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The success rate of drug development today remains low, with long development
cycles and high costs, especially in areas such as oncology, neurology,
immunology, and infectious diseases. Single-cell omics, encompassing
transcriptomics, genomics, epigenomics, proteomics, and metabolomics
enable the analysis of gene expression profiles and cellular heterogeneity
from the perspective of individual cells, offering a high-resolution view of
their functional diversity. These technologies can help reveal disease
mechanisms, drug target identification and validation, selection of preclinical
models and candidate drugs, and clinical decision-making based on disease
response to drugs, all at the single-cell level. The development of deep learning
technology has provided a powerful tool for research in drug discovery based on
single-cell techniques, which has evolved with the advent of large-scale public
databases to predict drug responses and targets. In addition, traditional Chinese
medicine (TCMs) research has also entered the era of single-cell technology.
Single-cell omics technologies offer an alternative way in deciphering the
mechanisms of TCMs in disease treatment, revealing drug targets, screening
new drugs, and designing combinations of TCMs. This review aims to explore the
application of single-cell omics technologies in drug screening and development
comprehensively, highlighting how they accelerate the drug development
process and facilitate personalized medicine by precisely identifying
therapeutic targets, predicting drug responsiveness, deciphering mechanisms
of action. It is also concluded that drug development process and therapeutic
efficacy of drugs can be improved by combining single-cell omics and artificial
intelligence techniques.
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1 Introduction

Drug discovery is a complex and time-consuming process that
often involves multiple stages, including target identification,
primary screening, drug optimization, and clinical trials (Van de
Sande et al., 2023; Vemula et al., 2023). Each stage faces significant
challenges: target identification requires an in-depth understanding
of the molecular mechanism of the disease; the preliminary screening
stage requires efficient compound screening technology; and the drug
optimization stage requires balancing the efficacy and safety of the drug.
In addition, clinical trials need to rigorously verify the effectiveness and
safety of drugs. The entire process is not only time-consuming, but also
requires a large amount of capital investment and has a high failure rate
(Shaker et al., 2021; Sarkar et al., 2023).

Since 2009 (Tang et al., 2009), single-cell sequencing technology
has experienced rapid development and is widely used in clinical
medical research and drug discovery (Van de Sande et al., 2023).
Comparedwith bulk sequencing, single-cell sequencing technology has
significant advantages. Single-cell technology can comprehensively
describe the biological characteristics and status of individual cells
and their interactions with the tissue environment, such as single-cell
genome, single-cell transcriptome, single-cell epigenetic group, etc.
Other single-cell technologies, such as single-cell proteomics, T-cell
and B-cell receptor sequencing, and single-cell metabolomics, further
expand the scope of single-cell research (Figure 1A).

The application of single-cell technology in drug discovery has
significant advantages (Nassar et al., 2021; Saviano et al., 2020). It
helps identify and validate disease-related targets by providing precise
cell-specific data, improving the efficiency and success rate of drug
development (Figure 1B; Figure 3). Single-cell technology is widely
used in the treatment of tumors (Zheng L. et al., 2021; Wagner et al.,
2019), neurological diseases (Yang et al., 2024; Liu et al., 2020),
immune-mediated diseases (Zhang et al., 2019; Nehar-Belaid et al.,
2020), and infectious diseases (Wang C. et al., 2022; Wang Y. et al.,
2022), providing new research perspectives and drug development
possibilities. Through sing-cell technology, researchers can reveal the
cellular heterogeneity of diseases (Liang et al., 2022; Ma et al., 2021)
and identify key therapeutic targets to develop new treatments. This
technology has made significant progress in screening and validating
drug candidates, identifying a variety of potential drug candidates and
providing directions for future drug development. Finally, single-cell
technologies show great promise in analyzing disease phenotypes,
enable large-scale disease modeling and drug testing, and help to
optimize therapeutic interventions in clinical trials (Wu et al., 2022;
Eggenhuizen et al., 2024).

In past research, it is common to combine computational
methods with high throughput omics data to predict drug
effectiveness and disease progression (Partin et al., 2023; Maeser
et al., 2021). However, these methods often lack understanding of
cellular heterogeneity and molecular mechanisms at the single-cell
level, limiting their effectiveness in identifying specific cell types in
response to drugs. In recent years, there have been more research on
algorithms for applying deep learning andmachine learning to single-
cell data (Figure 1C; Figure 4). In the field of drug discovery, the
applications of deep learning or machine learning are mainly divided
into drug perturbation prediction, integrate batch and drug response
prediction and drug repurposing. In terms of predicting drug
perturbations at the single-cell level, significant progress has been

made using deep learning frameworks, including variational
autoencoder (VAE) (Lotfollahi et al., 2019), transformer
(Theodoris et al., 2023), etc., to simulate cellular responses to
various perturbations. Integrating batch and single-cell data is
critical to improve the accuracy of drug response predictions. It is
a common practice to use deep transfer learning (DTL) to transfer
drug response information from batch data (such as cell lines) to
single-cell data (Zheng et al., 2023; Tang Z. et al., 2023; Chen J. et al.,
2022). Single-cell technology has also revolutionized drug repurposing
strategies. Utilizing the differential genetic information of disease-
related cell subpopulations andmore detailed gene regulatory network
information provided by single-cell technology, computational
methods (He et al., 2023; Hsieh et al., 2023; Oubounyt et al., 2023)
can more accurately screen candidate drugs, improve development
efficiency, and provide new treatment strategies for diseases.

Before the single-cell era, the drug development of TCMsmainly
relied on traditional bulk data analysis, and the effects and
mechanisms of action of TCMs components were obtained by
studying the entire tissue or sample (Yang et al., 2021; Shang
et al., 2023). However, traditional method has many limitations,
and it is difficult to screen the active ingredients of TCMs, and it is
difficult to reveal the differences in the effects of TCMs between
different cell types and complex biological processes. Combining
single-cell technology, researchers have revealed the role of TCMs in
drug development from the perspective of its active ingredients,
targets, and mechanisms of action. (Figure 1D; Figure 5).

2 Single-cell technology

In the drug discovery process, the application of single-cell
technologies has brought significant advantages to improving the
effectiveness and safety of drugs (Van de Sande et al., 2023). These
technologies can provide unprecedented cellular resolution,
revealing cell subpopulations and molecular mechanisms that are
difficult to discover with traditional methods (Mitra-Kaushik et al.,
2021). Using single-cell technologies, researchers can more
accurately assess the effects of drugs in different cell types and
their potential side effects, thereby optimizing drug design,
improving therapeutic effects, and reducing adverse reactions
(Aissa et al., 2021). In the following parts of this section, we will
introduce single-cell technologies including single-cell genomics,
single-cell transcriptomics, and single-cell epigenomics (Figure 2).

2.1 Single-cell DNA sequencing technology

Single-cell DNA sequencing technology is an advanced technology
that can perform genome analysis at the single cell level. By sequencing
the genome of a single cell, it reveals cell-to-cell heterogeneity and
genome variation. The core steps of this technology include single-cell
isolation, genome amplification, and high-throughput sequencing.
Navin, N. et al. first sequenced the genome of a single cell in 2011
(Navin et al., 2011). With the development of second-generation and
third-generation sequencing technologies, single-cell whole genome
sequencing such as SMOOTH-seq (Fan et al., 2021), Digital-WGS
(Ruan et al., 2020), Refresh-seq (Wang et al., 2024a), etc., have been used
in drug discovery.
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2.2 Single-cell RNA sequencing technology

The evolution of single-cell RNA sequencing technology
(scRNA-seq) began with the work (Tang et al., 2009) in
2009 and was first applied to small-scale single-cell analysis in
2011, followed by rapid development and commercialization.

SMART-seq2 (Picelli et al., 2014) technology has the advantage
of improving sequencing coverage and sensitivity for full-length
transcript sequencing. In recent years, the emergence of technologies
such as Drop-seq (Macosko et al., 2015), Seq-Well (Gierahn et al.,
2017), andMicrowell-seq (Han et al., 2018)has further improved the
throughput and accuracy of single-cell sequencing. With the

FIGURE 1
Application of single-cell technology in drug development (A) The process of drug development by combining single-cell technology with one or
more omics technologies. (B) The application of single-cell technology in clinical drug development in tumors and non-tumors. (C) Single-cell
technology combined with computational methods for drug discovery, including 1. Methods based on deep, machine learning to integrate batch and SC
data, 2. Deep learning-based drug perturbation prediction methods and drug repurposing computational methods to predict drug response. (D)
Single-cell technology combined with traditional Chinese medicine for drug development, explained in three categories: research on active ingredients
of traditional Chinese medicine, targets of traditional Chinese medicine, and elucidation of the pharmacological mechanisms of traditional
Chinese medicine.
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continuous development of these technologies, scRNA-seq has
become a key tool for studying cellular heterogeneity and
complex biological systems, promoting the rapid development of
biomedical research and precision medicine.

2.3 Single-cell epigenome sequencing

Single-cell epigenome sequencing is an advanced technology that
studies epigenetic modifications at the single-cell level. It can reveal
epigenetic changes in different cell types and states and gain in-depth
understanding of the mechanisms that regulate gene expression.
Epigenetic modifications include histone modifications, chromatin
accessibility, and DNA methylation, which play a key role in

regulating gene expression and cell function. The earliest technologies
such as Hi-C (Nagano et al., 2013), ATAC-seq (Buenrostro et al., 2015a;
Buenrostro et al., 2015b), and ChIP-seq (Rotem et al., 2015), with the
development of single-cell technology, can reveal the genomic structure,
mutations, and variations of single cells.

2.4 Single-cell spatial transcriptome
technology

Spatial transcriptome technology is a cutting-edge technology for
studying gene expression and its spatial distribution at the level of
individual cells, aiming to reveal the spatial heterogeneity of cells in
tissues and their functional characteristics. This technology combines

FIGURE 2
Development and major milestones of single-cell technology in various omics technologies such as transcriptome, genome, epigenetic group,
proteome, spatial transcriptome, metabolome.
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scRNA-seq and spatial information capture to achieve detailed
analysis of complex tissue structures by preserving the position
and gene expression data of each cell on the tissue section.
Generally speaking, it can be divided into two categories. The first
category is image-based technology, such as in situ hybridization and
in situ sequencing, which includes MERFISH (Zhang et al., 2021),
seqFISH (Shah et al., 2018) and Nanostring CosMx. The second
category is capture and sequencing-based technology, represented by
10x Visium, slide-seq (Rodriques et al., 2019) and Stereo-seq (ChenA.
et al., 2022). In recent years, some technologies have reached the level
of spatial transcriptome sequencing with subcellular resolution, such
as 10x Xenium, nanostring CosMx SMI.

2.5 Other single-cell technologies

Other single-cell technologies include single-cell proteomics,
T cell receptor (TCR) and B cell receptor (BCR) sequencing, and
single-cell metabolomics sequencing technology. Single-cell
proteomics (Li L. et al., 2018) combines single-cell separation,
protein marker detection and high-sensitivity mass spectrometry
analysis to provide protein expression profiles and interaction
networks for each cell, and is applied in cancer (Li L. et al., 2018;
Mund et al., 2022), immunology (Bassez et al., 2021), neuroscience
(Goto-Silva and Junqueira, 2021). TCR and BCR sequencing
technologies analyze the variable regions of T cell and B cell
receptors through high-throughput sequencing, revealing the
diversity and antigen specificity of immune cells, which is of
great significance for understanding the role of the immune
system in infection (Wang P. et al., 2021), autoimmune diseases
(Zheng F. et al., 2021) and cancer immunotherapy (He et al., 2022).
Single-cell metabolomics (Shaojie et al., 2023) uses high-sensitivity
mass spectrometry technology to detect and analyze metabolites at
the single-cell level, revealing metabolic heterogeneity andmetabolic
networks between cells, and promoting a deeper understanding of
cell function and dynamic changes. In addition, single-cell multi-
omics technologies have been developed, such as scNanoCOOL-seq
(Lin et al., 2023), CITE-seq (Stoeckius et al., 2017), etc. These
technologies also have a catalytic effect on drug discovery.

3 Application of single-cell technology
in clinical drug discovery

Drug discovery is a complex, multi-stage process that takes years
from target identification to drug launch (Figure 3), and single-cell
technology plays an important role in drug development in both
oncology and non-oncology applications (Zeng Q. et al., 2023;
Huang et al., 2023). We primarily emphasized the significant
advantages of single-cell omics technology in discovering drug
targets and investigating drug resistance mechanisms by
analyzing tissue heterogeneities.

3.1 Tumors

In clinical research, drug discovery is a comprehensive task,
particularly for tumors such as lung cancer (Ruiz-Cordero and

Devine, 2020; Meijer et al., 2022), liver cancer (Li and Wang,
2016) and glioblastoma (El Atat et al., 2023). Unlike common
diseases, tumor drug discovery faces challenges related to tumor
heterogeneity and resistance (Dagogo-Jack and Shaw, 2018; Vasan
et al., 2019), which traditional methods are unable to overcome.
However, the application of single-cell omics is addressing
these obstacles.

3.1.1 Discovery of potential therapeutic targets
under tumor heterogeneity and tumor
microenvironment

Specific biomarkers and new drug targets for effective targeted
therapy or immunotherapy are the key to the treatment of diseases
and drug development. In the early stage of drug development,
single cell sequencing technology can find effective biomarkers and
potential drug targets more accurately from the gene or protein level
by in-depth study of tumor heterogeneity and tumor
microenvironment.

By integrating scRNA-seq and bulk RNA sequencing, Zhang et al.
(Zhang L. et al., 2022) studied the differences in gene amplification,
cell composition and expression module across different types of lung
cancer such as lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC). They identified 10 sub-cluster markers such as
AQP5 and KPNA2, which could potentially serve as drug targets for
early diagnosis and treatment of lung cancer. Additionally, using
scRNA-seq and spatial transcriptome RNA sequencing data,
Nicotinamide N-Methyltransferase (NNMT) and Hypoxia
inducible lipid droplet-associated (HILPDA) have been identified
as promising therapeutic targets in clear cell renal cell carcinoma
(ccRCC), emphasizing their association with hypoxia and metabolic
pathways (Zhang et al., 2024). In gastric cancer (GC) research, by
generating cell maps of 10 patients with GC, IL-17+ tumor-associated
stromal cells (TASCs) were found to potentially promote tumor
progression through IL-17, IL-22 and IL-26 signaling pathway,
highlighting the potential of targeting IL-17+ cells and related
signaling pathways as drug targets and therapeutic strategies for
GC (Sun et al., 2022). In the study of uveal melanoma (UM),
CD8+ T cells were found to predominantly express the
checkpoint marker LAG3, suggesting LAG3 as a potential
candidate target for immune checkpoint blocking in high-risk
UM patients (Durante et al., 2020). Similarly, Zhu et al. (Zhu
et al., 2023a) developed inflammation-related prognostic signals
(IRPS) using scRNA-seq data in prostate cancer, identifying six
genes significantly associated with tumor immunity, therapeutic
response and drug screening. Among these, PTGIR exhibited
strong affinity for multiple anti-tumor drugs, potentially serving
as a biomarker for candidate drugs.

3.1.2 Drug resistance research
It is important to evaluate the drug sensitivity, effectiveness and

drug resistance before clinical trials. Studies have shown that tumor
heterogeneity is an important reason for drug resistance of tumor
cells. Drug-resistant cells will gradually replace drug-sensitive cells
with the progress of chemotherapy. Single-cell sequencing
technology can clarify the mechanism of drug action at the single
cell level and can effectively evaluate the dynamic changes between
different cell molecules in tumor microenvironment under the
condition of drug treatment.
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Previous studies have shown the drug resistance may attribute to
both cancer cells and microenvironment cells. Treatment-resistant
glioblastoma patients exhibited an increased presence of high-
stemness tumor cells and a reduced proportion of microglia (Wu
et al., 2023). Similarly, the cell cycle activated melanoma tumor cells
demonstrated high level of treatment resistance (Randic et al., 2023).
The characteristics of mesenchymal stem cells were found to be
related to the effectiveness of anti-tumor treatment in GC (Shen
et al., 2023). The heterogeneity of tumor cells was found as the cause
of tyrosine kinase inhibitor treatment resistance in tumor patients
with somatic mutations of receptor tyrosine kinase (Aissa et al.,
2021). Malignant B cell subsets are enriched in drug-resistant
multiple myeloma (MM), and exhausted CD8+ T cells and
unique CD16+ myeloid cells are related to the progress of drug-
resistant MM (Wang HN. et al., 2021). Similarly, type Ⅲ malignant
B cells also play an important role in the drug resistance mechanism
of Mantle cell lymphoma (MCL). Some drug target genes, such as
BTK, FCGR2A, FCGR2B and FCGR3A, are highly expressed in

patients with MCL, which indicates that the activity of B cells is
enhanced during and after drug resistance (Wang et al., 2020).

3.1.3 Screening anti-tumor drugs
Screening drugs plays a vital role in drug development, but it

takes a lot of work and time. Single cell sequencing technology can
reflect the mechanism of drug action at the cellular and molecular
level, provide the most original data for screening candidate drugs,
which is helpful to the discovery of candidate drugs and promote the
development of new drugs.

In prior studies, researchers identified specific cellular subgroups
or disease-associated differentially expressed genes by analyzing
scRNA-seq data under various disease conditions. This analysis
facilitated drug screening and the discovery of candidate drugs. For
instance, single-cell transcriptome sequencing was used to analyze
the cellular composition and gene expression in diabetic kidney
disease (DKD), leading to the identification of candidate drugs
relevant to DKD. Researchers evaluated the efficacy of the top

FIGURE 3
Application of single cell technology in five stages of clinical drug development.
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three candidate drugs through cellular and animal experiments (Li
et al., 2024). In addition, by integrating scRNA-seq and scATAC-seq
technologies, we analyzed the changes in gene expression and
chromatin state of prostate cancer cell lines before and after
enzalutamide (ENZ) treatment, identified seven key gene
signatures, and nominated combination drug candidates through
drug-gene network analysis to enhance early treatment response or
overcome ENZ resistance (Fan et al., 2023). Furthermore, scRNA-
seq revealed that 177Lu-FAP6-DOTA is a reliable candidate for
treating solid tumors, demonstrating high affinity for FAP-
expressing cells, significantly increased tumor doses, and effective
tumor growth suppression with minimal toxicity (Lindeman
et al., 2023).

3.1.4 Pre-clinical models with single-cell
At present, a key way to develop anti-tumor drugs is to use

preclinical animal models, and many important discoveries are
achieved through preclinical animal models, utilizing single-cell
technology.

For example, using scRNA-seq, researchers examined CD45+

tumor infiltrating lymphocytes in mouse model of CRC treated
with AB680, a selective inhibitor of CD73 extracellular enzyme, to
block tumorigenic ATP adenosine signals as a candidate
immunotherapy (Kim et al., 2021). Similarly, in DKD, scRNA-
seq revealed diverse responses among renal cell types to various
treatment regimens in mouse models. These findings suggest the
potential of SGLT2i inhibitors to regulate proximal tubule splicing,
providing insights into their therapeutic mechanisms (Wu
et al., 2022).

Although preclinical animal models have played a crucial role in
drug research and development, their variability in immune
responses and interspecies differences often limit their ability to
accurately recapitulate responses seen in human tumor patients,
posing ongoing challenges. Therefore, linking human and animal
models is essential. Single-cell technology allows for the mapping of
cellular landscapes across different animal models, enabling
comparisons with patient-derived maps to identify models that
mimic similar tumor microenvironment characteristics for use in
preclinical studies of specific drugs under development. For
instance, analysis of myeloid cells in the lung tissues from non-
small cell lung cancer patients and mouse models using scRNA-seq
revealed conservation of monocyte and dendritic cell subtypes
across species but heterogeneity among macrophage subsets
between humans and mice (Han et al., 2022). Similarly,
systematic evaluation of single-cell transcription regulation maps
in cynomolgus monkeys and other non-human primate models
compared to humans highlights differences in cell composition,
organ heterogeneity, and spatiotemporal gene expression. These
insights provide foundational understanding for assessing drug
responses and disease mechanisms relevant to human health (Qu
et al., 2022).

3.1.5 Patient stratification and clinical trials for
precision medicine

In clinical trials, analyzing patients’ genetic backgrounds at the
single-cell level help researchers accurately identify patient
subgroups suitable for specific drugs, guiding precise clinical
medication and advancing.

For instance, using scRNA-seq to analyze breast cancer cell lines,
researchers generated a single-cell map of breast cancer
(Gambardella et al., 2022). Deconvolution algorithms were then
employed to determine cell composition, enabling patient
stratification based on cell lines. By integrating in vitro drug
screening results from cell lines and single-cell data, this
approach aids in optimizing existing treatments. In another
study, the heterogeneity of triple-negative breast cancer (TNBC)
tumors was comprehensively revealed, highlighting key clinical
correlations and influencing factors (Ge et al., 2024). This
research proposed a new strategy of combining LINE-1
inhibition with immunotherapy for TNBC, offering potential
biomarkers for predicting patient treatment responses. For non-
small cell lung cancer (NSCLC), single-cell datasets were integrated
to create a high-resolution view of 44 major cell types/states within
the tumor microenvironment (TME) (Salcher et al., 2022). This
detailed single-cell composition allowed for precise tumor
classification and patient stratification into four immune
phenotypes: immune-deserted, myeloid, B cell, and T cell
subtypes. These insights are significant for enhancing the efficacy
of tumor immunotherapy in NSCLC. Additionally, the analysis of
plasma cells from patients with advanced refractory multiple
myeloma (aRRMM) undergoing treatment with selinexor
combined with dexamethasone or bortezomib combined with
dexamethasone used scRNA-seq maps in conjunction with
clinical trials (Cohen et al., 2021). This method stratified patients
based on their resistance to anti-MM treatment, defining new
resistance biomarkers, potentially supporting personalized
treatment decisions and uncovering new therapeutic targets.

3.2 The role of single cell techniques in drug
development for non-cancerous diseases

Single-cell technology has extensive applications in the
treatment of non-cancerous diseases, such as neurological
disorders (e.g., Alzheimer’s disease (AD), Parkinson’s disease
(PD), multiple sclerosis (MS)), immune-mediated diseases (e.g.,
rheumatoid arthritis (RA), systemic lupus erythematosus (SLE)),
and infectious diseases (e.g., COVID-19, HIV/AIDS). This
technology provides new perspectives for studying the
mechanisms underlying these diseases and opens up new
possibilities for drug development (Roostaei et al., 2017;
Hammond et al., 2019; Mathys et al., 2019; Mathys et al., 2017).
It is particularly important in target identification, target validation,
preclinical research, drug screening, biomarker discovery, and
understanding patient stratification and treatment responses.

3.2.1 Discovery of potential therapeutic targets
3.2.1.1 Neurological disorders

The emergence of scRNA-seq has enabled researchers to explore
the impact of AD on cellular heterogeneity. In AD research,
preventing dysfunction of astrocytic organelles is considered a
crucial direction in the therapeutic strategies for AD (Galea et al.,
2022). Dang et al. utilized scRNA-seq to reveal that emotional and
cognitive impairments in AD are associated with ferroptosis in
astrocytes. They identified FTH1 and SAT1 as critical regulators
influencing ferroptosis in astrocytes. This study provides insights

Frontiers in Drug Discovery frontiersin.org07

Zhang et al. 10.3389/fddsv.2024.1459962

https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2024.1459962


into the pathophysiological processes at the cellular level following
AD and underscores potential therapeutic targets for treating the
disease (Dang et al., 2022). At single-cell resolution, the
characterization of in vitro human dopamine neurons reveals
composition and cell-type specific responses to genetic and
cytotoxic stress (Fernandes et al., 2020). By combining human
brain snRNAseq data with tau mouse model data, researchers
studied neurons and glial cells in neurodegenerative PD (Min
et al., 2023). They identified therapeutic targets with potential
and validated these targets in vivo using a tau fly model. In
addition, research on multiple sclerosis (MS) also demonstrates
the power of single-cell analysis. Single-cell analysis of immune
cells in the cerebrospinal fluid during relapses of multiple sclerosis
patients suggests that targeting heterogeneous cell populations
could potentially serve as therapeutic targets for MS (Ostkamp
et al., 2022).

3.2.1.2 Infectious diseases
scRNA-seq has established a high-resolution map of blood

antigen-presenting cells (APCs) in COVID-19 pneumonia
patients, revealing multi-process defects in antiviral immunity,
specifically in certain subsets of dendritic cells (DCs). These
findings lay the groundwork for novel therapies aimed at
restoring defective APC functions in COVID-19 patients. Many
studies have already developed numerous adjuvants targeting DC
subsets and have also considered DCs in the development of
prophylactic vaccines (Bryant et al., 2019; Saxena and Bhardwaj,
2017). In addition, the application of single-cell technology in HIV
research has also brought new hope for drug discovery. Additionally,
research utilizing single-cell techniques characterized mature
monocyte subsets from uninfected individuals, HIV-infected
individuals, and individuals with HIV who remain uninfected
despite exposure, without ART. This study identified therapeutic
targets for blocking HIV monocyte entry into tissues (Leon-Rivera
et al., 2020).

3.2.2 Drug performance evaluation
3.2.2.1 Neurological disorders

In the study of drug performance evaluation, single-cell RNA
sequencing (scRNA-seq) technology has provided important
insights into AD. By generating more representative human
microglia models (MDMi) and utilizing scRNA-seq to analyze
their expression profiles, we can gain valuable insights into the
AD. For example, examining cytokine responses post-treatment
with anti-inflammatory drugs (dasatinib and spironolactone) can
provide crucial therapeutic information (Cuni-Lopez et al., 2024).

3.2.2.2 Immune-mediated diseases
Similarly, the application of single-cell technology in immune-

mediated diseases has also shown its great potential. Hedman et al.
analyzed and compared the effects of methotrexate (MTX)
treatment in RA patients and healthy controls to study the
contribution of immune cells to RA therapy (Hedman et al.,
2023). Rheumatoid arthritis synovial single-cell spatial analysis
also identified specific macrophage cellular states associated with
treatment response (Julien et al., 2023). In vitro experiments suggest
that non-steroidal anti-inflammatory drugs (NSAIDs) effectively
block TNFα-induced synovial macrophage responses (Kuo et al.,

2019), and different subpopulations of synovial macrophages
regulate inflammation and resolution in RA (104). The research
used single-cell transcriptomics to profile synovial tissue
macrophages (STM) and revealed STM subpopulations
(MerTKpos STMs) in remission, associated with an increased
risk of disease flare after treatment cessation (Alivernini et al.,
2020). Therapeutic modulation of MerTKpos STM
subpopulations could therefore be a potential treatment
strategy for RA.

3.2.2.3 Infectious diseases
Moreover, the immune cell landscape of COVID-19 also

revealed how neutrophils are dynamically regulated or
programmed in COVID-19 patients receiving dexamethasone
treatment, enabling more effective responses to viral infection
(Chen Y. et al., 2023).

3.2.3 Screening candidate drugs
3.2.3.1 Neurological disorders

In recent years, numerous studies have made significant
progress in screening and validating candidate drugs for the
treatment of various diseases. Yin et al. found that BRI2’s ability
to regulate APP and TREM2 processing, along with its cell-
autonomous roles in neurons and microglia, makes it a
promising candidate for the development of therapeutic drugs for
AD and AD-related dementias (Yin and D’Adamio, 2023). The
further application of single-cell technology has also achieved
important results in the study of multiple sclerosis (MS).
Analysis of AD-specific gene-related signaling pathways from
astrocytes isolated from the entorhinal cortex of AD patients
revealed that anti-rheumatic drugs can reverse gene
characteristics associated with AD in astrocytes (Pushparaj et al.,
2021). Dimethyl fumarate (DMF) is commonly used to suppress
relapses in MS patients. Studies have shown that it can reduce a T
helper population expressing GM-CSF, highlighting its relevance as
a therapeutic target (Galli et al., 2019).

3.2.3.2 Infectious diseases
Transcriptomic analysis of monocytes from survivors and

deceased COVID-19 patients identified key host response
pathways overactivated in non-survivors. Based on this,
tacrolimus, zotarolimus, and nintedanib were identified as three
potent candidate drugs for the treatment of critically ill patients
upon hospital admission (Singh et al., 2022). High-throughput
screening of FDA-approved drugs revealed multiple COVID-19
entry inhibitors, including imatinib, meclofenamic acid, and
quinacrine dihydrochloride. These drugs significantly inhibited
COVID-19 infection at physiologically relevant levels (Han et al.,
2021). By applying single-cell techniques to these studies, scientists
were not only able to identify and validate potential drug candidates
for the treatment of COVID-19, but also made similar advances in
HIV research. A study employing scRNA-seq data predicted drugs
that could reverse the altered monocyte-derived signatures.
Doxycycline and sunitinib are considered promising candidate
drugs for further research and development (Knoll et al., 2023).
Collectively, these studies demonstrate the potential of different
candidate drugs in treating various diseases, providing valuable
insights and directions for future drug development.
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3.2.4 Pre-clinical experiments
3.2.4.1 Neurological disorders

In recent years, there has been substantial attention directed
towards understanding the roles of neuroinflammation and immune
regulation in a range of neurodegenerative and autoimmune
diseases. A study simulated the effects of pharmacological
compounds on human microglial subtypes across various in vitro
and in vivo model systems. It found that the topoisomerase I
inhibitor camptothecin reduced a subtype of microglia
characterized by high CD74/MHC expression. This subtype may
play a role in the early stages of AD specifically during the initial
accumulation of amyloid-beta pathology (Haage et al., 2024).
Recently, another method was reported for in vitro modeling of
human microglial subtypes (Dolan et al., 2023). This involved
exposing iPSC-derived microglia (iMG) to selected central
nervous system (CNS) substrates, followed by associating the
induced microglial subtypes with human microglial subtypes
derived from snRNAseq datasets (Gazestani et al., 2023).

Research on early relapsing-remitting MS patients’ blood and
CSF-derived cell transcriptome changes, along with animal models,
revealed that IL-11/IL-11R signaling transduction in monocytes is a
therapeutic target for RRMS (Seyedsadr et al., 2023). Identification
of the overall changes in microglia or astrocytes associated with the
development of brain tissue lesions in MS provides therapeutic
targets to limit lesion progression and demyelination. Through the
Mertk-KO mouse model, it has been demonstrated that Mertk, a
gene highly expressed bymicroglial cells, can alter the risk of MS and
is necessary for effective remyelination (Shen et al., 2021). Using an
MS mouse model with doxycycline-inducible CXCL1 expression
from astrocytes, it was revealed that neutrophils may contribute to
demyelination through multiple pathways in white matter, offering
new therapeutic targets for improving demyelination (Skinner
et al., 2022).

3.2.4.2 Immune-mediated diseases
Furthermore, utilizing human and murine in vitromodels, it has

been determined that inhibiting macrophage glycolysis can
ameliorate autoantibody-induced inflammation. Targeting
macrophage metabolism may thus represent an effective
therapeutic strategy for lupus nephritis (Jing et al., 2020).
Research has also shown that Sm-specific Tregs (Sm-Tregs)
effectively suppress ex vivo Sm-specific pro-inflammatory
responses and inhibit disease progression in a humanized mouse
model of lupus nephritis (Eggenhuizen et al., 2024). Sm-Tregs
represent a promising therapeutic approach for SLE.

3.2.5 Patient stratification and clinical trials
3.2.5.1 Neurological disorders

Single-cell analysis can aid in identifying disease subgroups
targeted for treatment. A study in treating SLE (Der et al., 2017)
confirmed a significant reduction in IFN scores in SLE patients
responding to treatment. In SLE, the IFN signature can
categorize patients into two groups: SLE1, characterized by
low expression levels of IFN-induced genes, and SLE2,
characterized by high expression levels of IFN-induced genes
(Ronnblom and Leonard, 2019). In SLE2 patients, a cytotoxic
CD4 T cell subset has been identified (Trzupek et al., 2021). A
recent attempt to reduce heterogeneity in brain organoids

involves generating midbrain-like organoids from primitive
neural stem cells (NSCs), mimicking phenotypes associated with
PD. Disease phenotypes responded to disease-specific therapies,
supporting the potential of this method in large-scale disease
modeling and drug testing.

3.2.5.2 Immune-mediated diseases
ScRNA-seq analysis of cultured rheumatoid arthritis

fibroblast-like synoviocytes (RA-FLS) in a simulated RA
inflammatory milieu ± ABT-317 characterizes the molecular
effects of the selective JAK1 inhibitor (ABT-317). Jak
inhibition is effective in downregulating several proinflammatory
pathways induced by conditioned media stimulation in FLS
cultures (Son et al., 2023).

3.2.5.3 Infectious diseases
In infectious diseases, single-cell technology also shows

important potential of patient stratification. Su et al. conducted a
single-cell multi-omics analysis of peripheral blood mononuclear
cells (PBMCs), identifying a sharp transition in disease state between
mild and moderate COVID-19, suggesting that moderate COVID-
19 may provide the most effective environment for therapeutic
intervention (Su et al., 2020). Single-cell technology analysis of
the immune landscape in the bronchioalveolar lavage of humans
infected with COVID-19 revealed the critical role of macrophage-
driven innate immunity in resolving COVID-19 infection (Singh
et al., 2022). At the same time, significant progress has been made in
its application in HIV research. Bradley et al. utilized scRNA-seq to
analyze cellular gene expression in HIV latency primary cell models.
The data indicate that the expression of HIV proviruses in the latent
reservoir is influenced by host cell transcriptional programs,
modulation of which therapeutically can reverse or reinforce HIV
latency (Bradley et al., 2018).

4 Application of single-cell technology
combined with deep learning and
machine learning in drug development
and drug repurposing

In the realm of drug development, the integration of single-cell
technologies with computational methods and drug repurposing
methods is revolutionizing the field (Theodoris et al., 2023; Zheng
et al., 2023). Single-cell technologies provide high-resolution data at
the cellular level, enabling researchers to gain a deep understanding
of cellular heterogeneity and molecular mechanisms. By
incorporating computational methods, researchers can leverage
sophisticated algorithms and deep learning models to extract
valuable insights from vast amounts of single-cell data, thereby
accelerating the identification of drug targets and the screening of
potential drug candidates (Lotfollahi et al., 2019; Zhu et al., 2023b;
Wang et al., 2024b). Additionally, single-cell technologies play a
pivotal role in drug repurposing by analyzing how different cell types
respond to existing drugs, uncovering new therapeutic potentials
and indications. This multidisciplinary approach not only enhances
the efficiency and success rate of new drug development but also
paves the way for personalized medicine and precision therapies
(Zhu et al., 2023b) (Figure 4).
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4.1 Computational methods for drug
discovery at the single-cell level

Computational methods based on various machine learning
(ML) and deep learning (DL) frameworks have shown great
potential in drug discovery (Jarada et al., 2020; Maeser et al.,

2024; Adam et al., 2020; Wu et al., 2020). These methods utilize
high-throughput screening (HTS) data and molecular profiles of
cancer cell lines (CCL) to infer drug sensitivity (Adam et al., 2020).
Recent studies using scRNA-seq have emphasized that
subpopulations within heterogeneous tumors are closely related
to drug resistance and disease progression (Dagogo-Jack and

FIGURE 4
Single-cell technology combined with computational methods to predict drug response (A) Batch and SC data integration based on deep learning
(B) Batch and SC data integration based on deep learning (C)Drug perturbation predictionmethod based on deep learning (D)Computational method for
drug reuse at the cellular level.
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Shaw, 2018). Therefore, there is a need for drug discovery targeted at
specific cell types. In this context, computational methods for
inferring drug activity at the single-cell level have demonstrated
significant potential for application.

The transcriptomic profiles of CCLs are based on bulk
sequencing, hence they cannot be directly applied to scRNA-seq
data for effective prediction of drug responses by cell type.
Therefore, current algorithm development strategies focus on
deriving knowledge from bulk CCL data and exploiting and
discovering new insights within scRNA-seq data. To achieve this
goal, some algorithms focus on integrating bulk and single-cell data.
Moreover, some methods predict drug perturbations in single-cell
transcriptomes, which can also support drug development targeted
at specific cell types.

4.1.1 Deep learning-based methods for integrating
bulk and single-cell data

SCAD (24), SpaRx (Tang Z. et al., 2023), and scDEAL (26) are
methods utilize deep transfer learning (DTL) to integrate bulk and
single-cell data and predict drug responses in cell types within
single-cell or spatial transcriptomics (ST). The core step of these
deep learning methods is transferring the drug response predictor
trained on the source domain (e.g., cell lines) to the target domain
(e.g., single cells). The methods differ primarily in their
implementation of domain transfer.

The SCAD model employs adversarial discriminative domain
adaptation, featuring a feature extractor and a domain
discriminator. The domain discriminator challenges the feature
extractor to develop domain-invariant features, enhancing the
transferability of the drug response label classifier from the
source to the target domain. This approach improves drug
sensitivity prediction across different cellular states and identifies
potential combination therapy strategies through the
IntegratedGradients method. SpaRx employs a graph-based
domain adaptation model, using a mutual nearest neighbors
method for cell line similarity in the source domain and nearest
neighbors for spatial cell graphs in the target domain. It features a
multi-head graph transformer as the feature extractor and
introduces dynamic adversarial adaptation learning, enhancing
the prediction of drug responses on ST data. scDEAL adopts a
different strategy for transfer learning. It uses two feature
extractors to extract low-dimensional feature representations
from the source domain and the target domain and predicts
drug responses at the source domain feature level using a drug
response predictor, which is a Multilayer Perceptron (MLP).
Subsequently, it minimizes the maximum mean discrepancy
(MMD) loss between gene features from the two extractors to
achieve knowledge transfer from the source to the target domain,
ultimately using the drug response predictor to predict drug
responses at the single-cell level.

It is important to note that these deep learning approaches come
with limitations. The optimal model structure can vary significantly
across different drugs and datasets, requiring substantial
computational resources which may impede their practical use.
Furthermore, each method necessitates fine-tuning of neural
network parameters specific to each drug and dataset, limiting
the ability to simultaneously evaluate multiple drugs or perform
large-scale drug screenings.

4.1.2 Machine learning-based integration of bulk
and single-cell data

The scIDUC (Zhang et al., 2023) method combines drug-gene
signatures with machine learning techniques to infer drug responses
at the cellular level. Before integrating bulk and single-cell data, drug
response-related genes (DRGs) are first identified from the bulk
data. Then, canonical correlation analysis is used to integrate these
datasets, identifying common gene expression patterns between the
two and adjusting for existing differences. Non-negative matrix
factorization can also be applied to achieve dataset integration.
Subsequently, a linear regression model is constructed based on
these integrated data. scIDUC features simple parameter
adjustments, avoiding the complex computations involved in the
deep learning methods mentioned previously. However, traditional
machine learning methods often rely on a predefined set of key
genes, which might not always capture the complex biological
variability necessary to predict drug sensitivity accurately.

4.1.3 Deep learning-based methods for predicting
drug perturbations

scGEN (22) and Geneformer (Theodoris et al., 2023) are two
deep learning-based methods for predicting single-cell
perturbations, but they are based on distinct theoretical
frameworks. scGEN is a deep learning model utilizing variational
autoencoders to predict single-cell responses to perturbations like
drugs or infections. It works by encoding gene expression data into
latent vectors, calculating perturbation vectors from differences
between conditions, and then using these for predictions.
Geneformer, based on transformer architecture, pre-trains on
millions of single-cell transcriptomes, using masked gene
prediction to model cell states under various conditions,
including disease. In summary, these two methods have achieved
deep learning-based predictions of single-cell perturbations,
demonstrating powerful data processing and analytical
capabilities through their adaptability and large-scale learning.
However, they face challenges in computational resource
demands and interpretability, thus practical application may
require consideration of their complexity and dependence on
high-quality data.

4.2 Computational methods for drug
repurposing at the single-cell level

Drug Repurposing (DRP) (Roessler et al., 2021; Issa et al., 2021;
Parvathaneni et al., 2019) is a strategy for finding new uses for
existing drugs in different diseases. This approach not only reduces
the cost and time of drug development, but also provides new hope
for treating complex diseases. The application of single-cell
technology in drug repurposing brings new breakthroughs. First,
single-cell technology is able to reveal in detail the intercellular
heterogeneity in diseases, as well as the differentially expressed genes
(DEGs) between disease and normal in specific cellular
subpopulations. Screening of drugs on cellular subpopulations
makes the drug repurposing process more precise and effective.
Second, the gene regulatory network constructed from single-cell
data, combined with drug target information, can more accurately
predict and infer the effectiveness of drugs, and the acquired

Frontiers in Drug Discovery frontiersin.org11

Zhang et al. 10.3389/fddsv.2024.1459962

https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2024.1459962


effective alternative drugs can be verified by further in vitro
experiments (Figure 4).

4.2.1 Cellular subcluster and differential gene
based drug reutilization methods

ASGARD (27) is a single-cell drug reutilization calculation
method that recommends drugs by comprehensively analyzing all
cell clusters in a patient’s body and defining a drug score. ASGARD
clusters and annotates the cells to get cell subgroups, DEGs are
obtained for normal versus diseased cells. These genes are potential
drug targets, and further used to screen existing drugs that can
reverse these differentially expressed genes. ASGARD calculates
drug scores and assess drug efficacy across multiple cell clusters.
In a COVID-19 study, ASGARD analyzed scRNA-seq data from
critically ill patients to predict and validate drugs such as rasinamide
and enalapril, which helped to reduce mortality in critically ill
COVID-19 patients.

scDrug (Hsieh et al., 2023) is an effective computational method
in the repurposing of drugs for the treatment of hepatocellular
carcinoma (HCC). After tumor cells are segmented by scDrug to
identify tumor subclusters, survival analysis is performed on the
differentially expressed genes in these subclusters and predicted the
responses to different drugs. In a hepatocellular carcinoma research,
scDrug identified tumor subpopulations with malignant
characteristics and predicted drug candidates with high sensitivity
to these tumor subpopulations in the PRISM database. Finally, based
on the LINCS L1000 data (Musa et al., 2019), scDrug suggested
combination therapy strategies (including dasatinib, torin, etc.) that
could effectively inhibit the growth of the tumor subpopulations.

4.2.2 Single-cell gene regulatory network-based
approach to drug repurposing

SCANet is an approach that infers differential key regulatory
networks and mechanisms in scRNA-seq data to hypothesize drug
repurposing candidates (Oubounyt et al., 2023). SCANet uses
weighted gene co-expression network analysis (WGCNA) to
identify gene modules, construct transcription factor gene
regulatory networks, and perform cis-regulatory analysis to
ensure accuracy. To achieve drug repurposing, SCANet
constructs heterogeneous networks by accessing multiple
databases to identify potential drug targets and candidate drugs.
scDrugPrio is a computational framework for constructing
inflammatory disease network models using single-cell RNA
sequencing data for drug prioritization and repurposing (Schafer
et al., 2024). scDrugPrio provides final drug rankings by calculating
intracellular and extracellular centrality of drug-differentially
expressed gene interaction networks and synthesizing centrality
scores for all cell types.

5 The role of single-cell technology
combined with TCMs in drug
development

5.1 Research on active ingredients of TCMs

The active ingredients of TCMs are bioactive molecules with
therapeutic effects. These components, including saponins (Sun

et al., 2009; Rao and Sung, 1995), alkaloids (Li et al., 2023),
flavonoids (Panche et al., 2016), etc., have biological function
such as anti-inflammatory, anti-cancer or immunomodulatory
effects. The application of single-cell technology on TCMs
elucidates the synthesis mechanism of active ingredients in plants
and its potential for high-throughput screening of active ingredients.

Single-cell technology has revealed the biosynthetic pathway of
monoterpene indole alkaloids (MIA) in Catharanthus roseus (Li
et al., 2023). It detected the specific expression patterns of MIA
pathway genes in Catharanthus roseus leaves and roots and
determined the clustered distribution of these genes on
chromosomes. The results provide a basis for the biosynthesis
and drug development of anti-cancer components in
Catharanthus roseus.

Screening of active ingredients in TCMs is another important
task. In recent years, single-cell technology has been used to screen
and measure TCMs, such as artemisinin (Chen J. et al., 2023),
quercetin (Zhao et al., 2023) and the natural substances frankincense
and myrrh (Liu et al., 2023). single-cell technology allows a more in-
depth analysis of the effects of their active ingredients at cellular
levels. Meanwhile, along with the development of drug response
testing technologies, single-cell omics have great potential for large-
scale screening of active ingredients in TCMs.

5.2 Targets of action of TCMs

The identification of the targets of action of TCMs is extremely
critical to unravelling their therapeutic mechanisms and improving
their efficacy and safety. Single-cell studies can help resolve the
heterogeneity of different cell types in tissues, trace the signaling
pathways affected by TCM components, and discover new
biomarkers and therapeutic targets.

A study on the treatment of non-small cell lung cancer with Jin-
Fu-An Decoction (JFAD) showed (Tang Y. et al., 2023) that JFAD
can promote the transformation of anti-inflammatory
M2 macrophages to pro-inflammatory M1 macrophages, enhance
the anti-tumor immune response in the tumor microenvironment,
through downregulating the β-catenin signaling pathway. Network
pharmacology analysis further showed that the targets of JFAD
involved 53 compounds and 263 target proteins, among which β-
catenin was identified as a key target.

Celastrol, a pentacyclic triterpenoid compound derived from the
roots of the celastrol plant, has shown potential therapeutic effects in
animal models for a variety of inflammatory diseases such as
rheumatoid arthritis. scRNA-seq revealed that celastrol inhibits
B-cell migration and humoral immune responses by disrupting
the COMMD3/8 complex, thereby halting the progression of
rheumatoid arthritis (Shirai et al., 2023). This discovery
highlights the COMMD3/8 complex as a potential drug target for
the treatment of autoimmune diseases.

Using single-cell multi-omics technology, researchers identified
the HMOX1 gene as a key target for the TCMs Sini decoction (SND)
in the treatment of sepsis (Gu et al., 2024). SND contains 116 active
ingredients, among which quercetin and kaempferol act on the
HMOX1 gene through related pathways and play a key role in the
prognosis of sepsis treatment. In addition, SND may treat sepsis by
regulating the interaction between immune cells through multiple
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mechanisms. These results provide new targets for the precision
treatment of sepsis and help develop drugs for severe infections,
demonstrating the potential of combining TCMs with modern
multi-omics methods.

5.3 Elucidation of pharmacological
mechanisms of TCMs

An important issue in the development of TCM is the
elucidation of their pharmacological mechanisms. In the past
decades, tissue sequencing technology and protein structure
analysis have been applied to research TCM mechanisms, such as
artemisinin (Meshnick, 2002; Nkereuwem et al., 2013) periwinkle
alkaloids (Gigant et al., 2005) and quercetin (Li et al., 2016). In
recent years, single-cell technology is leading the elucidation of
TCMs mechanisms of action from a new perspective and a cellular
resolution level.

Acute promyelocytic leukemia (APL) is one of the most
aggressive types of leukemia. Compound Andrographis Natural
Ganoderma Lucidum Tablets is an effective oral arsenic agent for
the treatment of APL. Using single-cell technology to analyze the
mouse APL model, it was found that the combination of arsenic
trioxide, tanshinone IIA, and indocyanine (ATI) had the strongest
therapeutic effect (Zhang X. et al., 2022). ATI improved normal
hematopoiesis in leukemic mice by regulating the expression of
related genes in bone marrow mesenchymal stromal cells (BMSCs).
This study clarifies the potential mechanism of ATI regulating
BMSCs from the perspective of the overall hematopoietic
microenvironment and broadens the understanding of ATI
compatibility in BMSCs.

Tanshinone is a commonly used drug for the treatment of
myocardial infarction and has antioxidant, anti-inflammatory and
inhibitory effects on myocardial fibrosis (Li Y. et al., 2018; Xu and
Liu, 2013; Sun and Tang, 2014). Recent studies have identified
macrophage subpopulations with potential therapeutic targets
through scRNA-seq of tanshinone IIA-treated mouse hearts.
Tanshinone IIA significantly reduced the proportion of certain
key macrophage subpopulations, suggesting the possibility of
attenuating myocardial infarction by modulating the activity of
these cells.

Cycloastragenol (CAG) is an active ingredient extracted from
astragalus, which has the effects of inhibiting tumor cell
proliferation, inducing apoptosis, inhibiting invasion and
metastasis, and anti-inflammatory effects (Li et al., 2017; Wang
et al., 2019). Single-cell technology showed that CAG enhanced the
killing ability of CD8+T cells by inhibiting histone B (CTSB)-
mediated MHC-I degradation (Deng et al., 2022) and could also
improve immune cell function. These findings provide new potential
targets for the development of immune cell targeted
therapeutic measures.

5.4 Prospects for the future of TCMs

TCMs treatment emphasizes the consideration of individual
differences and holistic treatment. Single-cell technology can reveal
the response of TCMs at the cellular level, enabling researchers to

understand the specific response of various types of cells to the
components of TCMs, thus promoting the realization of
personalized treatment plans (Figure 5). In addition, single-cell
technology can also monitor the effects of TCM components on
single cells or specific cell types, which can help to predict and assess
the potential toxicity and side effects, thus improving the safety of
the treatment. Finally, single-cell technology provides a newmethod
for screening and verifying the active ingredients and their
mechanisms of action in TCM, accelerating the discovery and
development of new drugs. Taken together, single-cell technology
shows a broad application prospect in the treatment of diseases in
TCM, which is expected to greatly promote the modernization and
internationalization of TCM (Jia-yun et al., 2021; Yang et al., 2022).

6 Discussion

Single-cell technology has brought significant advantages to
drug development. It can reveal cell subpopulations and
molecular mechanisms that are difficult to discover using
traditional methods. Considering each step of drug discovery, it
can optimize drug design, improve therapeutic effects and reduce
side effects. Single-cell technology helps to identify specific disease-
causing cells and molecular targets in clinical drug development,
thereby developing precise targeted therapies. Furthermore,
combined with advanced machine learning and deep learning
methods, utilizing valuable information from large amounts of
single-cell data can accelerate the identification of drug targets,
screening of drug candidates, and drug repurposing processes. In
the field of TCMs, single-cell technology is revolutionizing people’s
understanding, from the screening of active ingredients to the
identification of drug targets and the pharmacological
mechanisms of TCMs.

One of the development trends of single-cell technology is the
continuous improvement of resolution (Zeng H. et al., 2023;
Garrido-Trigo et al., 2023). With the advancement of sequencing
technology and data processing capabilities, we are now able to
capture changes in gene expression in single cells with higher
precision. For example, the latest scRNA-seq technology can
analyze gene expression at the subcellular level and reveal the
complex dynamic processes inside cells. This high-resolution data
helps us to identify the specific responses of cells under specific
pathological conditions, thereby discovering potential therapeutic
targets (Gottschlich et al., 2023; Lambo et al., 2023). Secondly, the
development of multi-omics analysis has greatly expanded our
understanding of cell functions and interactions. Single-cell
multi-omics technology combines multiple omics data such as
genomics, transcriptomics, epigenomics and proteomics, allowing
us to comprehensively analyze the information of single cells at
different levels. For example, by simultaneously analyzing gene
expression and epigenetic modifications of single cells, we can
better understand gene regulatory mechanisms and their role in
diseases (Mathys et al., 2023; Vandereyken et al., 2023; Gao et al.,
2023). This integrated data not only reveals the complexity of cell
function, but also provides clues for new therapeutic strategies.
Single-cell spatial transcriptome technology is another important
development trend. This technology combines scRNA-seq and
spatial information capture technology to analyze gene
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expression patterns in three-dimensional space. This means that we
can perform gene expression analysis at cellular resolution while
preserving the spatial structure of the tissue. The latest spatial
transcriptomic technologies, such as 10x Genomics’ Visium,
slide-seq, and Stereo-seq, have been able to achieve subcellular
resolution. The development of these technologies has enabled us
to construct a three-dimensional gene expression panorama of
complex organs, such as the brain (Shi et al., 2023) and embryo
(Bergmann et al., 2022; Lu et al., 2023). This panorama reveals
differences in gene expression in different regions within the organ,
providing us with a new perspective to precision medicine and drug
development.

Single-cell technology, as a high-resolution biological analysis
tool, has made significant strides in cancer research in recent years,
particularly in elucidating tumor heterogeneity and treatment
resistance (Zhang et al., 2024; Wu et al., 2023; Randic et al.,
2023; Shen et al., 2023). However, its application in chronic
disease therapies is relatively nascent yet promising. Single-cell
studies in chronic disease fields primarily focus on understanding
disease mechanisms, identifying novel therapeutic targets, and
optimizing personalized treatment strategies. For instance,
neurological disorders (Roostaei et al., 2017; Hammond et al.,
2019; Mathys et al., 2019; Mathys et al., 2017), immune-mediated

diseases (Zhang et al., 2019; Cheng et al., 2021; Cheung et al., 2019),
and infectious diseases (Zhao et al., 2021; Wilk et al., 2020; Xu et al.,
2020) all stand to benefit from the application of single-cell
technology. Despite the considerable success of single-cell
technology in cancer research, it faces challenges and research
gaps in chronic disease fields. Chronic disease samples are
typically more complex and heterogeneous, necessitating higher
standards of technical standardization and cost-effective
solutions. Compared to cancer, chronic diseases exhibit greater
cell types and state diversity, thus complicating data
interpretation and pattern recognition. With further
advancements and expanded applications, single-cell technology
is expected to play a critical role in future drug development for
chronic diseases.

In the field of TCMs, drug development research combined with
single-cell technology has significant advantages. Single-cell
technology can provide high-resolution data, reveal the specific
mechanism of action of TCMs at the cellular level, and help to
identify and verify the therapeutic targets of active ingredients of
TCMs (Gu et al., 2024; Zhang X. et al., 2022). However, although
single-cell technology has shown great potential in TCMs research,
its application is still in its early stages. More research is needed to
verify the effectiveness of single-cell technology in revealing the

FIGURE 5
Single-cell technology combined with traditional Chinese medicine for drug development, detailed introduction of three processes: active
ingredients of traditional Chinese medicine, prediction of traditional Chinese medicine targets, and research on the mechanism of traditional
Chinese medicine.
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mechanisms and therapeutic effects of active ingredients in TCMs,
and to ensure its reliability and feasibility in practical applications. In
future studies, the combined use of TCMs with chemotherapy drugs
and targeted drugs has great potential.

At last, the combination of single-cell technology with
computational methods and drug repurposing methods is
revolutionizing this field. However, how to effectively integrate
and interpret rich data, especially when combining single-cell
data with deep learning and machine learning models, the quality
of data and the optimization of algorithms still need further
research. In terms of drug perturbation prediction, the two deep
learning methods introduced in this article (Lotfollahi et al., 2019;
Theodoris et al., 2023) require a lot of computing resources and
high-quality data to achieve optimal performance. The same
problem also exists in the integration of batch single-cell data
and drug repurposing methods. Secondly, the complexity of the
computational model and the training process require rich expertise,
which may limit its widespread application. In addition, disease
progression and drug response are dynamic processes (Barrett et al.,
2022; Tang et al., 2021), so it is necessary to consider time series
single-cell data, and how to integrate these dynamic changes into the
model remains a challenge. Finally, although single-cell technology
can reveal the heterogeneity between cells, the mechanisms of
complex biological systems are extremely complex, and a single
computational model may not be able to fully capture them, thus
affecting the prediction accuracy of drug repurposing.

Author contributions

AZ: Writing–original draft. JZ: Writing–original draft. YX:
Writing–original draft. LG: Writing–original draft. FD:
Writing–original draft. YL: Writing–original draft. PG:
Writing–original draft. HT: Writing–review and editing. LT:
Writing–review and editing. XZ: Writing–review and editing,

Writing–original draft. JH: Writing–original draft,
Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the National Natural Science Foundation of China
(82170045 to JH); the Innovative Research Team of High-level Local
Universities in Shanghai (SHSMU-ZLCX20212301to JH); the
Macao Polytechnic University Internal Research Grant (RP/
FCSD-02/2022).

Acknowledgments

We have used the GPT, version GPT4-O sourced from OpenAI
to polish our manuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Adam, G., Rampasek, L., Safikhani, Z., Smirnov, P., Haibe-Kains, B., and Goldenberg,
A. (2020). Machine learning approaches to drug response prediction: challenges and
recent progress. NPJ Precis. Oncol. 4, 19. doi:10.1038/s41698-020-0122-1

Aissa, A. F., Islam, A., Ariss, M. M., Go, C. C., Rader, A. E., Conrardy, R. D., et al.
(2021). Single-cell transcriptional changes associated with drug tolerance and response
to combination therapies in cancer. Nat. Commun. 12 (1), 1628. doi:10.1038/s41467-
021-21884-z

Alivernini, S., MacDonald, L., Elmesmari, A., Finlay, S., Tolusso, B., Gigante, M. R., et al.
(2020). Distinct synovial tissue macrophage subsets regulate inflammation and remission
in rheumatoid arthritis. Nat. Med. 26 (8), 1295–1306. doi:10.1038/s41591-020-0939-8

Barrett, J. S., Nicholas, T., Azer, K., and Corrigan, B. W. (2022). Role of disease
progression models in drug development. Pharm. Res. 39 (8), 1803–1815. doi:10.1007/
s11095-022-03257-3

Bassez, A., Vos, H., Van Dyck, L., Floris, G., Arijs, I., Desmedt, C., et al. (2021). A
single-cell map of intratumoral changes during anti-PD1 treatment of patients with
breast cancer. Nat. Med. 27 (5), 820–832. doi:10.1038/s41591-021-01323-8

Bergmann, S., Penfold, C. A., Slatery, E., Siriwardena, D., Drummer, C., Clark, S., et al.
(2022). Spatial profiling of early primate gastrulation in utero. Nature 609 (7925),
136–143. doi:10.1038/s41586-022-04953-1

Bradley, T. F. G., Haynes, B. F., Margolis, D. M., and Browne, E. P. (2018). Single-cell
analysis of quiescent hiv infection reveals host transcriptional profiles that regulate
proviral latency. Cell Rep. 25 (1), 107–117.e3. doi:10.1016/j.celrep.2018.09.020

Bryant, C. E. S. S., Kong, B., Papadimitrious, M. S., Fromm, P. D., Hart, D. N. J.,
Bryant, C. E., et al. (2019). Dendritic cells as cancer therapeutics. Seminars cell and Dev.
Biol. 86, 77–88. doi:10.1016/j.semcdb.2018.02.015

Buenrostro, J. D., Wu, B., Chang, H. Y., and Greenleaf, W. J. (2015a). ATAC-seq: a
method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109
(21), 9 1–21. doi:10.1002/0471142727.mb2129s109

Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P.,
et al. (2015b). Single-cell chromatin accessibility reveals principles of regulatory
variation. Nature 523 (7561), 486–490. doi:10.1038/nature14590

Chen, A., Liao, S., Cheng, M., Ma, K., Wu, L., Lai, Y., et al. (2022b). Spatiotemporal
transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell
185 (10), 1777–1792.e21. doi:10.1016/j.cell.2022.04.003

Chen, J., Gao, P., Xiao, W., Cheng, G., Krishna, S., Wang, J., et al. (2023b). Multi-
omics dissection of stage-specific artemisinin tolerance mechanisms in Kelch13-mutant
Plasmodium falciparum. Drug Resist Updat 70, 100978. doi:10.1016/j.drup.2023.100978

Chen, J., Wang, X., Ma, A., Wang, Q. E., Liu, B., Li, L., et al. (2022a). Deep transfer
learning of cancer drug responses by integrating bulk and single-cell RNA-seq data.Nat.
Commun. 13 (1), 6494. doi:10.1038/s41467-022-34277-7

Chen, Y., Li, X., Liu, S., Ao, W., Lin, J., Li, Z., et al. (2023a). An atlas of immune cell
transcriptomes in human immunodeficiency virus-infected immunological non-
responders identified marker genes that control viral replication. Chin. Med. J. Engl.
136 (22), 2694–2705. doi:10.1097/CM9.0000000000002918

Cheng, L., Wang, Y., Wu, R., Ding, T., Xue, H., Gao, C., et al. (2021). New insights
from single-cell sequencing data: synovial fibroblasts and synovial macrophages in
rheumatoid arthritis. Front. Immunol. 12, 709178. doi:10.3389/fimmu.2021.709178

Cheung, P., Khatri, P., Utz, P. J., and Kuo, A. J. (2019). Single-cell technologies -
studying rheumatic diseases one cell at a time. Nat. Rev. Rheumatol. 15 (6), 340–354.
doi:10.1038/s41584-019-0220-z

Frontiers in Drug Discovery frontiersin.org15

Zhang et al. 10.3389/fddsv.2024.1459962

https://doi.org/10.1038/s41698-020-0122-1
https://doi.org/10.1038/s41467-021-21884-z
https://doi.org/10.1038/s41467-021-21884-z
https://doi.org/10.1038/s41591-020-0939-8
https://doi.org/10.1007/s11095-022-03257-3
https://doi.org/10.1007/s11095-022-03257-3
https://doi.org/10.1038/s41591-021-01323-8
https://doi.org/10.1038/s41586-022-04953-1
https://doi.org/10.1016/j.celrep.2018.09.020
https://doi.org/10.1016/j.semcdb.2018.02.015
https://doi.org/10.1002/0471142727.mb2129s109
https://doi.org/10.1038/nature14590
https://doi.org/10.1016/j.cell.2022.04.003
https://doi.org/10.1016/j.drup.2023.100978
https://doi.org/10.1038/s41467-022-34277-7
https://doi.org/10.1097/CM9.0000000000002918
https://doi.org/10.3389/fimmu.2021.709178
https://doi.org/10.1038/s41584-019-0220-z
https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2024.1459962


Cohen, Y. C., Zada, M., Wang, S. Y., Bentur, O. S., Chubar, E., Cohen, A., et al. (2021).
Single cell RNA sequencing in patients enrolled in a selinexor clinical trial reveals
overexpression of alternative nuclear export pathways associated with resistance to
selinexor in refractory multiple myeloma. Blood 138, 2725. doi:10.1182/blood-2021-
149701

Cuni-Lopez, C., Stewart, R., Oikari, L. E., Nguyen, T. H., Roberts, T. L., Sun, Y., et al.
(2024). Advanced patient-specific microglia cell models for pre-clinical studies in
Alzheimer’s disease. J. Neuroinflammation 21 (1), 50. doi:10.1186/s12974-024-
03037-3

Dagogo-Jack, I., and Shaw, A. T. (2018). Tumour heterogeneity and resistance to
cancer therapies. Nat. Rev. Clin. Oncol. 15 (2), 81–94. doi:10.1038/nrclinonc.
2017.166

Dang, Y., He, Q., Yang, S., Sun, H., Liu, Y., Li, W., et al. (2022). FTH1- and SAT1-
induced astrocytic ferroptosis is involved in Alzheimer’s disease: evidence from single-
cell transcriptomic analysis. Pharm. (Basel) 15 (10), 1177. doi:10.3390/ph15101177

Deng, G., Zhou, L., Wang, B., Sun, X., Zhang, Q., Chen, H., et al. (2022). Targeting
cathepsin B by cycloastragenol enhances antitumor immunity of CD8 T cells via
inhibiting MHC-I degradation. J. Immunother. Cancer 10 (10), e004874. doi:10.1136/
jitc-2022-004874

De Lima, J., Boutet, M-A., Bortolotti, O., Chépeaux, L-A., Glasson, Y., Dumé, A-S.,
et al. (2023). Spatial mapping of rheumatoid arthritis synovial niches reveals specific
macrophage networks associated with response to therapy. bioRxiv Prepr. Serv. Biol.
doi:10.1101/2023.10.20.563040

Der, E., Ranabothu, S., Suryawanshi, H., Akat, K. M., Clancy, R., Morozov, P., et al.
(2017). Single cell RNA sequencing to dissect the molecular heterogeneity in lupus
nephritis. JCI Insight 2 (9), e93009. doi:10.1172/jci.insight.93009

Dolan, M. J., Therrien, M., Jereb, S., Kamath, T., Gazestani, V., Atkeson, T., et al.
(2023). Exposure of iPSC-derived human microglia to brain substrates enables the
generation and manipulation of diverse transcriptional states in vitro. Nat. Immunol. 24
(8), 1382–1390. doi:10.1038/s41590-023-01558-2

Durante, M. A., Rodriguez, D. A., Kurtenbach, S., Kuznetsov, J. N., Sanchez, M. I.,
Decatur, C. L., et al. (2020). Single-cell analysis reveals new evolutionary complexity in
uveal melanoma. Nat. Commun. 11 (1), 496. doi:10.1038/s41467-019-14256-1

Edikpo, N., Ghasi, S., Elias, A., and Oguanobi, N. (2013). Artemisinin and
biomolecules: the continuing search for mechanism of action. Mol. Cell Pharmacol.
5 (2), 75–89. doi:10.4255/mcpharmacol.13.09

Eggenhuizen, P. J., Cheong, R. M. Y., Lo, C., Chang, J., Ng, B. H., Ting, Y. T., et al.
(2024). Smith-specific regulatory T cells halt the progression of lupus nephritis. Nat.
Commun. 15 (1), 899. doi:10.1038/s41467-024-45056-x

El Atat, O., Naser, R., Abdelkhalek, M., Habib, R. A., and El Sibai, M. (2023).
Molecular targeted therapy: a new avenue in glioblastoma treatment. Oncol. Lett. 25 (2),
46. doi:10.3892/ol.2022.13632

Fan, H., Li, J., Manuel, A. M., and Zhao, Z. (2023). Enzalutamide-induced signatures
revealed by epigenetic plasticity using single-cell multi-omics sequencing in prostate
cancer. Mol. Ther. Nucleic Acids 31, 648–661. doi:10.1016/j.omtn.2023.02.022

Fan, X., Yang, C., Li, W., Bai, X., Zhou, X., Xie, H., et al. (2021). SMOOTH-seq: single-
cell genome sequencing of human cells on a third-generation sequencing platform.
Genome Biol. 22 (1), 195. doi:10.1186/s13059-021-02406-y

Fernandes, H. J. R., Patikas, N., Foskolou, S., Field, S. F., Park, J. E., Byrne, M. L., et al.
(2020). Single-cell transcriptomics of Parkinson’s disease human in vitromodels reveals
dopamine neuron-specific stress responses. Cell Rep. 33 (2), 108263. doi:10.1016/j.
celrep.2020.108263

Galea, E., Weinstock, L. D., Larramona-Arcas, R., Pybus, A. F., Giménez-Llort, L.,
Escartin, C., et al. (2022). Multi-transcriptomic analysis points to early organelle
dysfunction in human astrocytes in Alzheimer’s disease. Neurobiol. Dis. 166,
105655. doi:10.1016/j.nbd.2022.105655

Galli, E., Hartmann, F. J., Schreiner, B., Ingelfinger, F., Arvaniti, E., Diebold, M., et al.
(2019). GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis. Nat.
Med. 25 (8), 1290–1300. doi:10.1038/s41591-019-0521-4

Gambardella, G., Viscido, G., Tumaini, B., Isacchi, A., Bosotti, R., and di Bernardo, D.
(2022). A single-cell analysis of breast cancer cell lines to study tumour heterogeneity
and drug response. Nat. Commun. 13 (1), 1714. doi:10.1038/s41467-022-29358-6

Gao, Y., Chi, Y., Chen, Y., Wang, W., Li, H., Zheng, W., et al. (2023). Multi-omics
analysis of human mesenchymal stem cells shows cell aging that alters
immunomodulatory activity through the downregulation of PD-L1. Nat. Commun.
14 (1), 4373. doi:10.1038/s41467-023-39958-5

Garrido-Trigo, A., Corraliza, A. M., Veny, M., Dotti, I., Melon-Ardanaz, E., Rill, A.,
et al. (2023). Macrophage and neutrophil heterogeneity at single-cell spatial resolution
in human inflammatory bowel disease.Nat. Commun. 14 (1), 4506. doi:10.1038/s41467-
023-40156-6

Gazestani, V., Kamath, T., Nadaf, N. M., Burris, S. J., Rooney, B., Junkkari, A., et al.
(2023). Early Alzheimer’s disease pathology in human cortex is associated with a
transient phase of distinct cell states. bioRxiv. doi:10.1101/2023.06.03.543569

Ge, L. P., Jin, X., Ma, D., Wang, Z. Y., Liu, C. L., Zhou, C. Z., et al. (2024).
ZNF689 deficiency promotes intratumor heterogeneity and immunotherapy

resistance in triple-negative breast cancer. Cell Res. 34 (1), 58–75. doi:10.1038/
s41422-023-00909-w

Gierahn, T. M., Wadsworth, M. H., Hughes, T. K., Bryson, B. D., Butler, A., Satija, R.,
et al. (2017). Seq-Well: portable, low-cost RNA sequencing of single cells at high
throughput. Nat. Methods 14 (4), 395–398. doi:10.1038/nmeth.4179

Gigant, B., Wang, C., Ravelli, R. B., Roussi, F., Steinmetz, M. O., Curmi, P. A., et al.
(2005). Structural basis for the regulation of tubulin by vinblastine. Nature 435 (7041),
519–522. doi:10.1038/nature03566

Goto-Silva, L., and Junqueira, M. (2021). Single-cell proteomics: a treasure trove in
neurobiology. Biochim. Biophys. Acta Proteins Proteom 1869 (7), 140658. doi:10.1016/j.
bbapap.2021.140658

Gottschlich, A., Thomas, M., Grunmeier, R., Lesch, S., Rohrbacher, L., Igl, V., et al.
(2023). Single-cell transcriptomic atlas-guided development of CAR-T cells for the
treatment of acute myeloid leukemia. Nat. Biotechnol. 41 (11), 1618–1632. doi:10.1038/
s41587-023-01684-0

Gu, Y., Li, Z., Li, H., Yi, X., Liu, X., Zhang, Y., et al. (2024). Exploring the efficacious
constituents and underlying mechanisms of sini decoction for sepsis treatment through
network pharmacology and multi-omics. Phytomedicine 123, 155212. doi:10.1016/j.
phymed.2023.155212

Haage, V., Tuddenham, J. F., Comandante-Lou, N., Bautista, A., Monzel, A., Chiu, R.,
et al. (2024). A pharmacological toolkit for human microglia identifies Topoisomerase I
inhibitors as immunomodulators for Alzheimer’s disease. New York, NY: bioRxiv.

Hammond, T. R., Dufort, C., Dissing-Olesen, L., Giera, S., Young, A., Wysoker, A.,
et al. (2019). Single-cell RNA sequencing of microglia throughout the mouse lifespan
and in the injured brain reveals complex cell-state changes. Immunity 50 (1), 253–271.
doi:10.1016/j.immuni.2018.11.004

Han, X., Wang, R., Zhou, Y., Fei, L., Sun, H., Lai, S., et al. (2018). Mapping the mouse
cell atlas by microwell-seq. Cell 173 (5), 1307. doi:10.1016/j.cell.2018.05.012

Han, Y., Duan, X., Yang, L., Nilsson-Payant, B. E., Wang, P., Duan, F., et al. (2021).
Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature 589
(7841), 270–275. doi:10.1038/s41586-020-2901-9

Han, Y., Yang, L., Lacko, L. A., and Chen, S. (2022). Human organoid models to study
SARS-CoV-2 infection.Nat. Methods 19 (4), 418–428. doi:10.1038/s41592-022-01453-y

He, B. X. Y., Liang, H., Huang, Q., Du, Y., Li, Y., Garmire, D., et al. (2023). ASGARD is
A Single-cell guided pipeline to aid repurposing of drugs. Nat. Commun. 14 (1), 993.
doi:10.1038/s41467-023-36637-3

He, J., Xiong, X., Yang, H., Li, D., Liu, X., Li, S., et al. (2022). Defined tumor antigen-
specific T cells potentiate personalized TCR-T cell therapy and prediction of
immunotherapy response. Cell Res. 32 (6), 530–542. doi:10.1038/s41422-022-
00627-9

Hedman, A. K., Winter, E., Yoosuf, N., Benita, Y., Berg, L., Brynedal, B., et al. (2023).
Peripheral blood cellular dynamics of rheumatoid arthritis treatment informs about
efficacy of response to disease modifying drugs. Sci. Rep. 13 (1), 10058. doi:10.1038/
s41598-023-36999-0

Hsieh, C. Y., Wen, J. H., Lin, S. M., Tseng, T. Y., Huang, J. H., Huang, H. C., et al.
(2023). scDrug: from single-cell RNA-seq to drug response prediction. Comput. Struct.
Biotechnol. J. 21, 150–157. doi:10.1016/j.csbj.2022.11.055

Huang, D., Ma, N., Li, X., Gou, Y., Duan, Y., Liu, B., et al. (2023). Advances in single-
cell RNA sequencing and its applications in cancer research. J. Hematol. Oncol. 16 (1),
98. doi:10.1186/s13045-023-01494-6

Issa, N. T., Stathias, V., Schurer, S., and Dakshanamurthy, S. (2021). Machine and
deep learning approaches for cancer drug repurposing. Semin. Cancer Biol. 68, 132–142.
doi:10.1016/j.semcancer.2019.12.011

Jarada, T. N., Rokne, J. G., and Alhajj, R. (2020). A review of computational drug
repositioning: strategies, approaches, opportunities, challenges, and directions.
J. Cheminform 12 (1), 46. doi:10.1186/s13321-020-00450-7

Jia-yun, CHEN, Cheng-chao, X. U., and Ji-gang, WANG (2021). A new research
paradigm in modernization of traditional Chinese medicine: single cell pharmacology.
Acta Pharm. Sin. 56 (12), 3300–3312. doi:10.16438/j.0513-4870.2021-1010

Jing, C., Castro-Dopico, T., Richoz, N., Tuong, Z. K., Ferdinand, J. R., Lok, L. S. C.,
et al. (2020). Macrophage metabolic reprogramming presents a therapeutic target in
lupus nephritis. Proc. Natl. Acad. Sci. U. S. A. 117 (26), 15160–15171. doi:10.1073/pnas.
2000943117

Kim, M., Min, Y. K., Jang, J., Park, H., Lee, S., and Lee, C. H. (2021). Single-cell RNA
sequencing reveals distinct cellular factors for response to immunotherapy targeting
CD73 and PD-1 in colorectal cancer. J. Immunother. Cancer 9 (7), e002503. doi:10.1136/
jitc-2021-002503

Knoll, R., Bonaguro, L., Dos Santos, J. C., Warnat-Herresthal, S., Jacobs-Cleophas, M.
C. P., Blumel, E., et al. (2023). Identification of drug candidates targeting monocyte
reprogramming in people living with HIV. Front. Immunol. 14, 1275136. doi:10.3389/
fimmu.2023.1275136

Kuo, D., Ding, J., Cohn, I. S., Zhang, F., Wei, K., Rao, D. A., et al. (2019). HBEGF(+)
macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl. Med. 11
(491), eaau8587. doi:10.1126/scitranslmed.aau8587

Frontiers in Drug Discovery frontiersin.org16

Zhang et al. 10.3389/fddsv.2024.1459962

https://doi.org/10.1182/blood-2021-149701
https://doi.org/10.1182/blood-2021-149701
https://doi.org/10.1186/s12974-024-03037-3
https://doi.org/10.1186/s12974-024-03037-3
https://doi.org/10.1038/nrclinonc.2017.166
https://doi.org/10.1038/nrclinonc.2017.166
https://doi.org/10.3390/ph15101177
https://doi.org/10.1136/jitc-2022-004874
https://doi.org/10.1136/jitc-2022-004874
https://doi.org/10.1101/2023.10.20.563040
https://doi.org/10.1172/jci.insight.93009
https://doi.org/10.1038/s41590-023-01558-2
https://doi.org/10.1038/s41467-019-14256-1
https://doi.org/10.4255/mcpharmacol.13.09
https://doi.org/10.1038/s41467-024-45056-x
https://doi.org/10.3892/ol.2022.13632
https://doi.org/10.1016/j.omtn.2023.02.022
https://doi.org/10.1186/s13059-021-02406-y
https://doi.org/10.1016/j.celrep.2020.108263
https://doi.org/10.1016/j.celrep.2020.108263
https://doi.org/10.1016/j.nbd.2022.105655
https://doi.org/10.1038/s41591-019-0521-4
https://doi.org/10.1038/s41467-022-29358-6
https://doi.org/10.1038/s41467-023-39958-5
https://doi.org/10.1038/s41467-023-40156-6
https://doi.org/10.1038/s41467-023-40156-6
https://doi.org/10.1101/2023.06.03.543569
https://doi.org/10.1038/s41422-023-00909-w
https://doi.org/10.1038/s41422-023-00909-w
https://doi.org/10.1038/nmeth.4179
https://doi.org/10.1038/nature03566
https://doi.org/10.1016/j.bbapap.2021.140658
https://doi.org/10.1016/j.bbapap.2021.140658
https://doi.org/10.1038/s41587-023-01684-0
https://doi.org/10.1038/s41587-023-01684-0
https://doi.org/10.1016/j.phymed.2023.155212
https://doi.org/10.1016/j.phymed.2023.155212
https://doi.org/10.1016/j.immuni.2018.11.004
https://doi.org/10.1016/j.cell.2018.05.012
https://doi.org/10.1038/s41586-020-2901-9
https://doi.org/10.1038/s41592-022-01453-y
https://doi.org/10.1038/s41467-023-36637-3
https://doi.org/10.1038/s41422-022-00627-9
https://doi.org/10.1038/s41422-022-00627-9
https://doi.org/10.1038/s41598-023-36999-0
https://doi.org/10.1038/s41598-023-36999-0
https://doi.org/10.1016/j.csbj.2022.11.055
https://doi.org/10.1186/s13045-023-01494-6
https://doi.org/10.1016/j.semcancer.2019.12.011
https://doi.org/10.1186/s13321-020-00450-7
https://doi.org/10.16438/j.0513-4870.2021-1010
https://doi.org/10.1073/pnas.2000943117
https://doi.org/10.1073/pnas.2000943117
https://doi.org/10.1136/jitc-2021-002503
https://doi.org/10.1136/jitc-2021-002503
https://doi.org/10.3389/fimmu.2023.1275136
https://doi.org/10.3389/fimmu.2023.1275136
https://doi.org/10.1126/scitranslmed.aau8587
https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2024.1459962


Lambo, S., Trinh, D. L., Ries, R. E., Jin, D., Setiadi, A., Ng, M., et al. (2023). A
longitudinal single-cell atlas of treatment response in pediatric AML. Cancer Cell 41
(12), 2117–2135.e12. doi:10.1016/j.ccell.2023.10.008

Leon-Rivera, R., Morsey, B., Niu, M., Fox, H. S., and Berman, J. W. (2020).
Interactions of monocytes, HIV, and ART identified by an innovative scRNAseq
pipeline: pathways to reservoirs and HIV-associated comorbidities. mBio 11 (4).
doi:10.1128/mBio.01037-20

Li, C., Wood, J. C., Vu, A. H., Hamilton, J. P., Rodriguez Lopez, C. E., Payne,
R. M. E., et al. (2023). Single-cell multi-omics in the medicinal plant
Catharanthus roseus. Nat. Chem. Biol. 19 (8), 1031–1041. doi:10.1038/
s41589-023-01327-0

Li, J., Yang, Y., and Jiang, L. (2017). Cycloastragenol inhibits the proliferation of
colorectal cancer cells by regulating telomerase and p53. J. Cancer Res. Clin. Oncol. 143
(1), 11–19.

Li, L., and Wang, H. (2016). Heterogeneity of liver cancer and personalized therapy.
Cancer Lett. 379 (2), 191–197. doi:10.1016/j.canlet.2015.07.018

Li, L., Yan, S., Lin, B., Shi, Q., and Lu, Y. (2018a). Single-cell proteomics for cancer
immunotherapy. Adv. Cancer Res. 139, 185–207. doi:10.1016/bs.acr.2018.04.006

Li, Y., Gao, S., Guo, Z., Chen, Z., Wei, Y., Li, Y., et al. (2024). Screening of potential
drugs for the treatment of diabetic kidney disease using single-cell transcriptome
sequencing and connectivity map data. Biochem. Biophysical Res. Commun. 725,
150263. doi:10.1016/j.bbrc.2024.150263

Li, Y., Shen, X., Tang, X., and Cheng, X. (2018b). Antioxidant and cardioprotective
effects of tanshinone IIA in myocardial ischemia and reperfusion injury in rats.
J. Ethnopharmacol. 224, 217–226.

Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M. T., Wang, S., et al. (2016). Quercetin,
inflammation and immunity. Nutrients 8 (3), 167. doi:10.3390/nu8030167

Liang, Y., Tan, Y., Guan, B., Guo, B., Xia, M., Li, J., et al. (2022). Single-cell atlases link
macrophages and CD8(+) T-cell subpopulations to disease progression and
immunotherapy response in urothelial carcinoma. Theranostics 12 (18), 7745–7759.
doi:10.7150/thno.77281

Lin, J., Xue, X., Wang, Y., Zhou, Y., Wu, J., Xie, H., et al. (2023). scNanoCOOL-seq: a
long-read single-cell sequencing method for multi-omics profiling within individual
cells. Cell Res. 33 (11), 879–882. doi:10.1038/s41422-023-00873-5

Lindeman, S. D., Mukkamala, R., Horner, A., Tudi, P., Booth, O. C., Huff, R., et al.
(2023). Fibroblast activation protein-targeted radioligand therapy for treatment of solid
tumors. J. Nucl. Med. 64 (5), 759–766. doi:10.2967/jnumed.122.264494

Liu, T., Bai, M., Liu, M., Li, T., Liao, Y., Zhao, C., et al. (2023). Novel synergistic
mechanism of 11-keto-β-boswellic acid and Z-Guggulsterone on ischemic stroke
revealed by single-cell transcriptomics. Pharmacol. Res. 193, 106803. doi:10.1016/j.
phrs.2023.106803

Liu, W., Venugopal, S., Majid, S., Ahn, I. S., Diamante, G., Hong, J., et al. (2020).
Single-cell RNA-seq analysis of the brainstem of mutant SOD1 mice reveals perturbed
cell types and pathways of amyotrophic lateral sclerosis. Neurobiol. Dis. 141, 104877.
doi:10.1016/j.nbd.2020.104877

Lotfollahi, M., Wolf, F. A., and Theis, F. J. (2019). scGen predicts single-cell
perturbation responses. Nat. Methods 16 (8), 715–721. doi:10.1038/s41592-019-
0494-8

Lu, T., Ang, C. E., and Zhuang, X. (2023). Spatially resolved epigenomic profiling of
single cells in complex tissues. Cell 186 (10), 2275–2279. doi:10.1016/j.cell.2023.
04.006

Ma, L., Wang, L., Khatib, S. A., Chang, C. W., Heinrich, S., Dominguez, D. A., et al.
(2021). Single-cell atlas of tumor cell evolution in response to therapy in hepatocellular
carcinoma and intrahepatic cholangiocarcinoma. J. Hepatol. 75 (6), 1397–1408. doi:10.
1016/j.jhep.2021.06.028

Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman,M., et al. (2015).
Highly parallel genome-wide expression profiling of individual cells using nanoliter
droplets. Cell 161 (5), 1202–1214. doi:10.1016/j.cell.2015.05.002

Maeser, D., Gruener, R. F., and Huang, R. S. (2021). oncoPredict: an R package for
predicting in vivo or cancer patient drug response and biomarkers from cell line
screening data. Brief. Bioinform 22 (6), bbab260. doi:10.1093/bib/bbab260

Maeser, D., Zhang, W., Huang, Y., and Huang, R. S. (2024). A review of
computational methods for predicting cancer drug response at the single-cell level
through integration with bulk RNAseq data. Curr. Opin. Struct. Biol. 84, 102745. doi:10.
1016/j.sbi.2023.102745

Mathys, H., Adaikkan, C., Gao, F., Young, J. Z., Manet, E., Hemberg, M., et al. (2017).
Temporal tracking of microglia activation in neurodegeneration at single-cell
resolution. Cell Rep. 21 (2), 366–380. doi:10.1016/j.celrep.2017.09.039

Mathys, H., Davila-Velderrain, J., Peng, Z., Gao, F., Mohammadi, S., Young, J. Z., et al.
(2019). Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570 (7761),
332–337. doi:10.1038/s41586-019-1195-2

Mathys, H., Peng, Z., Boix, C. A., Victor, M. B., Leary, N., Babu, S., et al. (2023). Single-
cell atlas reveals correlates of high cognitive function, dementia, and resilience to
Alzheimer’s disease pathology. Cell 186 (20), 4365–4385.e27. doi:10.1016/j.cell.2023.
08.039

Meijer, J. J., Leonetti, A., Airo, G., Tiseo, M., Rolfo, C., Giovannetti, E., et al. (2022).
Small cell lung cancer: novel treatments beyond immunotherapy. Semin. Cancer Biol. 86
(Pt 2), 376–385. doi:10.1016/j.semcancer.2022.05.004

Meshnick, S. R. (2002). Artemisinin: mechanisms of action, resistance and toxicity.
Int. J. Parasitol. 32 (13), 1655–1660. doi:10.1016/s0020-7519(02)00194-7

Min, Y., Wang, X., Is, O., Patel, T. A., Gao, J., Reddy, J. S., et al. (2023). Cross species
systems biology discovers glial DDR2, STOM, and KANK2 as therapeutic targets in
progressive supranuclear palsy. Nat. Commun. 14 (1), 6801. doi:10.1038/s41467-023-
42626-3

Mitra-Kaushik, S., Mehta-Damani, A., Stewart, J. J., Green, C., Litwin, V., and
Gonneau, C. (2021). The evolution of single-cell analysis and utility in drug
development. AAPS J. 23 (5), 98. doi:10.1208/s12248-021-00633-6

Mund, A., Coscia, F., Kriston, A., Hollandi, R., Kovacs, F., Brunner, A. D., et al. (2022).
Deep Visual Proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol.
40 (8), 1231–1240. doi:10.1038/s41587-022-01302-5

Musa, A., Tripathi, S., Dehmer, M., and Emmert-Streib, F. (2019). L1000 viewer: a
search engine and web interface for the LINCS data repository. Front. Genet. 10, 557.
doi:10.3389/fgene.2019.00557

Nagano, T., Lubling, Y., Stevens, T. J., Schoenfelder, S., Yaffe, E., Dean, W., et al.
(2013). Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature
502 (7469), 59–64. doi:10.1038/nature12593

Nassar, S. F., Raddassi, K., andWu, T. (2021). Single-cell multiomics analysis for drug
discovery. Metabolites 11 (11), 729. doi:10.3390/metabo11110729

Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011).
Tumour evolution inferred by single-cell sequencing. Nature 472 (7341), 90–94. doi:10.
1038/nature09807

Nehar-Belaid, D., Hong, S., Marches, R., Chen, G., Bolisetty, M., Baisch, J., et al.
(2020). Mapping systemic lupus erythematosus heterogeneity at the single-cell level.
Nat. Immunol. 21 (9), 1094–1106. doi:10.1038/s41590-020-0743-0

Ostkamp, P., Deffner, M., Schulte-Mecklenbeck, A., Wunsch, C., Lu, I. N., Wu, G. F.,
et al. (2022). A single-cell analysis framework allows for characterization of CSF
leukocytes and their tissue of origin in multiple sclerosis. Sci. Transl. Med. 14 (673),
eadc9778. doi:10.1126/scitranslmed.adc9778

Oubounyt, M., Adlung, L., Patroni, F., Wenke, N. K., Maier, A., Hartung, M., et al.
(2023). Inference of differential key regulatory networks and mechanistic drug
repurposing candidates from scRNA-seq data with SCANet. Bioinformatics 39 (11).
doi:10.1093/bioinformatics/btad644

Panche, A. N., Diwan, A. D., and Chandra, S. R. (2016). Flavonoids: an overview.
J. Nutr. Sci. 5, e47. doi:10.1017/jns.2016.41

Partin, A., Brettin, T. S., Zhu, Y., Narykov, O., Clyde, A., Overbeek, J., et al. (2023).
Deep learning methods for drug response prediction in cancer: predominant and
emerging trends. Front. Med. (Lausanne) 10, 1086097. doi:10.3389/fmed.2023.
1086097

Parvathaneni, V., Kulkarni, N. S., Muth, A., and Gupta, V. (2019). Drug repurposing:
a promising tool to accelerate the drug discovery process. Drug Discov. Today 24 (10),
2076–2085. doi:10.1016/j.drudis.2019.06.014

Picelli, S., Faridani, O. R., Bjorklund, A. K., Winberg, G., Sagasser, S., and Sandberg, R.
(2014). Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9 (1),
171–181. doi:10.1038/nprot.2014.006

Pushparaj, P. N., Kalamegam, G., Wali Sait, K. H., and Rasool, M. (2021). Decoding
the role of astrocytes in the entorhinal cortex in Alzheimer’s disease using high-
dimensional single-nucleus RNA sequencing data and next-generation knowledge
discovery methodologies: focus on drugs and natural product remedies for
dementia. Front. Pharmacol. 12, 720170. doi:10.3389/fphar.2021.720170

Qu, J., Yang, F., Zhu, T., Wang, Y., Fang, W., Ding, Y., et al. (2022). A reference single-
cell regulomic and transcriptomic map of cynomolgus monkeys. Nat. Commun. 13 (1),
4069. doi:10.1038/s41467-022-31770-x

Randic, T., Magni, S., Philippidou, D., Margue, C., Grzyb, K., Preis, J. R., et al. (2023).
Single-cell transcriptomics of NRAS-mutated melanoma transitioning to drug
resistance reveals P2RX7 as an indicator of early drug response. Cell Rep. 42 (7),
112696. doi:10.1016/j.celrep.2023.112696

Rao, A. V. S. M. K., and Sung, M. K. (1995). Saponins as anticarcinogens. J. Nutr. 125,
717S-724S–24. doi:10.1093/jn/125.3_Suppl.717S

Rodriques, S. G., Stickels, R. R., Goeva, A., Martin, C. A., Murray, E., Vanderburg,
C. R., et al. (2019). Slide-seq: a scalable technology for measuring genome-wide
expression at high spatial resolution. Science 363 (6434), 1463–1467. doi:10.1126/
science.aaw1219

Roessler, H. I., Knoers, N., van Haelst, M. M., and van Haaften, G. (2021). Drug
repurposing for rare diseases. Trends Pharmacol. Sci. 42 (4), 255–267. doi:10.1016/j.tips.
2021.01.003

Ronnblom, L., and Leonard, D. (2019). Interferon pathway in SLE: one key to
unlocking the mystery of the disease. Lupus Sci. Med. 6 (1), e000270. doi:10.1136/lupus-
2018-000270

Roostaei, T., Nazeri, A., Felsky, D., De Jager, P. L., Schneider, J. A., Pollock, B. G., et al.
(2017). Genome-wide interaction study of brain beta-amyloid burden and cognitive

Frontiers in Drug Discovery frontiersin.org17

Zhang et al. 10.3389/fddsv.2024.1459962

https://doi.org/10.1016/j.ccell.2023.10.008
https://doi.org/10.1128/mBio.01037-20
https://doi.org/10.1038/s41589-023-01327-0
https://doi.org/10.1038/s41589-023-01327-0
https://doi.org/10.1016/j.canlet.2015.07.018
https://doi.org/10.1016/bs.acr.2018.04.006
https://doi.org/10.1016/j.bbrc.2024.150263
https://doi.org/10.3390/nu8030167
https://doi.org/10.7150/thno.77281
https://doi.org/10.1038/s41422-023-00873-5
https://doi.org/10.2967/jnumed.122.264494
https://doi.org/10.1016/j.phrs.2023.106803
https://doi.org/10.1016/j.phrs.2023.106803
https://doi.org/10.1016/j.nbd.2020.104877
https://doi.org/10.1038/s41592-019-0494-8
https://doi.org/10.1038/s41592-019-0494-8
https://doi.org/10.1016/j.cell.2023.04.006
https://doi.org/10.1016/j.cell.2023.04.006
https://doi.org/10.1016/j.jhep.2021.06.028
https://doi.org/10.1016/j.jhep.2021.06.028
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1093/bib/bbab260
https://doi.org/10.1016/j.sbi.2023.102745
https://doi.org/10.1016/j.sbi.2023.102745
https://doi.org/10.1016/j.celrep.2017.09.039
https://doi.org/10.1038/s41586-019-1195-2
https://doi.org/10.1016/j.cell.2023.08.039
https://doi.org/10.1016/j.cell.2023.08.039
https://doi.org/10.1016/j.semcancer.2022.05.004
https://doi.org/10.1016/s0020-7519(02)00194-7
https://doi.org/10.1038/s41467-023-42626-3
https://doi.org/10.1038/s41467-023-42626-3
https://doi.org/10.1208/s12248-021-00633-6
https://doi.org/10.1038/s41587-022-01302-5
https://doi.org/10.3389/fgene.2019.00557
https://doi.org/10.1038/nature12593
https://doi.org/10.3390/metabo11110729
https://doi.org/10.1038/nature09807
https://doi.org/10.1038/nature09807
https://doi.org/10.1038/s41590-020-0743-0
https://doi.org/10.1126/scitranslmed.adc9778
https://doi.org/10.1093/bioinformatics/btad644
https://doi.org/10.1017/jns.2016.41
https://doi.org/10.3389/fmed.2023.1086097
https://doi.org/10.3389/fmed.2023.1086097
https://doi.org/10.1016/j.drudis.2019.06.014
https://doi.org/10.1038/nprot.2014.006
https://doi.org/10.3389/fphar.2021.720170
https://doi.org/10.1038/s41467-022-31770-x
https://doi.org/10.1016/j.celrep.2023.112696
https://doi.org/10.1093/jn/125.3_Suppl.717S
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1016/j.tips.2021.01.003
https://doi.org/10.1016/j.tips.2021.01.003
https://doi.org/10.1136/lupus-2018-000270
https://doi.org/10.1136/lupus-2018-000270
https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2024.1459962


impairment in Alzheimer’s disease. Mol. Psychiatry 22 (2), 287–295. doi:10.1038/mp.
2016.35

Rotem, A., Ram, O., Shoresh, N., Sperling, R. A., Goren, A., Weitz, D. A., et al. (2015).
Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat.
Biotechnol. 33 (11), 1165–1172. doi:10.1038/nbt.3383

Ruan, Q., Ruan, W., Lin, X., Wang, Y., Zou, F., Zhou, L., et al. (2020). Digital-WGS:
automated, highly efficient whole-genome sequencing of single cells by digital
microfluidics. Sci. Adv. 6 (50), eabd6454. doi:10.1126/sciadv.abd6454

Ruiz-Cordero, R., and Devine, W. P. (2020). Targeted therapy and checkpoint
immunotherapy in lung cancer. Surg. Pathol. Clin. 13 (1), 17–33. doi:10.1016/j.path.
2019.11.002

Salcher, S., Sturm, G., Horvath, L., Untergasser, G., Kuempers, C., Fotakis, G., et al.
(2022). High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident
neutrophils in non-small cell lung cancer. Cancer Cell 40 (12), 1503–1520.e8. doi:10.
1016/j.ccell.2022.10.008

Sarkar, C., Das, B., Rawat, V. S., Wahlang, J. B., Nongpiur, A., Tiewsoh, I., et al.
(2023). Artificial intelligence and machine learning technology driven modern
drug discovery and development. Int. J. Mol. Sci. 24 (3), 2026. doi:10.3390/
ijms24032026

Saviano, A., Henderson, N. C., and Baumert, T. F. (2020). Single-cell genomics and
spatial transcriptomics: discovery of novel cell states and cellular interactions in liver
physiology and disease biology. J. Hepatol. 73 (5), 1219–1230. doi:10.1016/j.jhep.2020.
06.004

Saxena, M., and Bhardwaj, N. (2017). Turbocharging vaccines: emerging adjuvants
for dendritic cell based therapeutic cancer vaccines. Curr. Opin. Immunol. 47, 35–43.
doi:10.1016/j.coi.2017.06.003

Schafer, S., Smelik, M., Sysoev, O., Zhao, Y., Eklund, D., Lilja, S., et al. (2024).
scDrugPrio: a framework for the analysis of single-cell transcriptomics to address
multiple problems in precision medicine in immune-mediated inflammatory diseases.
Genome Med. 16 (1), 42. doi:10.1186/s13073-024-01314-7

Seyedsadr, M., Wang, Y., Elzoheiry, M., Shree Gopal, S., Jang, S., Duran, G., et al.
(2023). IL-11 induces NLRP3 inflammasome activation in monocytes and
inflammatory cell migration to the central nervous system. Proc. Natl. Acad. Sci. U.
S. A. 120 (26), e2221007120. doi:10.1073/pnas.2221007120

Shah, S., Takei, Y., Zhou, W., Lubeck, E., Yun, J., Eng, C. L., et al. (2018). Dynamics
and spatial genomics of the nascent transcriptome by intron seqFISH. Cell. 174 (2),
363–376. doi:10.1016/j.cell.2018.05.035

Shaker, B., Ahmad, S., Lee, J., Jung, C., and Na, D. (2021). In silicomethods and tools
for drug discovery. Comput. Biol. Med. 137, 104851. doi:10.1016/j.compbiomed.2021.
104851

Shang, L., Wang, Y., Li, J., Zhou, F., Xiao, K., Liu, Y., et al. (2023). Mechanism of
Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology
and experimental validation. J. Ethnopharmacol. 302 (Pt A), 115876. doi:10.1016/j.jep.
2022.115876

Shaojie, Q. D. M., Zhang, X., Zhang, Yi, and Bai, Yu (2023). Methods developments of
mass spectrometry based single cell metabolomics. TrAC Trends Anal. Chem. 164,
117086. doi:10.1016/j.trac.2023.117086

Shen, K., Chen, B., and Gao, W. (2023). Integrated single-cell RNA sequencing
analysis reveals a mesenchymal stem cell-associated signature for estimating prognosis
and drug sensitivity in gastric cancer. J. cancer Res. Clin. Oncol. 149 (13), 11829–11847.
doi:10.1007/s00432-023-05058-6

Shen, K., Reichelt, M., Kyauk, R. V., Ngu, H., Shen, Y. A., Foreman, O., et al. (2021).
Multiple sclerosis risk gene Mertk is required for microglial activation and subsequent
remyelination. Cell Rep. 34 (10), 108835. doi:10.1016/j.celrep.2021.108835

Shi, H., He, Y., Zhou, Y., Huang, J., Maher, K., Wang, B., et al. (2023). Spatial atlas of
the mouse central nervous system at molecular resolution. Nature 622 (7983), 552–561.
doi:10.1038/s41586-023-06569-5

Shirai, T., Nakai, A., Ando, E., Fujimoto, J., Leach, S., Arimori, T., et al. (2023).
Celastrol suppresses humoral immune responses and autoimmunity by targeting the
COMMD3/8 complex. Sci. Immunol. 8 (81), eadc9324. doi:10.1126/sciimmunol.
adc9324

Singh, D. K., Aladyeva, E., Das, S., Singh, B., Esaulova, E., Swain, A., et al. (2022).
Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. Nat.
Commun. 13 (1), 679. doi:10.1038/s41467-022-28315-7

Skinner, D. D., Syage, A. R., Olivarria, G. M., Stone, C., Hoglin, B., and Lane, T. E.
(2022). Sustained infiltration of neutrophils into the CNS results in increased
demyelination in a viral-induced model of multiple sclerosis. Front. Immunol. 13,
931388. doi:10.3389/fimmu.2022.931388

Son, Y., Korenfeld, D., Harvey, B., Wang, J., Suarez-Fueyo, A., Chang, D., et al. (2023).
Pos1025 combination of bulk and single cell rnaseq analyses to reveal mechanisms of
abt-317 (jak inhibitor) on synovial fibroblasts. United Kingdom: BMJ Publishing
Group Ltd.

Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopadhyay,
P. K., Swerdlow, H., et al. (2017). Simultaneous epitope and transcriptomemeasurement
in single cells. Nat. Methods 14 (9), 865–868. doi:10.1038/nmeth.4380

Su, Y., Chen, D., Yuan, D., Lausted, C., Choi, J., Dai, C. L., et al. (2020). Multi-omics
resolves a sharp disease-state shift between mild and moderate COVID-19. Cell 183 (6),
1479–1495.e20. doi:10.1016/j.cell.2020.10.037

Sun, H. X., Xie, Y., and Ye, Y. P. (2009). Advances in saponin-based adjuvants.
Vaccine 27 (12), 1787–1796. doi:10.1016/j.vaccine.2009.01.091

Sun, K., Xu, R., Ma, F., Yang, N., Li, Y., Sun, X., et al. (2022). scRNA-seq of gastric
tumor shows complex intercellular interaction with an alternative T cell exhaustion
trajectory. Nat. Commun. 13 (1), 4943. doi:10.1038/s41467-022-32627-z

Sun, Y., and Tang, Z. (2014). Tanshinone IIA inhibits cardiac remodeling induced by
acute myocardial infarction through TGF-β1/Smad3 pathway inhibition. J. Pharmacol.
Sci. 126 (4), 350–358.

Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., et al. (2009). mRNA-
Seq whole-transcriptome analysis of a single cell. Nat. Methods 6 (5), 377–382. doi:10.
1038/nmeth.1315

Tang, Y., Sun, Z., Wu, S., Zhang, C., Zhang, Y., and Cao, Y. (2023b). Jin-Fu-An
decoction manipulation of macrophage polarization via β-catenin (CTNNB1)
synergizes with cisplatin in lung cancer. Biomed. Pharmacother. 168, 115828. doi:10.
1016/j.biopha.2023.115828

Tang, Z., Liu, X., Li, Z., Zhang, T., Yang, B., Su, J., et al. (2023a). SpaRx: elucidate
single-cell spatial heterogeneity of drug responses for personalized treatment. Brief.
Bioinform 24 (6), bbad338. doi:10.1093/bib/bbad338

Tang, Z., Yu, Y., Ng, K., Sow, D., Hu, J., andMei, J. (2021). Disease network delineates
the disease progression profile of cardiovascular diseases. J. Biomed. Inf. 115, 103686.
doi:10.1016/j.jbi.2021.103686

Theodoris, C. V., Xiao, L., Chopra, A., Chaffin, M. D., Al Sayed, Z. R., Hill, M. C., et al.
(2023). Transfer learning enables predictions in network biology. Nature 618 (7965),
616–624. doi:10.1038/s41586-023-06139-9

Trzupek, D., Lee, M., Hamey, F., Wicker, L. S., Todd, J. A., and Ferreira, R. C. (2021).
Single-cell multi-omics analysis reveals IFN-driven alterations in T lymphocytes and
natural killer cells in systemic lupus erythematosus. Wellcome Open Res. 6, 149. doi:10.
12688/wellcomeopenres.16883.2

Vandereyken, K., Sifrim, A., Thienpont, B., and Voet, T. (2023). Methods and
applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24 (8),
494–515. doi:10.1038/s41576-023-00580-2

Van de Sande, B., Lee, J. S., Mutasa-Gottgens, E., Naughton, B., Bacon, W., Manning,
J., et al. (2023). Applications of single-cell RNA sequencing in drug discovery and
development. Nat. Rev. Drug Discov. 22 (6), 496–520. doi:10.1038/s41573-023-00688-4

Vasan, N., Baselga, J., and Hyman, D. M. (2019). A view on drug resistance in cancer.
Nature 575 (7782), 299–309. doi:10.1038/s41586-019-1730-1

Vemula, D., Jayasurya, P., Sushmitha, V., Kumar, Y. N., and Bhandari, V. (2023).
CADD, AI and ML in drug discovery: a comprehensive review. Eur. J. Pharm. Sci. 181,
106324. doi:10.1016/j.ejps.2022.106324

Wagner, J., Rapsomaniki, M. A., Chevrier, S., Anzeneder, T., Langwieder, C., Dykgers,
A., et al. (2019). A single-cell atlas of the tumor and immune ecosystem of human breast
cancer. Cell 177 (5), 1330–1345. doi:10.1016/j.cell.2019.03.005

Wang, C., Huyan, T., Zhou, X., Zhang, X., Duan, S., Gao, S., et al. (2022a).
Development of single-cell transcriptomics and its application in COVID-19.
Viruses 14 (10), 2271. doi:10.3390/v14102271

Wang, H. N., Yang, J., Xie, D. H., Liang, Z., Wang, Y., Fu, R. Y., et al. (2021b). Single-
cell RNA sequencing infers the role of malignant cells in drug-resistant multiple
myeloma. Clin. Transl. Med. 11 (12), e653. doi:10.1002/ctm2.653

Wang, L., Mo, S., Li, X., He, Y., and Yang, J. (2020). Single-cell RNA-seq reveals the
immune escape and drug resistance mechanisms of mantle cell lymphoma. Cancer Biol.
Med. 17 (3), 726–739. doi:10.20892/j.issn.2095-3941.2020.0073

Wang, P., Jin, X., Zhou, W., Luo, M., Xu, Z., Xu, C., et al. (2021a). Comprehensive
analysis of TCR repertoire in COVID-19 using single cell sequencing. Genomics 113 (2),
456–462. doi:10.1016/j.ygeno.2020.12.036

Wang, Y., Chen, X., Tang, N., Guo, M., and Ai, D. (2024b). Boosting clear cell renal
carcinoma-specific drug discovery using a deep learning algorithm and single-cell
analysis. Int. J. Mol. Sci. 25 (7), 4134. doi:10.3390/ijms25074134

Wang, Y., Chen, Y., Gao, J., Xie, H., Guo, Y., Yang, J., et al. (2024a). Mapping
crossover events of mouse meiotic recombination by restriction fragment ligation-based
Refresh-seq. Cell Discov. 10 (1), 26. doi:10.1038/s41421-023-00638-9

Wang, Y., Han, X., and Jiang, C. (2019). Cycloastragenol inhibits metastasis and
invasion in human colorectal cancer cells via the inhibition of the Wnt/β-catenin
pathway. Oncol. Rep. 41 (1), 274–282.

Wang, Y., Wang, X., Luu, L. D. W., Li, J., Cui, X., Yao, H., et al. (2022b). Single-cell
transcriptomic atlas reveals distinct immunological responses between COVID-19
vaccine and natural SARS-CoV-2 infection. J. Med. Virol. 94 (11), 5304–5324.
doi:10.1002/jmv.28012

Wilk, A. J., Rustagi, A., Zhao, N. Q., Roque, J., Martinez-Colon, G. J., McKechnie,
J. L., et al. (2020). A single-cell atlas of the peripheral immune response in patients
with severe COVID-19. Nat. Med. 26 (7), 1070–1076. doi:10.1038/s41591-020-
0944-y

Frontiers in Drug Discovery frontiersin.org18

Zhang et al. 10.3389/fddsv.2024.1459962

https://doi.org/10.1038/mp.2016.35
https://doi.org/10.1038/mp.2016.35
https://doi.org/10.1038/nbt.3383
https://doi.org/10.1126/sciadv.abd6454
https://doi.org/10.1016/j.path.2019.11.002
https://doi.org/10.1016/j.path.2019.11.002
https://doi.org/10.1016/j.ccell.2022.10.008
https://doi.org/10.1016/j.ccell.2022.10.008
https://doi.org/10.3390/ijms24032026
https://doi.org/10.3390/ijms24032026
https://doi.org/10.1016/j.jhep.2020.06.004
https://doi.org/10.1016/j.jhep.2020.06.004
https://doi.org/10.1016/j.coi.2017.06.003
https://doi.org/10.1186/s13073-024-01314-7
https://doi.org/10.1073/pnas.2221007120
https://doi.org/10.1016/j.cell.2018.05.035
https://doi.org/10.1016/j.compbiomed.2021.104851
https://doi.org/10.1016/j.compbiomed.2021.104851
https://doi.org/10.1016/j.jep.2022.115876
https://doi.org/10.1016/j.jep.2022.115876
https://doi.org/10.1016/j.trac.2023.117086
https://doi.org/10.1007/s00432-023-05058-6
https://doi.org/10.1016/j.celrep.2021.108835
https://doi.org/10.1038/s41586-023-06569-5
https://doi.org/10.1126/sciimmunol.adc9324
https://doi.org/10.1126/sciimmunol.adc9324
https://doi.org/10.1038/s41467-022-28315-7
https://doi.org/10.3389/fimmu.2022.931388
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1016/j.cell.2020.10.037
https://doi.org/10.1016/j.vaccine.2009.01.091
https://doi.org/10.1038/s41467-022-32627-z
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1038/nmeth.1315
https://doi.org/10.1016/j.biopha.2023.115828
https://doi.org/10.1016/j.biopha.2023.115828
https://doi.org/10.1093/bib/bbad338
https://doi.org/10.1016/j.jbi.2021.103686
https://doi.org/10.1038/s41586-023-06139-9
https://doi.org/10.12688/wellcomeopenres.16883.2
https://doi.org/10.12688/wellcomeopenres.16883.2
https://doi.org/10.1038/s41576-023-00580-2
https://doi.org/10.1038/s41573-023-00688-4
https://doi.org/10.1038/s41586-019-1730-1
https://doi.org/10.1016/j.ejps.2022.106324
https://doi.org/10.1016/j.cell.2019.03.005
https://doi.org/10.3390/v14102271
https://doi.org/10.1002/ctm2.653
https://doi.org/10.20892/j.issn.2095-3941.2020.0073
https://doi.org/10.1016/j.ygeno.2020.12.036
https://doi.org/10.3390/ijms25074134
https://doi.org/10.1038/s41421-023-00638-9
https://doi.org/10.1002/jmv.28012
https://doi.org/10.1038/s41591-020-0944-y
https://doi.org/10.1038/s41591-020-0944-y
https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2024.1459962


Wu, H., Gonzalez Villalobos, R., Yao, X., Reilly, D., Chen, T., Rankin, M., et al. (2022).
Mapping the single-cell transcriptomic response of murine diabetic kidney disease to
therapies. Cell Metab. 34 (7), 1064–1078.e6. doi:10.1016/j.cmet.2022.05.010

Wu, H., Guo, C., Wang, C., Xu, J., Zheng, S., Duan, J., et al. (2023). Single-cell RNA
sequencing reveals tumor heterogeneity, microenvironment, and drug-resistance
mechanisms of recurrent glioblastoma. Cancer Sci. 114 (6), 2609–2621. doi:10.1111/
cas.15773

Wu, Z., Lawrence, P. J., Ma, A., Zhu, J., Xu, D., and Ma, Q. (2020). Single-cell
techniques and deep learning in predicting drug response. Trends Pharmacol. Sci. 41
(12), 1050–1065. doi:10.1016/j.tips.2020.10.004

Xu, G., Qi, F., Li, H., Yang, Q., Wang, H., Wang, X., et al. (2020). The differential
immune responses to COVID-19 in peripheral and lung revealed by single-cell RNA
sequencing. Cell Discov. 6, 73. doi:10.1038/s41421-020-00225-2

Xu, S., and Liu, P. (2013). Tanshinone II-A: new perspectives for old remedies. Expert
Opin. Ther. Pat. 23 (2), 149–153. doi:10.1517/13543776.2013.743995

Yang, B., Hu, S., Jiang, Y., Xu, L., Shu, S., and Zhang, H. (2024). Advancements in
single-cell RNA sequencing research for neurological diseases. Mol. Neurobiol. doi:10.
1007/s12035-024-04126-3

Yang, P. H., Jin, L. J., Liao, J., Shao, X., Cheng, J. Y., Li, L., et al. (2022). Modern research
on Chinese medicine based on single-cell omics: technologies and strategies. Zhongguo
Zhong Yao Za Zhi 47 (15), 3977–3985. doi:10.19540/j.cnki.cjcmm.20220601.702

Yang, Z., Zhang, Q., Yu, L., Zhu, J., Cao, Y., and Gao, X. (2021). The signaling
pathways and targets of traditional Chinese medicine and natural medicine in triple-
negative breast cancer. J. Ethnopharmacol. 264, 113249. doi:10.1016/j.jep.2020.113249

Yin, T., and D’Adamio, L. (2023). BRI2-mediated regulation of TREM2 processing in
microglia and its potential implications for Alzheimer’s disease and related dementias.
bioRxiv. doi:10.1101/2023.06.14.544924

Zeng, H., Huang, J., Ren, J., Wang, C. K., Tang, Z., Zhou, H., et al. (2023b). Spatially
resolved single-cell translatomics at molecular resolution. Science 380 (6652), eadd3067.
doi:10.1126/science.add3067

Zeng, Q., Mousa, M., Nadukkandy, A. S., Franssens, L., Alnaqbi, H., Alshamsi, F. Y.,
et al. (2023a). Understanding tumour endothelial cell heterogeneity and function from
single-cell omics. Nat. Rev. Cancer 23 (8), 544–564. doi:10.1038/s41568-023-00591-5

Zhang, F., Wei, K., Slowikowski, K., Fonseka, C. Y., Rao, D. A., Kelly, S., et al. (2019).
Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by
integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20 (7),
928–942. doi:10.1038/s41590-019-0378-1

Zhang, L., Zhang, Y., Wang, C., Yang, Y., Ni, Y., Wang, Z., et al. (2022a). Integrated
single-cell RNA sequencing analysis reveals distinct cellular and transcriptional

modules associated with survival in lung cancer. Signal Transduct. Target Ther. 7
(1), 9. doi:10.1038/s41392-021-00824-9

Zhang, M., Eichhorn, S. W., Zingg, B., Yao, Z., Cotter, K., Zeng, H., et al. (2021).
Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature
598 (7879), 137–143. doi:10.1038/s41586-021-03705-x

Zhang,W., Maeser, D., Lee, A., Huang, Y., Gruener, R. F., Abdelbar, I. G., et al. (2023).
Inferring therapeutic vulnerability within tumors through integration of pan-cancer cell
line and single-cell transcriptomic profiles. bioRxiv. doi:10.1101/2023.10.29.564598

Zhang, X., Chen, H., Huang, X., Xu, H., Li, Y., Yuan, H., et al. (2022b). Single-cell
transcriptomics profiling the compatibility mechanism of As(2)O(3)-indigo naturalis
formula based on bone marrow stroma cells. Biomed. Pharmacother. 151, 113182.
doi:10.1016/j.biopha.2022.113182

Zhang, Y., Huang, X., Yu, M., Zhang, M., Zhao, L., Yan, Y., et al. (2024). The integrate
profiling of single-cell and spatial transcriptome RNA-seq reveals tumor heterogeneity,
therapeutic targets, and prognostic subtypes in ccRCC. Cancer Gene Ther. 31, 917–932.
doi:10.1038/s41417-024-00755-x

Zhao, Q., Zheng, Y., Zhao, D., Zhao, L., Geng, L., Ma, S., et al. (2023). Single-cell
profiling reveals a potent role of quercetin in promoting hair regeneration. Protein Cell
14 (6), 398–415. doi:10.1093/procel/pwac062

Zhao, X. N., You, Y., Cui, X. M., Gao, H. X., Wang, G. L., Zhang, S. B., et al. (2021).
Single-cell immune profiling reveals distinct immune response in asymptomatic
COVID-19 patients. Signal Transduct. Target Ther. 6 (1), 342. doi:10.1038/s41392-
021-00753-7

Zheng, F., Xu, H., Zhang, C., Hong, X., Liu, D., Tang, D., et al. (2021b). Immune cell
and TCR/BCR repertoire profiling in systemic lupus erythematosus patients by single-
cell sequencing. Aging (Albany NY) 13 (21), 24432–24448. doi:10.18632/aging.203695

Zheng, L., Qin, S., Si, W., Wang, A., Xing, B., Gao, R., et al. (2021a). Pan-cancer single-
cell landscape of tumor-infiltrating T cells. Science 374 (6574), abe6474. doi:10.1126/
science.abe6474

Zheng, Z., Chen, J., Chen, X., Huang, L., Xie, W., Lin, Q., et al. (2023). Enabling single-
cell drug response annotations from bulk RNA-seq using SCAD. Adv. Sci. (Weinh) 10
(11), e2204113. doi:10.1002/advs.202204113

Zhu, W., Huang, J., Wu, J., Wu, C., Ye, F., Li, X., et al. (2023a). Inflammation-related
signature for prognostic prediction, tumor immune, genomic heterogeneity, and drug
choices in prostate cancer: integrated analysis of bulk and single-cell RNA-sequencing.
Heliyon 9 (11), e21174. doi:10.1016/j.heliyon.2023.e21174

Zhu, W., Zeng, H., Huang, J., Wu, J., Wang, Y., Wang, Z., et al. (2023b). Integrated
machine learning identifies epithelial cell marker genes for improving outcomes and
immunotherapy in prostate cancer. J. Transl. Med. 21 (1), 782. doi:10.1186/s12967-023-
04633-2

Frontiers in Drug Discovery frontiersin.org19

Zhang et al. 10.3389/fddsv.2024.1459962

https://doi.org/10.1016/j.cmet.2022.05.010
https://doi.org/10.1111/cas.15773
https://doi.org/10.1111/cas.15773
https://doi.org/10.1016/j.tips.2020.10.004
https://doi.org/10.1038/s41421-020-00225-2
https://doi.org/10.1517/13543776.2013.743995
https://doi.org/10.1007/s12035-024-04126-3
https://doi.org/10.1007/s12035-024-04126-3
https://doi.org/10.19540/j.cnki.cjcmm.20220601.702
https://doi.org/10.1016/j.jep.2020.113249
https://doi.org/10.1101/2023.06.14.544924
https://doi.org/10.1126/science.add3067
https://doi.org/10.1038/s41568-023-00591-5
https://doi.org/10.1038/s41590-019-0378-1
https://doi.org/10.1038/s41392-021-00824-9
https://doi.org/10.1038/s41586-021-03705-x
https://doi.org/10.1101/2023.10.29.564598
https://doi.org/10.1016/j.biopha.2022.113182
https://doi.org/10.1038/s41417-024-00755-x
https://doi.org/10.1093/procel/pwac062
https://doi.org/10.1038/s41392-021-00753-7
https://doi.org/10.1038/s41392-021-00753-7
https://doi.org/10.18632/aging.203695
https://doi.org/10.1126/science.abe6474
https://doi.org/10.1126/science.abe6474
https://doi.org/10.1002/advs.202204113
https://doi.org/10.1016/j.heliyon.2023.e21174
https://doi.org/10.1186/s12967-023-04633-2
https://doi.org/10.1186/s12967-023-04633-2
https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2024.1459962

	Single-cell technology for drug discovery and development
	1 Introduction
	2 Single-cell technology
	2.1 Single-cell DNA sequencing technology
	2.2 Single-cell RNA sequencing technology
	2.3 Single-cell epigenome sequencing
	2.4 Single-cell spatial transcriptome technology
	2.5 Other single-cell technologies

	3 Application of single-cell technology in clinical drug discovery
	3.1 Tumors
	3.1.1 Discovery of potential therapeutic targets under tumor heterogeneity and tumor microenvironment
	3.1.2 Drug resistance research
	3.1.3 Screening anti-tumor drugs
	3.1.4 Pre-clinical models with single-cell
	3.1.5 Patient stratification and clinical trials for precision medicine

	3.2 The role of single cell techniques in drug development for non-cancerous diseases
	3.2.1 Discovery of potential therapeutic targets
	3.2.1.1 Neurological disorders
	3.2.1.2 Infectious diseases
	3.2.2.1 Neurological disorders
	3.2.2.2 Immune-mediated diseases
	3.2.2.3 Infectious diseases
	3.2.3 Screening candidate drugs
	3.2.3.1 Neurological disorders
	3.2.3.2 Infectious diseases
	3.2.4.1 Neurological disorders
	3.2.4.2 Immune-mediated diseases
	3.2.5.1 Neurological disorders
	3.2.5.2 Immune-mediated diseases
	3.2.5.3 Infectious diseases


	4 Application of single-cell technology combined with deep learning and machine learning in drug development and drug repur ...
	4.1 Computational methods for drug discovery at the single-cell level
	4.1.1 Deep learning-based methods for integrating bulk and single-cell data
	4.1.2 Machine learning-based integration of bulk and single-cell data
	4.1.3 Deep learning-based methods for predicting drug perturbations

	4.2 Computational methods for drug repurposing at the single-cell level
	4.2.1 Cellular subcluster and differential gene based drug reutilization methods
	4.2.2 Single-cell gene regulatory network-based approach to drug repurposing


	5 The role of single-cell technology combined with TCMs in drug development
	5.1 Research on active ingredients of TCMs
	5.2 Targets of action of TCMs
	5.3 Elucidation of pharmacological mechanisms of TCMs
	5.4 Prospects for the future of TCMs

	6 Discussion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


