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Cathelicidins are a ubiquitous family of host defence antimicrobial peptides in
vertebrate animals. Unlike other antimicrobial peptide families, it is defined by a
large and relatively well conserved proregion rather than by the mature bioactive
peptides themselves, which are highly diverse and conform to at least five
different structural types, resulting in distinct modes of action. Cathelicidin-
derived host defence peptides have a pleiotropic role in immunity, displaying
both a direct antimicrobial activity and the ability to boost other host responses to
infection and injury. The presence of a relatively well conserved proregion
attached to a vast repertoire of structurally and functionally diverse peptides
allows mining the increasing number of vertebrate genomes for lead sequences
to potentially useful new anti-infective and/or immunomodulatory agents. This
should increase the number of cathelicidin-based peptides entering clinical trials,
which has been limited to date, despite considerable efforts in the last 2 decades.
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1 Introduction

Cathelicidins are vertebrate host defence proteins characterised by a large and relatively
well conserved proregion associated with a highly variable antimicrobial peptide that becomes
active upon proteolytic release (Zanetti et al., 1990; 1995; Scocchi et al., 1992; Mookherjee
et al., 2013; Tossi et al., 2017). They formone of themost important andwidespread vertebrate
host defence peptide (HDP) families and are a prime example of the molecular diversity of
antimicrobial peptides. Since their discovery by Romeo and co-workers in the early 1990s
(Zanetti et al., 1995), cathelicidin-derived peptides have demonstrated a remarkably broad
functional repertoire, with direct antibiotic activities reported against bacterial, fungal, viral
and parasitic microorganisms, accompanied by the ability to orchestrate other aspects of the
immune response to infection and modulate inflammation (Agier et al., 2015; Hancock et al.,
2016; van Harten et al., 2018; Alford et al., 2020).
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Strictly speaking, cathelicidin refers to the proforms (Zanetti
et al., 1995), while the HDPs are referred to either by their origin
(e.g., CRAMP for Cathelin-Related AMP) or origin and size (e.g.,
BMAP-28 for BovineMyeloid Antimicrobial Peptide of 28 residues),
or structural features (e.g., LL-37 from the first two sequence
residues and size) (Tomasinsig and Zanetti, 2005). However, it
has become customary to refer also to the active HDPs as
cathelicidins. Over the last 3 decades, these have been intensely
studied both for their role in vertebrate host defence and for their
potential to develop new anti-infective agents for biomedical or
veterinary purposes (Mahlapuu et al., 2016; Alford et al., 2020;
Valdez-Miramontes et al., 2021; Dlozi et al., 2022; Zhu et al., 2022).

?A3B2 tlsb -.1pt?>The cathelicidins were discovered when
Romeo’s group found that several structurally distinct and
seemingly unrelated bovine HDPs all appeared to be synthesized
in myeloid cells as larger precursors, from which they are
proteolytically released. Cloning studies showed they all share a
homologous proregion (Zanetti et al., 1993) with significant
sequence identity to the porcine protein cathelin (Ritonja et al.,
1989), hence the name cathelicidin (Zanetti et al., 1995). This and
other research groups shortly added small disulphide-bridged
peptides (Romeo et al., 1988; Kokryakov et al., 1993), and linear
Trp-rich (Selsted et al., 1992), Pro-rich (Frank et al., 1990) and
helical peptides (Tossi et al., 1994; Agerberth et al., 1995) from cow,
pig, rabbit, human and other mammals (Zanetti, 2004). Some
mammals (especially artiodactyls) were found to have several
different cathelicidins, while others (e.g., primates, glires, rodents
or carnivores) only one, orthologous to the only human cathelicidin
HDP LL-37 (Xhindoli et al., 2016). Cathelicidins were then found to
be present in all analysed vertebrates (see Figure 1), and many of
their HDPs have been characterized with respect to their structure
and antimicrobial and other roles within host defence. They differ
significantly in size, sequence, structure, physico-chemical
properties and biological functions, so that their relationship is
essentially due to the presence of the relatively well conserved
cathelin-like domain (CLD) in their proforms.

This review provides a brief overview of the structural and
functional features of cathelicidin proforms and HDPs, focusing on
conserved aspects of the proregion and of genomic organisation that
can facilitate mining of new HDPs with potentially interesting
antimicrobial and/or immunomodulating functions. It provides a
brief review of these functions, as well as considerations on their
capacity to affect host cells, leading to beneficial or cytotoxic effects,
and of their potential for the development of therapeutic agents. Many
of these aspects have been the subject of several recent comprehensive
reviews (Mookherjee et al., 2013; Hancock et al., 2016; Tossi et al., 2017;
van Harten et al., 2018; Young-Speirs et al., 2018; Alford et al., 2020).

2 Distribution, expression and
structural and functional
characteristics of cathelicidins

2.1 Distribution and features of
the proregion

Cathelicidins are ancient and widespread components of
vertebrate innate immunity (see Figure 1), having been identified

in basal vertebrate species (hagfish and lampreys) (Uzzell et al.,
2003), all other types of fish (Masso-Silva and Diamond, 2014),
amphibians (Hao et al., 2012), reptiles (van Hoek, 2014; van Hoek
et al., 2019), birds (Wang et al., 2020; van Dijk et al., 2023) and all
mammals (Mookherjee et al., 2013; Tossi et al., 2017; van Dijk et al.,
2023). No cathelicidins are as yet reported in invertebrate animals.
This implies that the cathelicidin gene family is at least 560 million
years old, the estimated age of the latest common ancestor between
vertebrates and lamprey/hagfish, according to TimeTree (Kumar
et al., 2017).

Comparison of the HDP domains suggests that an ortholog of
the human cathelicidin gene (CAMP, coding for the cathelicidin
hCAP-18 and the HDP LL-37, see Figure 1) is present in all placental
mammals, and often the only one present (primates, glires,
carnivores and several other orders). For other orders (e.g., bats
and perissodactyls) multiple cathelicidins are present and derive
from duplication and diversification of the CAMP gene, while
cetartiodactyls (ruminants, suids, camelids, hypopotamids and
cetaceans) have a repertoir of structurally quite diverse HDPs,
suggesting a more complex evolution (Xhindoli et al., 2016; Tossi
et al., 2017; Zhu and Gao, 2017).

Cathelicidin genes consist of 4 exons, the first three encoding
the preproregion and the fourth the HDP domain preceded by a
variable number of proregion residues and the HDP cleavage site
(see Figure 2). Despite indications otherwise in recent reviews, the
HDP almost never begins in the 3rd exon. Mammalian cathelicidin
genes cluster in syntenic chromosomal regions (Zhu, 2008a), and
the presence of conserved flanking genes suggests this applies also
to other vertebrates (see Table 1 in Section 3). Structural and
sequence similarities place the proregion in the same superfamily
as cystatins and kininogens, and it has been suggested that they
derive from a common precursor (Zhu, 2008a), the cathelicidin
gene having gained an additional 4th exon corresponding to the
C-terminal HDP domain. The HDPs conform to several quite
distinct structural types (Figures 2, 3).

The original cathelicidin gene may have carried a helical peptide,
as these are the most common and widespread, and was then
duplicated, as most non-mammalian vertebrates, marsupials and
monotremes have multiple cathelicidins. Some placental
mammalian orders still have only one gene, carrying a helical
peptide. Others have multiple helical genes. In cetartiodactyl
species diversification appears to be driven by the insertion of
new and very diverse HDP sequences after duplication (Zhu and
Gao, 2009) so that they present a repertoire of different structural
types (see Figure 2), which on the basis of characteristic
conformations or representative amino acid residues are
indicated as Type-A, -B, -P, -U and - W. The HDP domain in
any case appears to be positively selected for variation (Zhu and Gao,
2017), while molecular mechanisms such as gene conversion may
instead have acted to maintain a low variation in the proregion
(Tomasinsig and Zanetti, 2005; Zanetti, 2005).

The structures of porcine and human CLDs are similar (PDB
IDs: 1KWI, 1PFP, 4EYC, see Figure 2) and closely resemble that
of cystatin (3GAX), consistent with the conservation of key
sequence motifs (Sanchez et al., 2002; Yang et al., 2003;
Kolodziejczyk et al., 2010; Pazgier et al., 2013). A long helical
segment at the N-terminus nestles into a concave β-sheet
platform, stabilized by two conserved disulphide bridges, to
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which the HDP is attached. The structures of the HDPs were
determined separately (see Figure 3), and how these relate to the
CLD in the proform has only been inferred by modelling

(Sanchez et al., 2002). Although the CLD has a cystatin-like
fold, it lacks key sequence elements required for cysteine protease
inhibition (Pazgier et al., 2013).

FIGURE 1
(Continued).
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The function(s) of the proregion remains controversial. It was
initially hypothesised that it serves to keep the antimicrobial domain
inactive until its release into the phagosome or extracellular medium
(Scocchi et al., 1992; Sørensen et al., 1997; Zanetti et al., 2002), but it
is questionable whether this alone justifies the conservation of the
CLD. Proposals that the CLD has complementary antimicrobial
activity to the HDP, or that it acts as a cathepsin inhibitor, are

weakened by conflicting observations (Zaiou et al., 2003; Zhu, 2008a;
Pazgier et al., 2013). In contrast, the hypothesis that the CLD serves
as a pH-sensitive platform for the controlled proteolytic release of
HDP at the right time and place (Sanchez et al., 2002) fits with the
observations 1) that a substantial portion of the secreted human
cathelicidin proform hCAP18 (see Figure 1) remains intact and
bound to the surface of granulocytes or extracellular vesicles

FIGURE 1
(Continued). Examples of cathelicidin sequences selected from throughout the phylogenetic tree (shown top left of panel A) of vertebrate animals.
The sequences are divided according to panel A) the encoding exon 1, panel B) exons 2 and 3 and panel C) exon 4 encoding the HDP. Gaps suggested by
Clustall Ω are introduced to optimize alignment. Particularly conserved residues are highlighted in colours reflecting their physico-chemical
characteristics ( = Cys; = anionic; = cationic; = polar; = hydrophobic, = aromatic; = Pro, Gly). The cathelicidin name, if this
has been assigned, is shown on the right of panel A), otherwise it is indicated as nd (not defined). Motifs useful for identifying cathelicidins (e.g. searching a
chromosome or WGS assembly using a browser such as Artemis) are shown below the sequences. For exon 4 (panel C), the sequences of reported HDPs
are in bold, underlined with a solid line, while those identified only at the gene level, have the putative HDPs in bold, underlined by a dashed line. For newly
identified sequences, determining the mature HDP requires identifying the cleavage site for its release. HDPs were assigned to a structural type based on
their primary structure, similarity to known cathelicidin HDPs or evident amphipathic helical structure as evidenced by HeliQuest (Gautier et al., 2008);
Type-A1 are orthologues of the human HDP LL-37, carried by the hCAP18 cathelicidin encoded by the CAMP gene. Sequences were obtained from the
following groups (species): monotremes (platypus, XP_007655323); marsupials (possum, XP_007499738; tammar wallaby, ACJ76797); xenarthrans
(armadillo, XP_004449765; sloth, XP_037684928); afrotherians (golden mole; XP_037684928; aardvark; XP_007949964; elephant, XP_003409939);
laurasiatherians (cow, XP_027379316; horse CAA12228; dog, AAR26245); glires (mouse, AAB88303; rabbit, NP_001075774); chiropterans (vampire bat,
XP_024421797); dermopterans (flying lemur, XP_00857229); primates (human; NP_004336); fowl (chicken, NP_001020001), neoavian (pigeon,
AKN23387); ratite birds (kiwi, PTFC01000132); reptiles (alligator, XP_006037286; turtle, QED55073; lizard, CCI87995; snake, ACI22652); amphibians
(frog, XP_018122443; salamander, AHF22104); lobe-finned fish (coelacanth, GAPS01055007; lungfish, XM_044065903); ray-finned fish (zebrafish, NP_
001122247; salmon, NP_001117045); cartilaginous fish (shark, GFYY01017650; ray, XP_055520678 ); jawless fish (hagfish, AF452383, lamprey, XP_
032830868. Species names can be obtained from the database entries.
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(Andersson et al., 2002; Stie et al., 2007), accompanying them to the
site of infection and conferring a spatial specificity to HDP
activation which concentrates the antimicrobial effect and
minimizes cytotoxic effects, and 2) that relatively well conserved
anionic residues form a strip on the surface of the CLD that would
allow relevant interactions with the cationic HDP domain (Xhindoli
et al., 2016). In addition, it would prevent active HDPs from being
sequestered by plasma lipoproteins, which would occur if they were
released too early (Wang et al., 1998; Sørensen et al., 1999).

2.2 Expression and processing

Cathelicidins are expressed in and secreted by various
circulating immune cells or epithelial cells that respectively play
an active role in host defence or form barriers against infection
(Alford et al., 2020; Valdez-Miramontes et al., 2021). The expression
pattern is varied, complex and regulated differently in different cell
types and can be stimulated by both exogenous microbial
components and endogenous factors, such as vitamin D in

primates (Gombart et al., 2005; Lai and Gallo, 2009; Vandamme
et al., 2012; van der Does et al., 2012). A similar expression pattern in
leukocytes and epithelial cells is observed for bovine cathelicidins,
but in this case the presence of several different genes allows
differential expression at different sites (Tomasinsig et al., 2010;
Kościuczuk et al., 2014; Whelehan et al., 2014). Avian and reptilian
cathelicidins also generally derive from heterophils or epithelial cells
(Alibardi, 2014; Chen et al., 2017; van Hoek et al., 2019; Wang et al.,
2020), and are abundant in snake venom (de Barros et al., 2019).
Cathelicidins are widely expressed in amphibian and fish tissues,
both constitutively and upregulated by bacterial components during
infection (Maier et al., 2008; Hao et al., 2012; Masso-Silva and
Diamond, 2014). Manipulating this expression may help reduce the
risk of infection in aquaculture environments, due to their direct
antimicrobial and immunostimulatory capacities (D’Este
et al., 2016).

In human and other mammals, cathelicidin gene products are
channelled to storage granules, or secreted as proforms and the
active HDP is released by serine proteases acting at appropriate
cleavage sites. Elastase has been identified as the operational

FIGURE 2
Schematic representation of cathelicidin gene, proform and HDP organisation and structures. The gene(s) encoding cathelicidin(s) are located on
syntenic chromosomal regions with conserved flanking genes (see below Tables 1, 2). They are organized as four exons and three phase 0 introns,
processed to the proform, with removal of the signal sequence by a signal peptidase before storage in granulocytes or secretion by epithelial cells. Mature
HDPs of different structural types are released by extracellular or granule proteases (that differ depending on the organism and/or district). Some
mammalian species express only one cathelicidin, which is invariably helical, other mammals and most non-mammalian vertebrates express multiple
peptides. These can be α-helical (Type-A), disulfide stapled β-harpins (Type-B), Pro-rich peptides with extended conformations (Type-P) or Trp-rich
peptides with wedge-shaped conformations (Type-W), or can be intrinsically unstructured (Type-U) as is the case of Gly/Ser-rich peptides found in some
fish and reptile species. Structures were adapted from PDB coordinates using Biovia Discovery Studio 2021 [CLD, human cathelicidin pro-region (PDB
4EYC); Type-A, human LL-37 (PDB 2K6O); Type B, porcine protegrin (2MZ6); Type P, bovine Bac7 fragment 1-19 (5HAU); Type U, frog cathelicidin PY
(2LR7); Type W, bovine Indolicidin (1G89)]. Created with the assistance of BioRender.com.
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protease in several mammals (Scocchi et al., 1992), while proteinase-
3 and kallikrein act in humans (Murakami et al., 2004; Zanetti, 2005;
Yamasaki et al., 2006). The putative cleavage sites of avian, reptilian,
amphibian and fish cathelicidins suggest that elastase-like proteases
are involved (Maier et al., 2008; Gao et al., 2015; Sun et al., 2015;
Furlan et al., 2018; van Hoek et al., 2019), but the operational

proteases are largely unknown. Processing can be quite complex,
and vary in different tissues; human LL-37, when secreted from
eccrine glands or keratinocytes, can be further processed to shorter
fragments in a manner that modulates its biological activities
(Murakami et al., 2004). Furthermore, some cathelicidin HDPs
are C-terminally amidated due to the presence of a Gly residue

TABLE 1 Genomic organisation of cathelicidin and flanking genes in vertebrate animals1.

1Gene arrangement for the indicated animals was determined from available genomic data. Monotremes (echidna, platypus), marsupials (koala, possum, tasmanian devil, wombat); primates,

carnivores, etc. (chimpanzee, macaque, lemur, loris, dog, pangolin); glires, etc, (mouse, rabbit, hedgehog, flying lemur, squirrel); cetartiodactyls (cow, sheep, pig, bactrian camel, hippopotamus,

bottlenose dolphin); perissodactyls (horse, donkey, zebra, rhinoceros); afrotherians (african elephant, aardvark, golden mole, tenrec, manatee); xenarthrans (sloth, armadillo); chiropterans

(vampire bat, horseshoe bat, large brown bat, leaf-nosed bat, little brown bat, fruit bat); neoavian birds (see reference in table); ratities (kiwi, rhea, emu); crocodylia (alligator, crocodile);

squamata (1) lizards (2) snakes; testudines (sea turtle); anura (clawed frogs, common frog, common toad, spadefoot toad); ray-finned fish (1) teleosts (salmon, cod, eel), holosteans (gar), (2)

chondrosteans (paddlefish, sturgeons), cladistian (bikirs); lobe-finned fish (lungfish, coelacanth); cartilagenous fish (ghost shark, great white shark, whale shark, sting ray); jawless fish (hagfish,

lamprey).
2The number of genes is a rough estimate based on currently available data.
3 Cathelicidin-like protein genes; possibly linked genes; flanking; / in a nearby chromosomal region; // in a more distant or /// very distant chromosomal

region. CATHL = cathelicidin-like gene; P15 = cathelicidin related 15 kDa protein gene (aka neutrophil granule protein, NPG). KLHL18 = kelch-like protein 18; TBRG4 = transforming growth

factor beta regulator 4 (aka FAST, kinase domain-containing protein 4);MYO1G = unconventional myosin 1 G;MAP4 = microtubule-associated protein 4; CDC25A = cell division cycle 25A

phosphatase (aka M-phase inducer phosphatase 1); NME6 = nucleotide diphosphate kinase 6; ASIC1C = acid-sensing ion channel 1C; ABCB8 = ATP, binding cassette subfamily B member 8;

APG9 = autophagy 9-like protein 1 (aka. ATG9); OBSCNB, obscurin B; GUK1 = guanylate kinase 1.
4The numbering scheme for cathelicidin genes of cetartiodactyl species is that used in GenBank.
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at the C-terminus or in a C-terminal sequences such as Gly-Lys-Arg
or Gly-Arg-Arg, for example, see: (Agerberth et al., 1991; Selsted
et al., 1992; Kokryakov et al., 1993; Zanetti et al., 1993; Skerlavaj
et al., 1996).

2.3 Structural diversity of cathelicidin HDPs

Figure 3 shows some examples of cathelicidin HDP structures.
The most common group is Type-A, with amphipathic helical
structures, as found in hagfish, reptiles, amphibians, birds and
mammals (see also Figure 1), suggesting that this is the ancestral
type (Zhu, 2008a; Zhu and Gao, 2009). This conformation is also
commonly found in AMPs unrelated to cathelicidins, and leads to a
membranolytic antimicrobial mechanism (Tossi et al., 2000),
suggesting convergent evolution of cathelicidin HDPs to this
common function.

Cetartiodactyl cathelicidin HDPs show the greatest diversity of
structural types (Tomasinsig and Zanetti, 2005; Scocchi et al.,
2011). In addition to various Type-A peptides, there are long, Pro-
and Arg-rich peptides with extended structures (Type-P), and
small, wedge-shaped, Trp-rich peptides (type W) (see Figure 2)
(Schibli et al., 1999; Rozek et al., 2000; Tomasinsig and Zanetti,
2005). Another type of cathelicidin HDP peculiar to this
mammalian order are small peptides with β-hairpin
conformations stapled by one or two disulphide bonds (Type-B).

These include the bovid and cetacean dodecapeptides and the
porcine protegrin, which exists in several allelic forms (PG-1 to −5)
(Choi et al., 2014). Some fish and amphibian cathelicidins also
show paired cysteine motifs, but in conjunction with other
structural types (e.g., Type-U, see below).

While the majority of cathelicidins from ray-finned fish have
sequences similar to that shown for zebrafish in Figure 1, they
sometimes bear long, linear peptides that are particularly rich in Gly
and Ser residues (Scocchi et al., 2009b). These are found especially in
salmonids, and can be divided into two subgroups, with the presence
of two cysteine residues in the N-terminal part of the HDP region in
Cath1 type peptides, which is absent in Cath2 type peptides (Maier
et al., 2008). The GS-rich stretch likely remains unstructured even in
membrane-like environments, suggesting they are Type-U low
complexity, intrinsically disordered sequences (D’Este et al.,
2016). GS-rich cathelicidin peptides are also found in some
amphibian species. In some cases, cathelicidin HDPs have
structures conforming to several structural types. This is the case
of the frog peptide Cathelicidin-PY (see Figure 3), which has a very
short helical stretch and disulphide bridge within an essentially
Type-U structure (Wei et al., 2013).

Cathelicidin HDPs are being identified in an increasing number
of non-mammalian species, and it is not always facile to predict the
structural type (see Table 1). In some cases, a low cationicity is
apparent, which may be an indication that a direct antimicrobial
action may not be the principal function.

FIGURE 3
Selected cathelicidin HDP structures. These are divided into: Type-A, which display amphipathic, α-helical structures for at least part of their
sequence [Homo sapiens LL-37, 2K6O; Bos taurus (cattle) BMAP27, 2KET;Oryctolagus cuniculus (rabbit) Cap18, 1LYP; Crotalus durissus terrificus (snake)
Crotalicidin, 2MWT; Microhyla heymonsi (frog), CathMH; Gallus gallus (chicken) Fowlicidins 1, 2, and 3, (2AMN, 2GDL and 2HFR)]; Type B, with β-hairpin
structures stapled by one or two disulphide bridges [Sus scrofa (pig) Protegrin (2MZ6); Physeter cathodon (whale) tandem dodecapeptide PcDode
(7OSC)]; Type-P, with proline and arginine-rich extended structures [Bos taurus Bac7 (fragments 1-19, 5HAU, bound to bacterial ribosome, 15-21, 4JWD,
bound to bacterial DnaK); Ovis aries (sheep) Bac7 (fragments 7-15, 4JWE and 35-43, 4JWI, bound to bacterial DnaK); Sus scrofa PR39 (fragment 5-12,
4EZO, bound to bacterial DnaK)]; Type-U, which are intrinsically unstructured and include some frog peptides and glycine- and serine-rich peptides from
fish and reptiles [Aquarana catesbeiana Cathelicidin-PY (2LR7)]; Type-W [Bos taurus Indolicidin (1G89) and Sus scrofa Tritrpticin (1D6X)]. Structures were
prepared using Biovia Discovery Studio 2021.
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2.4 Structure-dependent mode of action of
cathelicidins

As described above, cathelicidin HDPs essentially conform to
the five structural types shown in Figure 3, although some may have
features of more than one type. A common aspect is a pronounced
cationicity that favours their interaction with bacterial membranes
upon proteolytic release from the proform, and many indeed proved
to be membrane active, but for some the antimicrobial effect is not
primarily based on disruption of the bacterial membrane. The mode
of action is summarized schematically in Figure 4, where release and
approach to the membrane are shown as step (1).

Type A cathelicidin HDPs are considered primarily
membranolytic. Their cationic and amphipathic structure enables
efficient interaction with, and insertion into the microbial
membrane. The active conformation may form only upon
contact with the membrane, where the peptides undergo a
transition from an unstructured globule to a helical conformation
partly inserted into the lipid bilayer [Figure 4 (2)], whereupon either
a detergent-like disruption occurs when a critical concentration is

reached (carpet model) (3), and/or cooperative formation of discrete
cavities occurs (toroidal pore mechanism) (4) (Tossi et al., 2000). In
some cases, peptides can adopt the amphipathic helical
conformation in bulk solution, under physiological conditions,
leading to oligomerization, so that they approach the membrane
as helical bundles (5). These mechanisms may both contribute to
bacterial killing, but peptides may favour one mechanism over the
other. For example, rhesus RL-37 does not oligomerize and favours
the carpet type mechanism (3), whereas the closely related human
LL-37 oligomerizes and favours pore formation (4) (Morgera et al.,
2009; Xhindoli et al., 2014; 2016). Another consequence of
oligomerization is that the preformed helices are susceptible to
sequestration by interacting with bacterial membrane or serum
components (6), significantly affecting antimicrobial potency and
sensitivity to the environment (Tomasinsig et al., 2009; Xhindoli
et al., 2014).

With regard to Type-B peptides, the interaction of porcine
protegrin with membranes has been extensively studied, and they
are reported to act via a membranolytic mechanism (Bolintineanu
et al., 2012; Lazaridis et al., 2013; Usachev et al., 2016). They interact

FIGURE 4
Cathelicidin HDPmodes of action. Upon release from the CLD (1), cationic HDPs are attracted to the anionic surface of bacterial membranes. Type-
A peptides tend to be disordered, and adopt an amphipathic, helical conformation at the membrane surface and insert into it (2). When a critical
concentration is reached, they can breach themembrane bilayer in various ways. They can act in a detergent-likemanner (carpetmechanism) (3), or form
discrete toroidal pores (4). Helical peptides such as human LL-37 can adopt a helical structure already in bulk solution, which promotes aggregation
so that they approach the membrane as oligomeric bundles (5), favouring pore formation. They are however more susceptible to sequestration
interactions with serum or medium components and bacterial peptidoglycan (PG) components (e.g., LTA) or lipopolysaccharide (LPS) (6), so their
antimicrobial activity is quite salt- and medium-sensitive. Type B peptides are reported to penetrate the membrane, oligomerize and form multimeric
pores (7). Type P peptides can internalize into some bacteria via specific transport proteins (8) and inhibit cytoplasmic targets (9) (specifically ribosomal
subunits) but can also act by membrane lysis at higher concentrations (mechanism 3). Type W peptides are reported to penetrate into the bacterial
cytoplasm without compromising the membrane (10), where they then act by selective inhibition of DNA transcription. Inhibition of replication and/or
transcription (9) has also been proposed for some Type A peptides once they enter the cell via mechanisms (3) or (4). Intrinsically unstructured type U
peptides act on the bacterial surface (11), and although their mechanism of action is not yet known, the antimicrobial activity is quite salt-sensitive and not
primarily membranolytic. All HDP types likely saturate the bacterial membrane surface at active concentrations, and inhibition of the membrane protein
machinery (12) has been hypothesised to be an important aspect of their antimicrobial action. Created with BioRender.com.
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with the membrane as monomers and then oligomerise to form an
octameric pore [Figure 4 (7)] (Lazaridis et al., 2013; Usachev et al.,
2016). Bovine dodecapeptide may also form S-S-stabilized β-
hairpins in solution and dimerize at the bacterial surface (Raj
et al., 2000), acting in a similar manner. However, the mode of
action is mademore complex by the possibility that it forms covalent
dimers involving intermolecular disulfide bridge formation (Storici
et al., 1996). Interestingly, in this case a parallel or antiparallel
covalent dimeric arrangement does not seem to have a dramatic
effect on the antimicrobial activity with respect to that of the β-
hairpin monomer (Lee et al., 2008).

Type-P cathelicidin HDPs, which belong to the structural group
of proline and arginine rich AMPs known as PrAMPs, have a
distinct mode of action that relies less on membrane disruption
(Scocchi et al., 2011; 2016; Li et al., 2014). Their extended structures
do not change significanty upon contact with bacterial membrane
surfaces, where they accumulate and then internalize into the
cytoplasm also using specific membrane transporters, where they
inactivate internal targets [Figure 4 (8) and (9)]. This mechanism
has been shown to apply also to unrelated proline-rich peptides from
arthropods, another example of convergent evolution of common
strutural and functional features (Scocchi et al., 2011; Krizsan et al.,
2014). This mechanism is selective with respect to the target bacteria,
as only those expressing the transport system are strongly affected
(e.g., Gram-negative bacteria such as E. coli, S. Typhimurium and A.
baumanii, but not P. aeruginosa or any Gram-positive bacteria), and
ii) stereoselective with respect to the peptide itself (Runti et al., 2013;
Guida et al., 2015; Scocchi et al., 2016). In contrast to membranolytic
peptides, in which the all-D enantiomer works just as well, for Type-
P peptides it loses activity. This is likely due to stereoselective
requirements for transport and/or for inactivation of the
cytoplasmic target (Guida et al., 2015), the bacterial ribosome
(Mardirossian et al., 2014; 2018a; Gagnon et al., 2016; Graf et al.,
2017). Another bacterial protein that Pro-rich peptides in general
bind to, including cathelicidin HDPs, is the chaperone DnaK (Cudic
and Otvos Jr, 2002; Scocchi et al., 2009a).

Type-W peptides are so far limited to bovid indolicidins and
porcine tritrpticin (see Figure 2) and act by another distinct
mechanism. Due to the presence of Trp residues, they have a
strong tendency to interact with bacterial membranes which they
cross to hit internal targets [Figure 4 (9) and (10)]. They have a
wedge-shaped conformation and after partitioning near the
membrane-water interface then appear to enter the bacterial cell
without significantly compromising membrane integrity, to then
selectively inhibit DNA synthesis (Hsu et al., 2005; Chan et al., 2006;
Ghosh et al., 2014; Shagaghi et al., 2016; Batista Araujo et al., 2022).
It should be considered that indolicidin has 3 Pro residues so may
have characteristics of P-type, and that cetacian Type-P peptides are
also quite rich in Trp residues, so they may represent a cross between
the two structural types and allow a more efficient penetration even
in the absence of a suitable transporter (Mardirossian et al., 2018b;
Sola et al., 2020).

Type-U peptides are mainly found in non-mammalian
vertebrates and have the least well defined mechanism of action,
which again appears to be distinct from the others, emphasising that
cathelicidin HDPs cover a very broad structural and functional
space. They contain Gly and Ser rich sequences (see Figure 1 for
examples), which in salmonid fish are usually quite long and

sometimes heterogeneous, with cysteine-bridged motifs or other
types of flanking domains (Scocchi et al., 2009b). As a result, the
mode of action has been studied for rationally selected GS-rich
fragments rather than the whole peptide, and it appears that their
intrinsically unstructured extended conformations are not strongly
affected by membrane interaction (Broekman et al., 2011; D’Este
et al., 2016). Moreover, they have a relatively low proportion of
hydrophobic residues, so they probably only interact with the
surface of membranes and do not insert into them [Figure 4
(11)]. This is consistent with their killing mechanism, which is
quite salt sensitive, although the microbicidal mode of action is still
unclear. Little is known about the mode of action of anuran GS-rich
HDPs, but they probably have similar properties (Hao et al., 2012).

Regardless of the mode of action, all types initially interact with
the membrane, and since their active concentrations are in the
micromolar range, they completely saturate the bacterial surface
(Loffredo et al., 2021), so they are likely to come into contact with
vital protein machineries located in the bacterial membranes. This
would affect bioenergetics, transport and maintenance of the cell
wall. This is known as the sand-in-the-gearbox effect (Pag et al.,
2008; Vaezi et al., 2014), and could be a relevant component of their
killing mechanism [Figure 4 (12)].

2.5 Pleiotropic roles of cathelicidins in
host defence

Most cathelicidin HDPs are first tested for their direct
antimicrobial activity in vitro, even though this is not necessarily
their main role in host defence. They often also show a significant
ability to influence other aspects of immunity and healing, such as
binding and sequestering bacterial components (e.g., LPS or LTA),
recruiting or modulating the activities of cellular components of
innate and adaptive immunity, and stimulating cell growth in
wound healing (Lai and Gallo, 2009; Linde et al., 2013; Hancock
et al., 2016; van Harten et al., 2018; Alford et al., 2020). The literature
on direct antibiotic and immunomodulatory activities is extensive,
partly due to the countless variants that have been developed over
the years to investigate structure/function relationships or in an
attempt to optimise activity for potential therapeutic applications.

In summary, the direct antibiotic activities of Type-A and -B
cathelicidin HDPs, which act via membranolytic mechanisms, tend
to be more potent and broad-spectrum in vitro. However, outside
their physiological context, this is accompanied by appreciable
toxicity for eukaryotic cells at their active concentrations, often
measured in terms of their haemolytic activity. For this reason, when
peptides of these types have been investigated as therapeutic agents,
they exhibit appreciable toxicity close to their active concentrations.
This also seems to be the case for Type-W peptides. Type-P peptides
tend to be significantly less cytotoxic, but have a narrower activity
range (Scocchi et al., 2016). Type U peptides are the least well
characterized.

It is interesting to note that a certain ability to modulate host cell
activities has been found for all structural types. Helical peptides,
and in particular LL-37 and mouse CRAMP, have a wealth of
reported activities, including attracting immune cells to the site
of infection, modulating inflammatory responses via release of
cytokines, binding to and inactivating endotoxins, promoting
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wound healing, etc (Kahlenberg and Kaplan, 2013; Fabisiak et al.,
2016; Xhindoli et al., 2016; Krepel and Wang, 2019). Protegrin
analogues (Type-B), indolicidin (Type-W) and Pro-rich (Type-P)
cathelicidins also show analogous activities, despite their significant
structural diversity (Bowdish et al., 2005; Djanani et al., 2006;
Tomasinsig et al., 2006; Kin et al., 2011; Veldhuizen et al., 2014;
Zughaier et al., 2014; Gupta et al., 2015; Nakagawa and Gallo, 2015).
In general, immunomodulatory activities on host cells are thought to
be due to receptor activation, but how cathelicidin HDPs exerts their
action is not well understood. It could be that some of them act in a
non-canonical manner by accumulating in the membrane
surrounding various receptors, possibly favouring the cholesterol
and sphingomyelin-rich lipid rafts where receptors often reside, and
affecting their transmembrane domains rather than interacting with
specific ligand binding sites. This is consistent with a frequently
observed promiscuous and generally low-affinity activity, and is
supported by the fact that at least for LL-37, activation of some
receptors by the all-D enantiomer is as effective as the native
enantiomer (Xhindoli et al., 2016). Different stereochemistry
would not allow a similar interaction with a binding site, whereas
the ability for helical structuring, oligomerization and membrane
interaction is analogous.

3 Genomic organization and mining for
cathelicidins

3.1 Bioinformatic strategies for the
identification of novel cathelicidins

The Vertebrate Genome Project explicitly aims to generate the
reference genomes of all nearly 70,000 extant vertebrate species
(Rhie et al., 2021), providing new opportunities for data mining
approaches that facilitate the identification of novel cathelicidins
while bypassing traditional, labour-intensive isolation techniques.
However, the primary sequence diversity among cathelicidin
precursors and high variation of the HDP region make this task
far from trivial, as with other bioactive peptides (Coelho et al., 2024).
Despite conserved aspects of the proregion (see Figure 1),
cathelicidins within the same vertebrate class can have up to 80%
dissimilarity at the amino acid level. Therefore, although BLAST
based methods have proven to be reliable for identifying new
members when applied to phylogenetically closely related species
(Zhu, 2008b; Ishige et al., 2017; Kim et al., 2017; Lastra et al., 2018;
Choi et al., 2022; Kannoth et al., 2023), they may be inadequate in
understudied or highly divergent animal groups. Although the
reliability of these approaches can be improved by the use of
strict orthology inference methods (Castellanos et al., 2023), they
are not robust for vertebrate clades in which cathelicidin sequences
are as yet poorly represented. The relatively limited number of
cathelicidin sequences documented in fish, although coding genes
are widely distributed, likely stems from these technical constraints.

In this respect, methods based on Hidden Markov Model
(HMM) prove more efficient, as they allow to recognize common
structural attributes inherent to all members of a given protein
family, which facilitates an appropriate weighting of the evidence
provided by conserved sites associated with specific positions, such
as those defining the CLD. A benchmark HMM profile for

cathelicidins is provided by Pfam entry PF00666, which belongs
to the PepSY clan that also includes structurally similar molecules
such as cystatins (Kordiš and Turk, 2009). Nonetheless, the
cathelicidin HMM profile is based on the alignment of a limited
data set of sequences that suffers from a taxonomic bias skewed
heavily towards mammals. Consequently, while it has proven to be
robust in identifying novel cathelicidins within mammalian and
avian species (Cheng et al., 2015; Zhang et al., 2019; Xiao et al.,
2020), it was less effective when applied to other vertebrate classes.
Indeed, many authentic cathelicidin sequences from fish would
escape unequivocal identification using this method, either due to
overlap with the HMM associated with cystatins (PF00031), or
failure to meet the standard detection threshold for significance.
More advanced approaches can iteratively build a new HMM profile
from scratch, a process that relies on the initial identification of
reliable seed sequences through BLAST searches and may involve
the use of the jackhammer tool from the HMMER package (Finn
et al., 2011). This sophisticated strategy has recently demonstrated
its efficacy and enabled the detection of numerous previously
undiscovered cathelicidin genes in frogs (Tang et al., 2024).

Regardless of the chosen strategy, the ability to detect novel
sequences strongly depends on the quality of annotation of the
selected genomes, which varies greatly depending on the
bioinformatics pipeline used and available supporting data. In
practice, annotation of cathelicidin loci in many vertebrates lacks
precision, with predictions being absent, incomplete and
occasionally incorrect. For example, several genuine cathelicidin
genes in non-mammalian species are mislabelled either as
“kininogen” or as “secreted phosphoprotein 24,” which have
cathelin-like regions, severely hampering data mining approaches
based on keyword searches (Hu et al., 1995; Zhou et al., 2009; Pérez
de la Lastra et al., 2021). Furthermore, a correctly identified
proregion (exons 1–3) can be linked to an incorrect 4th exon
encoding the HDP, as this is the most variable region.

From this perspective, the analysis of de novo assembled
transcriptomes can be useful. First, it allows the identification of
the complete sequence of the protein precursor without
uncertainties regarding the correct identification of splicing
acceptor and donor sites. Second, it is a concrete indication of
the likely biological relevance of the encoded protein, as it
distinguishes functional genes from cathelicidin-like pseudogenes
that are often reported (Whelehan et al., 2014; Cheng et al., 2015;
Zhang et al., 2019; Peel et al., 2021; van Dijk et al., 2023). This
approach was initially successfully used to screen Expressed
Sequence Tags (EST) datasets (Xiao et al., 2006), and has
recently allowed the identification of novel cathelicidins in several
animal species (Helbing et al., 2019; Zhong et al., 2020; Kannoth
et al., 2023). On the other hand, the sole availability of transcriptome
data is limiting, as it depends on the genes being expressed in the
tissue that was selected for sequencing, and if similar paralogous
genes are present the risk of overlooking some of them due to
chimeric assemblies increases.

For genomics studies, information on synteny helps identifying
cathelicidin gene clusters in newly released genomes. While
significant structural genomic rearrangements are not uncommon
in nature, there are indications that the genes flanking the
cathelicidin gene clusters are generally well conserved (see
below), at least within the same order, and often across higher
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taxonomic ranks as well. Therefore, locating the genomic region
between these molecular markers, even in the absence of available
gene annotations, can help identify novel cathelicidin genes (Cheng
et al., 2015; van Hoek et al., 2019), by also exploiting the conserved
architecture of all cathelicidin genes which comprises four exons and
three phase 0 introns. This approach can leverage a combination of
methods based on sequence homology detection and alignment with
RNA-seq data to delineate putative exons. However, manual
curation remains a crucial aspect for validating these predictive
methods and correcting any errors.

3.2 Genomic organization of cathelicidins

The success of bioinformatic methods such as BLASTing of
genome or transcriptome databases with known sequences or
HMM profiles depends on the availability of a sufficiently
representative number of known or inferred sequences. In this
respect, InterPro entry PF00666 contains almost 1100 such
sequences, which may include homologs from closely related
species to the ones being searched. Otherwise, only some or no
cathelicidin genes may be found, especially in vertebrate groups
where cathelicidins are poorly represented. In these cases, it may be
useful to rely on conserved flanking genes to facilitate
identification. For example, we have found that in placental
mammals the major cathelicidin gene cluster is located between
NME6 and CDC25A and/or MAP4 (see Table 2), which is also
confirmed in the literature (Ahn et al., 2022). In birds and reptiles,
the indicated flanking genes are TBRG4 (a.k.a. FASTK) and
KLHL18, respectively (Cheng et al., 2015; van Hoek et al.,
2019). Based on this information, it was possible to scan well-
annotated vertebrate genomes from different clades to build a
picture of syntenic clusters and identify several other linked genes
that either surround or are in proximity to cathelicidin gene
clusters (Tossi et al., unpublished results), as shown in Table 2.

Among mammals, monotremes exhibit the most diverse
organization of cathelicidin-like gene clusters, with two closely
spaced clusters flanked on one side by KLHL18, suggesting a link

to syntenic clusters in non-mammalian vertebrates, and on the other
side by MYO1G, with MAP4 and CDC25A in between, suggesting a
link to syntenic clustering in placental mammals. A third cluster is
located on the other side of KLHL18. The latter appears to be absent
in marsupials, but otherwise the cathelicidin gene organization is
similar. In placental mammals, two clusters are present in most
orders, the principal one being flanked by MAP4/CDC25A on one
side and NME6 on the other. The second cluster contains only the
cathelicidin-like protein P15, also known as neutrophil granule
protein, which was described some time ago as a divergent
member of the cathelicidin family in rabbits. It does not release
an antimicrobial HDP but rather synergizes with other immune
proteins and binds LPS (Levy, 1996). P15 cathelicidin genes appear
to be present in most placental mammals except for primates,
carnivores and pangolins (see Supplementary Figure S1) that
appear to have one only cathelicidin that is orthologous to the
human CAMP gene.

Birds appear to have a single cathelicidin cluster flanked by
KLHL18 and TBRG4, with the number of genes (1–4) varying
according to order and species (Cheng et al., 2015). Reptiles have
a more complex arrangement of cathelicidin genes - in general,
crocodilians, snakes and turtles have a cathelicidin gene cluster
flanked by KLHL18 on one side, and with MYO1G, TBRG4 and
CDC25A at a short distance on the other side. For lizards, this cluster
is reduced to one or two genes and a second larger cathelicidin gene
cluster is located on the other side of CDC25A. Amphibians have a
similar cathelicidin gene arrangement, but with the second large
cluster on the other side of KLHL18.

The cathelicidin gene clusters of fish may be flanked by
different genes than in other vertebrates, and determining the
arrangement is complicated by the lack of annotations. In
Teleostean and Holostean orders of ray-finned fish the
cathelicidin gene cluster is located near KLHL18, whereas in
Chondostrean and Cladistian orders it is located quite far from
it and flanked by genes such as ASIC1C, CDK5, ABCB8, APG9 on
one side and OBSCN and GUK1 on the other. In lungfish the
cathelicidin gene cluster is flanked by OBSCN and GUK1 on one
side and far from KLHL18 and TBRG4 on the other. With

TABLE 2 Organization of cathelicidin gene clusters with respect to that of genes that are apparently linked to them.

Group Cathelicidin gene cluster organization

Eutherians NBEAL2; KIF9; KLHL18 (P) // MAP4; CDC25A © NME6

Marsupials OBSCN; GUK1 /// NBEAL2; KIF9; KLHL18 ©(P) // MAP4; CDC25A © MYO1G /// ABCB8; CDK5

Monotremes OBSCN; GUK1 /// © NBEAL2, KIF9; KLHL18 ©(P) // MAP4; CDC25A © MYO1G /// ABCB8; CDK5

Birds OBSCN; GUK1 /// NBEAL2; KIF9; KLHL18 © TBRG4; MYO1G // MAP4; CDC25A /// ABCB8; CDK5

Reptiles OBSCN; GUK1 /// NBEAL2; KIF9; KLHL18 © TBRG4; MYO1G / MAP4; CDC25A /// ABCB8; CDK5

Amphibians OBSCN; GUK1 /// © / KIF9; KLHL18 © // TBRG4; MYO1G / MAP4; CDC25A

Lobe-finned fish OBSCN; GUK1 © // NBEAL2; TBRG4; KLHL18 © ABCB8

Ray-finned fish OBSCN; GUK1 © ABCB8; CDK5

Cartilaginous fish KLHL18; KIF9; NBEAL2; TGRB4 © /// ABCB8; CDK5

Jawless fish nd © nd

©cathelicidin gene cluster; (P) cathelicidin-like P15: /, // and /// roughly indicate the relative distance of flanking genes as explained in footnote 3, Table 1.
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coelacanth there is a cathelicidin gene cluster between KLHL18 and
TBRG4 on one side and ABCB8 and APG9 on the other.
Cartilaginous fish generally have one or two cathelicidin genes.
One type of gene that is always present and close to KLHL18 and
TBRG4 encodes a rather odd cathelicidin in which the fourth exon
consists of only one or two residues and therefore has no HDP
domain. This is the only gene present in many sharks, whereas in
rays there is a second gene in which the fourth exon encodes a
small peptide. It is more distant from KLHL18 and TBRG4 and has
CDK5 at some distance on the other side. For jawless fish, there are
not enough well-annotated genomes for a comprehensive analysis,
but the cathelicidin gene cluster does not seem to be linked to any
of the genes found for other vertebrates.

Although the arrangement of cathelicidin genes shown in
Table 1 differs somewhat between vertebrates from different
orders it suggests a degree of syntenic conservation. Cathelicidin
genes are largely located in clusters within a single chromosome, and
the same types of linked genes generally occur on the same
chromosome. The overall arrangement can be better appreciated
in Table 2, which considers the approximate positioning of the
cathelicidin gene clusters and possibly linked genes.

4 Therapeutic potential of cathelicidins

Since their discovery, the potential of antimicrobial peptides
for therapeutic purposes has been recognised and widely discussed
in the literature. After encouraging pre-clinical testing in in vitro,
ex vivo and animal model studies, several AMPs or their synthetic
derivatives have been investigated in human clinical trials,
including cathelicidin peptides and analogues (Koo and Seo,
2019; Browne et al., 2020; Dijksteel et al., 2021; Moretta et al.,
2021). Focusing on trials involving cathelicidin HDPs, despite
significant efforts that have been made over the past 2 decades,
none have as yet reached clinical use. In fact, some trials are still
ongoing while others have been discontinued due to lack of
efficacy, unfavourable pharmacokinetic profiles, adverse effects
or failure to show improved efficacy with respect to
conventional treatments.

Among the first cathelicidins to be developed and tested for
potential clinical use were the Type-B peptide iseganan, based on
protegrin, and Type-W peptide omiganan based on indolicidin
(Toney, 2002; Isaacson, 2003) (see Supplementary Table S1).
Both HDPs underwent a complex optimization processes to
make them useful for therapeutic purposes, which involved a
series of modifications such as residue replacements to increase
cationicity or to modulate the hydrophobicity, introduction of non-
proteogenic residues or cyclization and C-terminal capping or
inverting and/or enantiomerizing the sequence to improve both
the stability and activity (Chen et al., 2000; Staubitz et al., 2001;
Rozek et al., 2003; Ryge et al., 2004; Ando et al., 2010).

As membrane active molecules, these peptides are
therapeutically oriented towards topical use, and iseganan was
initially investigated in a clinical trial for preventing oral
mucositis in cancer patients undergoing radiation therapy for
head and neck cancer, but failed in Phase III due to an apparent
lack of efficacy (Giles et al., 2003; Trotti et al., 2004). However, a later
study on patients undergoing chemotherapy found it significantly

reduces the total oral aerobic bacterial and fungal load in patients
undergoing stomatotoxic chemotherapy, showing a clear potential
as an oral antimicrobial agent, and should be re-evaluated in the
context of increasing resistance to conventional anti-infective agents
(Dijksteel et al., 2021; Liang and Sonis, 2024).

Omiganan pentahydrochloride is a 12-mer derivative of
indolicidin that demonstrated in vitro activity against a
significant number of infective clinical isolates, including most
ESKAPE pathogens and Candida spp. (Sader et al., 2004; Żyrek
et al., 2021). It underwent clinical trials for different topical
applications including the prevention of catheter-related
infections, and treatment of acne, rosacea, atopic dermatitis and
papillomavirus-induced genital lesions (Fritsche et al., 2008;
Zouboulis et al., 2017; Niemeyer-van der Kolk et al., 2020) and is
considered also for vulvovaginal candidiasis and other fungal
infections (Rubinchik et al., 2009; Czechowicz et al., 2021; Żyrek
et al., 2021). The results from these trials are mostly not yet disclosed
or under review so it is not possible at the moment to assess
their success.

With regard to Type-A peptides, a lot of interest has been
placed on the human cathelicidin HDP LL-37, both as a potential
therapeutic agent or as a marker for health or pathological
conditions. For example, its levels have been correlated with
conditions such as psoriasis, atopic dermatitis and periodontal
disease (Kahlenberg and Kaplan, 2013; Lande et al., 2014; Hancock
et al., 2016; Turkoglu et al., 2017; Antal et al., 2022; Bhattacharjya
et al., 2024). This has prompted numerous clinical studies that are
not only evaluating it as a drug for the treatment of pathologic
conditions but also investigating its potential role as a biomarker
(see Supplementary Table S1). Currently, LL37 is under clinical
investigation for the treatment of hard-to-heal venous leg ulcers
(HTH VLUs) in the Swedish study LL-37001B (EudraCT: 2012-
002100-41). These are amongst the most prevalent type of chronic
wounds and affect approximately 1%–3% of the older population
in Western countries (Franks et al., 2016). The investigation was
prompted by the observation that endogenous LL-37 is present in
large quantities in acute wounds, whereas it is absent in chronic
wounds, suggesting a critical role of this peptide in the healing
process (Heilborn et al., 2003; Fabisiak et al., 2016). Moreover, it
was observed that skin-targeted administration of LL-37 in ex and
in vivo models of human acute and chronic wounds improved
reepithelization and closure (Carretero et al., 2008; Steinstraesser
et al., 2014). Results from phase I/II trials showed that local
application of LL-37 twice a week significantly enhanced the
healing rate without causing any systemic safety or local
tolerability concerns (Grönberg et al., 2014). Subsequently, a
phase II multicentric prospective trial (EudraCT: 2018-000536-
10) indicated improved healing in relatively large wounds with a
negative prognostic factor for healing (Mahlapuu et al., 2021). A
recent clinical controlled trial in the USA (NCT04098562) was
conducted to assess the effectiveness of a stable, LL-37-containing
cream in diabetic foot ulcers (DFUs) and was found to improve the
granulation index and healing rate of wounds (Wu et al., 2018;
Miranda et al., 2023). These clinical studies support the notion that
LL-37 topically-used is safe and well tolerated.

An improvement in the management of wounds may arise from
the encapsulation of the HDP in a three-dimensional hydrogel
system that allows effective delivery, prolonged stability and
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efficient release of the bioactive molecule. The use of dressings based
on different types of self-healing multifunctional hydrogel system
showed a significantly improved angiogenesis and reduced wound
closure times in animal wound models (Hao et al., 2023; Jelodari
et al., 2023).

As reported in section 2.2, expression of the single cathelicidin
gene (CAMP) present in humans and other primates, is upregulated
by 1,25-dihydroxyvitamin D3, in addition to its increased expression
in response to pathogen exposure and inflammation. In fact, it has
been determined that vitamin D response element (VDRE) is
localized upstream to the promoter region of the CAMP gene,
which binds the vitamin D-activated nuclear receptor (VDR),
inducing gene expression (Wang et al., 2004; Gombart et al.,
2005; 2009; White, 2010). Several clinical studies have suggested
a link between vitamin D deficiency, inflammatory pathological
conditions (such as urinary tract infections, ulcerative colitis and
Crohn’s disease) and decreased expression of LL-37 (White, 2018;
Deng et al., 2019; Gubatan et al., 2020). These and many other
observations suggest that treatment with vitamin D could be a way
to increase LL-37 production in contexts in which its levels are
insufficient to counteract specific infections and inflammation.

With respect to the use of LL-37 as a biomarker, the peptide was
found to represent a T-cell autoantigen in the majority of patients
with moderate-to-severe psoriasis and psoriatic arthritis (Lande
et al., 2014; Fuentes-Duculan et al., 2017; Frasca et al., 2018).
Abnormally high levels of LL-37 are also found in rosacea
(Cribier, 2022) where it contributes to its pathophysiology by
stimulating cytokine release, angiogenesis, chemotaxis and other
pro-inflammatory events. Its presence is due to overexpression and
release of the inactive hCAP18 precursor associated with increased
levels of the processing enzyme kallikrein 5 from the stratum
corneum of epidermidis, suggesting that inhibition of the enzyme
might improve the clinical signs of rosacea. A proof of concept pilot
study showed the first clinical evidence of the involvement of
kallikrein in the pathogenesis of rosacea and its inhibition did
correlated with clinical improvement of the disease (Yamasaki
et al., 2007; Two et al., 2014; Thibaut de Ménonville et al., 2017).

A problem with the use of Type-A peptides like LL-37 as anti-
infective agents is that being membranolytic they are quite cytotoxic
and tend to have rather narrow therapeutic windows, even for use as
topic agents. Redesigning them to improve this window can however
change their mode of action and reduce their multifunctional effects.
A great effort has been expended in this direction to develop LL-37
fragments and variants able to maintain or improve antimicrobial
activity while reducing toxicity towards eukaryotic cells and
susceptibility to degradation by proteases present in mammalian
body fluids. Truncation or replacement of residues in the LL-37 can
in fact improve its antibacterial capacity, as long as truncation does
not significantly alter the overall charge and amphipathic features.
For example, central fragments [e.g., LL-37 (7–27) or LL-37 (5–24)]
maintain the antibacterial activity against both Gram-positive and
Gram-negative bacteria while reducing haemolytic activity with
respect to the native peptide (Braff et al., 2005; Thennarasu et al.,
2010; Wang et al., 2012; Krishnamoorthy et al., 2023).

The most advanced clinical trial among the truncated variants of
LL-37 is the peptide P60.4Ac that was developed from an
overlapping synthetic library (Nell et al., 2006). This peptide,
derived from the sequence 13-36 of LL-37 with some residue

substitutions to improve amphipathicity, was positively tested for
ototoxicity in guinea pigs and in vitro antimicrobial activity on
reference bacterial and fungal strains. Subsequent studies in patients
suffering of chronic suppurative otitis media (CSOM) found that the
peptide was safe and well-tolerated when used as ototopical drops. A
randomized, double blind, placebo-controlled, multicentre phase IIa

study on more than 30 patients showed a successful treatment in
47% of cases vs. 6% in the placebo group (Peek et al., 2020),
providing strong support to further develop the peptide for
CSOM treatment.

An interesting LL-37 derivative is the peptide 17BIPHE2, based
on the short (17–32) fragment, where the native Ile20 and 24 and
Leu28 were changed to D-Leu, and Phe17 and 27 to biphenylalanine.
Compared to LL-37 and its fragments, this peptide is highly resistant
to various proteases present in mammalian body fluids, and displays
an increased antimicrobial activity against multidrug-resistant
bacteria and a high antibiofilm activity (Wang et al., 2014;
Narayana et al., 2019). It was recently shown to be active in vitro
against Neisseria gonorrhoeae and has spermicidal activity on
human and mouse sperm via membrane permeabilization. In
addition, multiple transcervical injections of the peptide in female
mice did not affect the histological features of vagina, cervix and
uterus, suggesting its use both as contraceptive and antimicrobial
agent against sexually transmitted infections (Lee et al., 2022).
Further examples are reported in Supplementary Table S2.

An interesting concept to reduce toxicity is to mimic their
endogenous release from the CLD by incorporating a part of it
in a pro-drug. In this respect, an artificial pro-form was rationally
designed to protect the D-enantiomer of the shortened bovine
cathelicidin BMAP18, to be released and activated only upon
proteolytic cleavage by elastase. In this preclinical study, this
prodrug showed a very low cytotoxicity and was correctly
converted to D-BMAP18 in the presence of cystic fibrosis
sputum as a model of a pathologic lung environment, then
showing good antimicrobial activity, so it may be a good
candidate for aerosol treatment of the CF lung (Degasperi
et al., 2022).

Type-P cathelicidin HDPs (PrAMPs) are of significant interest
for the development of new antimicrobial compounds due to their
potent antimicrobial efficacy (although mainly effective against
Gram-negative bacterial species) combined with a lower
cytotoxicity than other structural types (Welch et al., 2020). As
described in Section 2.4, they display a peculiar mode of action
targeting protein synthesis through stalling bacterial ribosomes as
their main antimicrobial mechanism (Mardirossian et al., 2014;
2018a; 2018b; Gagnon et al., 2016; Seefeldt et al., 2016), while
destabilization of the bacterial membrane is mostly a secondary
effect exerted at well above their active concentrations, unless their
sequence is modified (Podda et al., 2006; Sola et al., 2020). During
the past 3 decades a few Type-P cathelicidin HDPs have undergone
extensive structure-activity relationship studies aimed at isolating
the pharmacophore sequence by testing numerous fragments and
variants, with the aim of reducing synthetic cost and promoting
antimicrobial potency through residue substitutions (Panteleev
et al., 2018; 2022; Sola et al., 2020; Bolosov et al., 2023;
Benincasa et al., 2004; Guida et al., 2015; Mardirossian et al.,
2019b). In particular, the application of SPOT-synthesis and of
deep mutational scanning protocols have increased the potential of
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these studies exponentially, due to the possibility to synthesize large
panels of peptides (Lai et al., 2019; Mardirossian et al., 2019a; 2020)
or to express peptide variants directly in bacteria (Collins and
Hackel, 2024). The antimicrobial potential and low toxicity of
some Type-P cathelicidin HDPs, as evidenced by in vitro studies,
has also been supported by in vivo studies in animal models of
infection (Benincasa et al., 2010; Di Stasi et al., 2019). However,
assessment remains in the pre-clinical phase and data on the
pharmaco-kinetics and -dynamics of these compounds are still at
the embryonic stage (Benincasa et al., 2015), which, with the lack of
experimentation in non-murine animal models, has as yet prevented
derivatives of this type of cathelicidin HDP from entering
clinical studies.

The potential of Type-P cathelicidin HDPs to fight pathogens is
not limited to exploitation of their antimicrobial activity per se, but
can exploit their capacity to be actively internalized by susceptible
bacteria, as well as some eukaryotic cells, as carriers for other types of
molecules such as fluorophores or quite large cargo such as PEG,
proteins and impermeant PNA, (Sadler et al., 2002; Benincasa et al.,
2015; Hansen et al., 2016). They can also be used in this manner to
enhance or restore the activity of antibiotics in resistant strains
(Gambato et al., 2023).

5 Conclusion

Cathelicidins belong to an ancient, ubiquitous family of
vertebrate HDP proforms that carry highly diverse
multifunctional bioactive peptides that can be grouped into at
least five different structural types. Numerous experimental
observations and genetic information indicate that many species
possess multiple cathelicidin genes and that the types of derived
peptides are structurally diverse. These aspects open up potential
access to a large repertoire of bioactive peptides with anti-infective
and immunomodulatory activities. The presence of relatively well
conserved proregions and a significant degree of syntenic
conservation with common flanking genes, facilitates the search
for novel cathelicidin sequences in the rapidly growing number of
available vertebrate genomes. This process would enable targeted
mining approaches and lend itself to machine learning. The features
of numerous characterized cathelicidin HDPs can then be used for
structure/activity prediction studies aimed at 1) dissecting the
functional domains responsible for the pleiotropic activity of
some of these peptides; 2) suggesting modifications that could
improve their druggability (e.g., stabilized analogues and
truncated derivatives that reduce the production costs); 3)
exploiting the different mechanisms of action of each structural
type – membrane or target specific - to modulate the spectrum of
activity, 4) reducing the likelihood of resistance, and 5) improving
cytotoxicity and pharmacodynamic profiles. In addition, the
particular architecture of cathelicidins, with a conserved
proregion that likely keeps the peptide inactive, and avoids
sequestration and/or degradation until it reaches the site of
infection, could point to a possible delivery method to reduce
side effects and not only use them as topical agents. Although
the success of anti-infective peptides derived from AMPs in
clinical trials has generally been low, concerted efforts in recent

years suggest that cathelicidins may be useful both as anti-infective
drugs that also aid wound healing (as demonstrated by their
application on DFUs) and/or as markers for different conditions.
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