [wor1, wor2, ..., worn] is split into”
wordpieces”, or subwords, by the WordPiece algorithm (Kudo and
Richardson, 2018), and each wordpiece wori is mapped to a low-
dimensional vector representation Ewi through a weight matrix Ww
initialized by Word2vec with pre-trained embeddings, as shown in
Equation 1:

Ewi � Ww · Vwi, (1)
where Ww ∈ Rdw×|V|, dw is the embedding dimension of word, |V| is
the number of elements of V, V is the pre-trained word embedding
vocabulary, and Vwi is a one-hot vector to represent the index of word
embedding in Ww.

The word position embeddings pvi1 and pvi2 for each wori
corresponding to the relative positions of drug1 and drug2 are
calculated, respectively. The word embedding of the biomedical
corpus is then calculated by concatenating Ewi, pvi1, and pvi2 as Ew �
[Ewi;pvi1;pvi2].

In the vector embedding of the drug molecular structure,
SMILES2Vec is used to convert the drug molecular structure into
vector space (Jiang et al., 2023). The drug molecular structure is
represented by a SMILES string from the DrugBank dataset,
Sx � [sx1, sx2, ..., sxm], where sxi is the mark of the SMILES
string and m is the length of the string. Because all SMILES
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strings stored in DrugBank are mapped into a 251-element word-
bag using one-hot encoding, sxi is transformed into a 251-
dimensional vector, removing some of the long SMILES (over
250 letters) during preprocessing and conducting one-hot coding
on the remaining SMILES. Two low-dimensional embedding
vectors Es1 and Es2 of drug1 and drug2 are then obtained to
represent the molecule structure SMILES, respectively
concatenated as Es � [Es1;Es2].

In the vector embedding of the drug molecule topology graph,
Graph2Vec is an algorithm based on the subgraph of the graph
embedding (Kim et al., 2021; Narayanan et al., 2017). Graph2Vec
is a Python library developed by Benedek Rozemberczki. Its
substructure updates its neighborhood information through
the substructure of the adjacent nodes. Graph2vec is used to
convert each molecule topology graph of drug1 and drug2 into a
fixed-length vector Eg1 and Eg2, respectively, concatenated as
Eg � [Eg1;Eg2].

In PCA reduction, PCA is used to reduce the above embedding
vectors by retaining 98% energy:

Pw � PCA Ew( ), Ps � PCA Es( ), Pg � PCA Eg( ), (2)
where PCA(.) is the vectors reduced by PCA.

3.3 Attention gating multimodal
feature fusion

The features obtained by Equation 2 are fused by an attention
mechanism by assigning learnable weights to automatically
determine the importance of the features:

E � awPw + asPs + agPg, (3)

where aw, as, ag are the three attention weight coefficients of Pw,Ps,Pg.
In Equation 3, aw, as, ag are evaluated by Softmax feature

weighted strategy, calculated thus:

aw � softmax WT
Ew tanh Pw( )( )( )

as � softmax WT
Es tanh Ps( )( )( )

ag � softmax WT
Eg tanh Pg( )( )( ), (4)

As defined in Equation 4, whereWT
Ew,W

T
Es,W

T
Eg are three learnable

weight parameters, softmax(x) � exp(xi)/∑i exp(xi), and xi is the
ith channel of the output feature vector x.

Using Equation 3, the DDIE feature embedding matrix E
is obtained to integrate information from the biomedical
corpus, drug molecular structure, and drug molecule
topology graph. This learning fusion process enables

FIGURE 2
BiGGT framework.
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TransBiGRU to better adapt to the DDIE task and use the
information for each feature.

3.4 TransBiGRU

TransBiGRU is similar to TranGRU (Jiang et al., 2023). It is a
simple, effective module that integrates BiGRU into Transformer to
simultaneously learn local and global feature representations. Its
structure is shown in Figure 2, having N identical encoder layers.
The embeddedmatrix E is input into TransBiGRU, the output of the (i-
1)th layer is the input of the ith layer (i = 1,2, . . . ,N), layer normalization
is performed, the output is input into the MHSA and BiGRU modules,
and the final output of the top layer is the high-level feature
representation for DDIE.

TransBiGRU is introduced in detail as follows. Two output
states of MHSA and BiGRU with the same size are fused through
the gating mechanism, and then layer normalization is
performed, and the fused normalized state is sent to the
feedforward layer position to generate the output of the
current layer.

For the BiGRU encoder, the output Egru
i of its (i-1)th layer of

TransBiGRU as defined in Equation 5, is input into BiGRU to obtain
the semantic feature matrix

Bi � BiGRU Egru
i , θ( ) ∈ Rn×d, (5)

where θ is the learnable super-parameter and Egru
1 � E.

In MHSA, multiple single-head self-attention layers process each
input vector simultaneously in parallel. The output of each single-head
layer is concatenated and converted into a fixed-length vector generated
using affine transformations. Single-head self-attention performs a
linear transformation on each input vector using three separate
matrices: query, key, and value. MHSA encodes the input E. The
output Etr

i of its (i-1)th layer of TransBiGRU is input into MHSA to
extract global features, Etr

1 � E, as defined in Equation 6. The
intermediate state Si is computed as follows:

Si � MHSA WQNor Etr
i( ),WKNor Etr

i( ),WVNor Etr
i( )( ) + Etr

i ,

(6)
where MHSA is MHSA processing, Nor(Etr

i ) is normalization
operation, and WQ,WK,WV are three weights.

As shown in Equation 7, the gating mechanism is used to fuse
the outputs of BiGRU Bi and MHSA Si:

Zi � αi+Bi + 1 − αi( )+Si, (7)
where ‘◦’ is element-wise multiplication and αi is gate calculated as
shown in Equation 8:

αi � Sig Wgru
i Bi +WTr

i Si( ), (8)
where Wgru

i and WTr
i are learnable model parameters.

3.5 DDI classification

Zi is input into the DDI classification layer to calculate the
prediction scores using Softmax classifier, as shown in Equation 9:

P Zi( ) � softmax Zi( ), (9)
where P(Zi) is the prediction of DDI type and “softmax ()” is the
Softmax classifier.

3.6 Model training

Like the multimodal data fusion-based deep learning approach
(MMDFDL) (Huang et al., 2022), DMFDDI (Gan et al., 2023), and
TranGRU (Jiang et al., 2023), BiGGT uses forward propagation to
calculate the model losses, backward propagation is used to
iteratively update network hyperparameters along the gradient
descent direction, and cross-entropy as the loss function is used
to avoid the problem of the decreasing learning rate in the process of
gradient descent. Loss function is evaluated by summing the label
loss of all training samples, which is defined as the negative
likelihood of predicting correct labels of multiple downstream
tasks l ∈ L:

Loss � ∑M
i�1

∑
l∈L

softmax Zi( ), (10)

As defined in Equation 10, where M is the number of training
samples and L is the number of DDI types.

4 Experiments

The BiGGT-based DDIE-based method is evaluated on the
DDIExtraction-2013 shared task (SemEval-2013 Task 9.2)
(https://aclanthology.org/S13-2056/) and compared with baselines
and state-of-the-art DDIE-based deep learning: DBGRU-SE (Zhang
et al., 2023), TP-DDI (Zaikis and Vlahavas, 2021), drug descriptions
and molecular structures (DDMS) (Asada et al., 2021), and multi-
type feature fusion based on GNN (MFFGNN) (He et al., 2022).
BiGRU and Transformer are adopted as the baselines (Zhao et al.,
2019; Su and Qian, 2024), Transformer is the standard Transformer
model, and the layer depth of Transformer is set to 3, equal to the
layer-depth of TransBiGRU. Four comparative methods are briefly
introduced as follows.

DBGRU-SE: a DDIE method that combines double BiGRU and
SE-attention mechanism.

TP-DDI: a Transformer-based pipeline for DDIE that utilizes
the powerful semantic understanding ability of Transformer to
effectively extract DDI features from biomedical text.

DDMS: uses CNNs and GNNs to integrate drug description
information and molecular structure information for DDI
extraction.

MFFGNN: a multi-type feature fusion model that integrates
topological information in drug molecular graphs, drug interaction
information, and local molecular structure in SMILE strings.

4.1 Dataset

The DDIExtraction-2013 dataset consists of texts annotated
with drug mentions, drug molecular structure, drug molecular
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graphs, and their DDIs from DrugBank and MEDLINE, with
792 annotated documents from DrugBank and 233 abstracts with
drug mentions and their relationships fromMEDLINE (Isabel et al.,
2013; Shanbhag et al., 2021). This dataset contains more than
10,000 drugs, 4,997 positive DDI instances, and 24,893 negative
DDI instances, of which all positive DDI instances are divided into
five DDI types: Advice, Mechanism, Effect, Int, and Negative. They
are explained as follows.

Mechanism: DDI type used to annotate the pharmacokinetic
mechanism of two drugs.

Effect: DDI type used to annotate DDIs describing an effect or a
pharmacodynamic mechanism.

Advice: DDI type used when a suggestion or advice regarding a
drug interaction is given.

Int: DDI type used to annotate DDIs appearing in text without
any additional information.

Negative: DDI type used to indicate no DDI between two drugs.
All instances are divided into training sets for model training

and test sets for model testing. The detailed statistics of DDI types
and the DDI instance distribution are shown in Table 1 and Figure 3,
respectively.

As seen from Table 1 and Figure 3, there is a serious imbalance
between positive and negative instances in the dataset. The number
of negative instances far exceed positive instances, the negative

proportion is more than 86%, the positive proportion is less than
14%, and the positive instance set is also unbalanced, with the
proportion of Int at only 6%—significantly less than that of other
types. The unbalanced data distribution often results in a bias in the
model training and classification result, making the model learn
more features from negative instances while ignoring features from
positive instances. Some rules are usually used to filter out possible
negative instances (Zhang et al., 2023; Deng et al., 2020; Lin et al.,
2023). The distribution of the filtered instances is shown in Table 2
and Figure 3B, where it can be seen that the unbalanced distribution
problem may be significantly alleviated. The distribution of the
filtered positive instances is the same as that of the original positive
instances (Figure 3C).

DDIE is a multi-type classification problem for extracting the
DDIs in an input sentence. It consists of named entity recognition
and DDIE. This study aims to extract DDIs, assuming drug entities
given in accordance with existing methods (Su and Qian, 2024; Liu
et al., 2016). BiGGT is evaluated on the filtered dataset in Table 2.

4.2 Experimental set

Like other multimodal deep learning models (Zhang et al., 2020;
Huang et al., 2022; Han X. et al., 2022), BiGGT has several trainable
hyperparameters that are usually set by the Xavier (Han X. et al., 2022).
The initial experimental parameters of BiGGT are set as follows.

The embedding dimensions of the word and position
embedding vector are 300 and 20, respectively—learning rate to
0.001, batch-size to 200, max. length of sentence to 200, number of
iterations to 3,000, and the layer-depth of TransBiGRU is 3.
SMILES2Vec is used to preprocess SMILES sequences of drug
molecules, where the embedding size is 64 and the number of
heads in multi-head attention is 2. The open-source package
RDKit is employed to construct the drug molecular graph G
based on the SMILES sequence. The Adam optimizer and binary
cross-entropy loss function are used to train the model and optimize
the DDIE component using the default parameters. In the hidden
layers, the batch normalization layer is used to accelerate
convergence, and the dropout layer is used to avoid overfitting
and improve generalization; the dropout rate is set to 0.1.

TABLE 1 Detailed statistics of the DDIExtraction2013 dataset.

Number Training set Test set Total

Documents 714 191 905

Drug pairs 27,774 5,716 33,490

Negative instances 23,756 4,737 24,893

Positive instances Mechanism 1,318 302 1,620

Effect 1,685 360 2045

Advice 826 221 1,047

Int 189 96 285

Total 4,018 979 4,997

FIGURE 3
DDI instance distribution. (A) Original distribution of positive and negative samples. (B) Filtered distribution of positive and negative samples. (C)
Original distribution of positive samples.
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NLTK (natural language toolkit) is a natural language processing
tool set based on Python. Its functions “nltk.sent_tokenize ()” and
“nltk.word_tokenize ()” are used to preprocess the sentences in the
dataset, including sentence splitting, sentence tokenizing, converting all
words to lowercase, and replacing all digits by a special token “dg” by
regular expressions (Gu et al., 2024; Han X. et al., 2022). The pretrained
GloVe and Stanford parser tools (https://nlp.stanford.edu/software/
parser-faq.html) are used for word vector embedding (Kudo and
Richardson, 2018). The experiments are performed on the given
train–test distribution and by five-fold cross-validation (5FCV). The
experimental environment configuration is shown in Table 3.

The evaluation metrics of average results of precision (P), recall
(R), and F1-score (F1) are used to evaluate the model performance,
calculated as shown in Equation 11:

P � 1
5

∑
l∈SDDI

Pl, R � 1
5

∑
l∈SDDI

Rl, F1 � 1
5

2PR
P + R

, (11)

where SDDI = {Advice, Mechanism, Effect, Int, Negative} is the DDI
label set, and the Pl and Rl of each instance l∈SDDI are evaluated by
the calculation formula as shown in Equation 12.

Pl � #Drug − pairDDI is l and is classified as l
# Classified as l

,

Rl � #Drug − pair DDI is l and is classified as l
#Drugpair is l

. (12)

4.3 Experimental results

BiGGT is implemented by using different parameter
combinations on the given filtered dataset, and the optimized
parameters are obtained when the best prediction is achieved. The
average results of precision (P), recall (R) and F1-score (F1) are
calculated by Equation 11. To estimate the performance of BiGGT-
basedDDIE, Figure 4 shows its overall training loss of precision versus
the iterations on the filtered training set with the given default
parameters, compared to using BiGRU-GCN (Zhao et al., 2019)
and Transformer (Su and Qian, 2024) as baseline methods.

TABLE 2 Detail distribution of the filtered DDIExtraction2013 dataset.

DDI type Training set Test set

Positive Advice 824 221

Effect 1,675 359

Mechanism 1,309 301

Int 188 96

Total 3,996 977

Negative 8,987 2049

Total 12,983 3,026

TABLE 3 Experimental environment.

Configuration Parameter

CPU Intel Core I7-6300, 3.4 GHz

GPU GeForce 1080, 16GB memory

Internal memory Ubuntu 16.04.2 LTS (64-bit)

Operating system Windows 10, 503 GB

Python 3.7.10

PyTorch 1.7.0

Keras 2.3.1

Tensorflow 2.0

Anaconda 3.0.0

FIGURE 4
Overall training loss of precision versus iterations.
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It is seen from Figure 4 that the losses of three methods
decrease rapidly before 1,000 iterations and tend to be stable and
close to convergence after about 2,500 iterations. Because there
are some fluctuations when increasing the training iteration,
their overall performance can be still improved. It is also found
that the training performance of BiGGT is better than BiGRU-
GCN’s and Transformer’s, and its training curve is relatively
smooth with fewer fluctuations during training, indicating that
BiGGT has better stability and fast convergence. From Figure 4,
the trained model is selected when the number of
iterations is 3,000.

To further evaluate the impact of important parameters on
prediction performance, different values are assigned to them to
evaluate the performance of BiGGT on the filtered dataset. In
BiGGT, the word embedding dimension of the medical corpus is
an important parameter. To determine the optimal embedding
dimension, different embedding dimensions of 50, 100, 200, 300,
350, and 400 are selected for DDIE. The precision and training time
on the given train–test distribution set are shown in Table 4.

From Table 4, it is found that by increasing the size of word
embeddings, the precision increases while the training cost
increases. The precision of the 350 and 400 dimensions are
slightly higher than that of the 300 dimensions, but its training
time is much larger. According to the trade-off between precision
and training time, the embedding dimension is set as 300, retaining
the larger precision and less training time.

By fixing other parameters, we evaluate the settings of word
position embedding size and drug molecular embedding size on the
performance of BiGCN. The precisions versus two parameter
settings are shown in Figure 5. As shown in Figure 5A, the word

position embedding size and drug molecular structure embedding
size are set to 25 and 90, respectively.

As the dimensions of the drug embedding feature increase,
BiGCN can extract useful information. However, dimensions that
are too high can increase noise and cause performance degradation.
PCA is used to reduce the dimension of the extracted features, and
the effect of the dimension reduction in the process of retaining
energy from 99% to 90% is shown in Figure 6.

As can be seen from Figure 6, when the features are further
reduced, the information of DDIE may be greatly lost, thus affecting
the performance of the model. The features are uniformly reduced
by retaining 98% of the energy.

In BiGGT, the number of layers of TransBiGRU is another key
parameter. Five different layer depths from 1 to 6 are selected to
determine the optimal layer depth. The precision and training time
of BiGGT versus six layer depths are shown in Table 5. From
Table 5, according to the trade-off between precision and training
time, the suitable layer-depth is set as 3.

To estimate the influence of data imbalance on the experimental
results, two DDIE experiments are conducted on the filtered
ddiextracaction2013 dataset, respectively with no negative
instances and with negative instances. The experimental results
are shown in Table 6.

From Table 6, it is known that a large number of negative
instances seriously affect the results of DDIE, and the experimental
results with negative instances in the recall rate (36.24%) and F1
(49.25%) of Int are lower than those of other categories. This is
because the small number of Int instances results in insufficient
model training. On the contrary, the negative class obtains the
highest precision, recall, and F1 of the five DDI categories.

The following experiments are carried on the positive instance set.
The performance of BiGGT is compared with the baseline methods
BiGRU and Transformer and four DDIEmethods: DBGRU-SE (Zhang
et al., 2023), TP-DDI (Zaikis and Vlahavas, 2021), DDMS (Asada et al.,
2021), and MFFGNN (He et al., 2022). Their hyperparameters,
including batch size, regularization rate, number of hidden units,
dropout rate, and learning rate, are fine-tuned and optimized by a

TABLE 4 Precision and training time versus embedding dimensions.

Dimension results 50 100 200 300 350 400

Precision (%) 66.22 71.83 73.26 75.53 75.59 75.64

Training time (h) 8.43 9.45 9.57 9.78 10.67 11.35

FIGURE 5
Precision versus two parameter settings. (A) Word position embedding size. (B) Drug molecular structure 368 embedding size.
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5FCV experiment—a common machine-learning model evaluation
scheme. The average results by 5FCV experiment are given in
Table 7, where BiGGT outperforms the other models.

To further test the feasibility and generalization of BiGGT, many
variants of it are used for DDIE. Their precisions are shown in Table 8.

From Table 8, it is found that BiGGT is superior to its variants in
terms of precision, where BiGRU is better than BiRNN and BiLIST,
validating that BiGRU and Softmax can improve precision. Using PCA
to reduce feature dimensionality and noise can improve the performance
of model training and DDIE. From Table 8, the results show that LSTM
is slightly better than RNN, and RNN and LSTM are both very low. This
is because RNN cannot remember what it learns in longer sequences, so
its memory is short-term. LSTM is a variant of RNN that can overcome
gradient disappearance and short-term memory problems. BiRNN (or
BiLSTM) can capture the past and future context of input elements by
processing forward and backward sequential data using two independent
RNN (or LSTM) networks. In BiLSTM, the lower-level LSTM state
models the local information inside atomic groups, and the higher-level
LSTM state captures the semantic information. Softmax is better than
MLP because the Softmax classifier is a special neural network structure
with only one hidden layer and uses the Softmax activation function to
calculate the probability distribution of the class.

To further test the importance of the embedding features, many
ablation experiments are conducted versus different embedding
feature combinations. Their precisions and training time are
shown in Table 9.

FIGURE 6
Precision versus retaining energy from 99% to 90%.

TABLE 5 Precision and training time versus five layer-depths of TransBiGRU.

Layer-depth result 1 2 3 4 5 6

Precision (%) 69.23 72.49 75.72 76.06 76.24 76.94

Training time (h) 5.65 6.74 8.74 11.36 13.27 15.20

TABLE 6 Experimental results of the filtered dataset.

Results dataset DDI type P R F1

Positive instance set without negative instances Mechanism 82.21 71.20 76.31

Effect 73.13 76.95 74.99

Advice 82.12 76.27 79.09

Int 78.56 37.22 50.51

Average 78.04 68.08 72.72

Positive and negative instances Mechanism 76.15 70.21 73.06

Effect 69.16 77.91 73.28

Advice 77.24 71.28 74.14

Int 76.83 36.24 49.25

Negative 96.02 96.22 96.12

Average 79.20 71.39 75.09

TABLE 7 Experiment results of five models.

Method result BiGRU Transformer DBGRU-SE TP-DDI DDMS MFFGNN BiGGT

P 67.26 72.16 76.85 77.21 77.63 73.31 78.22

R 63.71 70.66 73.16 75.23 75.26 72.64 76.27

F1 65.44 71.35 74.96 76.21 76.43 72.97 77.23
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Table 9 shows that word embedding, drug molecular-structure
embedding, and drug molecular-graph embedding are useful for DDIE.
Word embedding contributes more to DDIE. Drugmolecular-structure
and graph embedding is better than word position embedding. In drug
molecular-structure embedding and drug molecular-graph embedding,
it is more appropriate to choose one of the two. It is also found that
integrating all embedding features can improve the performance but
that the training time and test time are greatly increased. The results
verify that a single drug profile is not a comprehensive representation of
drug information andwill affect prediction results, but themore features
that are used, the longer the training and testing time of the model and
the corresponding increase in computation time.

4.4 Experimental analysis

From the above experimental results of Figures 4 and 5 and Tables
4–9, it is apparent that BiGGT is effective for DDIE and outperforms
other methods. This is because its multi-modal feature fusion layer
makes use of the embedding features of the medical corpus, drug
molecular topological structure, and graph information to
comprehensively represent drug information, and its TransBiGRU
layer can extract the contextual semantic relationships of these
embedding features, which can improve DDIE results. From
Table 8, it is seen that multi-modal feature fusion, MHSA, and

BiGRU are three key components of BiGGT which can be used to
extract local and global features and their contextual
relationship. Table 9 demonstrates that the global features of drug
molecular structure and graph are important, and that BiGGT performs
better than methods that only use one type feature.

5 Conclusion

Considering the different advantages of BiGRU and Transformer in
extracting DDIE features, the multimodal feature fusion model BiGGT
is constructed for DDIE using the medical corpus, drug molecule
topology structure, and graph information. It integrates BiGRU into
Transformer, where BiGRU is used to extract the local features while
MHSA is used to capture global features. Combining both local and
global features is effective for DDIE. The results of the DDIExtraction
2013 shared task dataset validate that BiGGT can effectively integrate
information from the medical corpus, drug molecular structure, and
topology graph to improve the DDIE performance of the model.
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TABLE 8 DDIE precisions of ablation experiments.

Result variant of BiGGT Precision

BiGRU replaced by RNN 61.75

BiGRU replaced by LSTM 62.18

BiGRU replaced by BiRNN 73.34

BiGRU replaced by BiLSTM 76.45

Without BiGRU 72.16

Softmax replaced by MLP 77.32

Without MHSA 71.55

Without PCA 77.20

Multi-modal feature fusion layer replaced by Concatenation 69.37

BiGGT 78.22

TABLE 9 DDIE precisions of some ablation experiments.

Result input of BiGGT Precision Training
time(h)

Without drug molecular–structure
embedding

75.63 8.72

Without drug molecular-graph
embedding

75.38 8.71

Without word position embedding 77.81 8.73

Without word embedding 67.35 8.29

With only word embedding 73.65 7.78

BiGGT 78.22 8.74
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