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Antibodies represent the largest class of biotherapeutics thanks to their high
target specificity, binding affinity and versatility. Recent breakthroughs in Artificial
Intelligence (AI) have enabled information-rich in silico representations of
antibodies, accurate prediction of antibody structure from sequence, and the
generation of novel antibodies tailored to specific characteristics to optimize for
developability properties. Here we summarize state-of-the-art methods for
antibody analysis. This valuable resource will serve as a reference for the
application of AI methods to the analysis of antibody sequencing datasets.
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1 Introduction

Antibodies are the largest class of biotherapeutics, with a projected market size of US$
300 Billion by 2025 (Lu et al., 2020). They are used for treating cancer, autoimmune and
infectious diseases (Lu et al., 2020; Weiner et al., 2010; Chan and Carter, 2010), as they can
be designed to recognize any antigen at high specificity and binding affinity. Antibody
discovery is traditionally performed with directed evolution using experimental assays such
as hybridoma or phage display (Lu et al., 2020). Although well-established, these methods
remain costly, time-consuming and prone to fail due to experimental challenges.

The introduction of Next-Generation Sequencing (NGS) for antibody screening in place
of random colony picking has enabled to cover a much larger sequence diversity, a wider
binding affinity range, and isolate sequences that target distinct epitopes (Spoendlin et al.,
2023). Short read sequencing is limited to a single chain, either heavy (VH) and light chain
(VL), while long reads can obtain paired information of both chains, increasing our
understanding of inter-chain residue dependencies (Burbach and Briney, 2024).

Recently, Artificial Intelligence (AI) has experienced accelerated progress, particularly
in the fields of Deep Learning (DL) and Natural Language Processing (NLP), and biology
has been greatly benefited from it (Khakzad et al., 2023; Graves et al., 2020; Nam Kim et al.,
2024; Bender and Cortés-Ciriano, 2021; Bender and Cortes-Ciriano, 2021; Kim et al., 2023).
A notable example is the model AlphaFold2 for structural biology (Jumper et al., 2021),
which brought sequence-based protein structure prediction close to experimental accuracy.

The success of the Transformer architecture (Vaswani et al., 2023) in NLP has led to the
creation of Large Language Models (LLM), statistical models trained on large collections of
texts to capture semantic similarity among words in the form of vector representations,
called embeddings, without relying on expensive and hard to obtain labels. Embeddings are
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very versatile, with applications that include text classification and
generation. In biology, LLMs trained on curated databases of
millions of protein sequences [UniProt (UniProt Consortium
et al., 2023), UniRef (Suzek et al., 2007) and BFD (Jumper et al.,
2021; Steinegger and Söding, 2018)] were shown to be able to learn
secondary and tertiary structural information from sequence
(Ahmed et al., 2022; Lin et al., 2023) and can be used to predict
protein function. More recently LLMs have been trained on
databases of antibody sequences, such as the Observed Antibody
Space (OAS), leading to the creation of antibody-specific language
models (ALMs) (Leem et al., 2022; Ruffolo et al., 2023; Prihoda et al.,
2022; Olsen et al., 2022).

Despite the availability of these models, bringing an antibody
from discovery to the patient remains challenging. Once a candidate
antibody has been found, it must be optimized to match the
properties of therapeutic antibodies, grouped under the term of
developability. A consensus is lacking in the literature for which
properties are part of developability (Habib et al., 2023; Raybould
et al., 2024; Fernández-Quintero et al., 2023; Khetan et al., 2022;
Zhang et al., 2023; Evers et al., 2023). Some of these properties are
humanization, prediction of solubility and aggregation, for which
several ML methods have been proposed (Prihoda et al., 2022;
Parkinson and Wang, 2024; Pujols et al., 2022).

The type of license associated with a ML model (code, weights
and training data) plays a key role in the choice of integration into
industrial applications. A commercially permissive license favors
rapid prototyping in research and development within an industrial
setting and rapid, cost-free integration into a product. In this review,
we indicate the license type associated to the methods presented, in
the hope that this resource will serve as a reference to accelerate the
adoption of these models in industry.

Several reviews have been published that discuss ML
applications to antibody discovery and development (Graves
et al., 2020; Nam Kim et al., 2024; Kim et al., 2023). These
reviews are focused on giving an academic perspective on the
field. Our review stands out not only for its breadth, by
providing a comprehensive, up-to-date overview of the state-
of-the-art AI methods and resources for antibody sequence,
structure and developability, but also for the particular focus on
practical considerations in regard to product integration, such
as licenses.

Providing a comprehensive benchmark for these methods is
outside the scope of this review, and would require testing against
specific benchmark datasets like ProteinGym (Notin et al., 2023) for
general protein language models and FlAb (Chungyoun et al., 2024)
for antibody language models.

FIGURE 1
Antibody sequence and structure information in relation to developability properties. Masked (contextual, BERT-like) and Causal (autoregressive,
GPT-like) Language Modeling prediction strategies are highlighted. The residues underlined in red are the residues that are used to train the model to
predict themasked residues (Masked) and next residue (Causal) indicatedwith a grey questionmark. The representative antibody structure is the structure
of immunoglobulin (PDB:1IGY). Arrows indicate the information flow from sequence to structure (folding models), from structure to sequence
(inverse folding models) and that developability properties are determined by both antibody sequence and structure.
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This review is divided into three parts (Figure 1). The first part
covers recent applications of LLMs to protein (PLM) and antibody
(ALM) sequences. The second part focuses on folding models,
models that can predict protein structure from sequence, and
inverse folding models, models that can identify the sequences a
specific structure can fold into. The third part covers ML methods
that can be used to optimize developability properties. Finally, we
conclude with some remarks and perspectives.

2 Antibody language models

The field of NLP was revolutionized by the introduction of the
Transformer (Vaswani et al., 2017), a DL architecture that was able
to achieve unprecedented accuracy in understanding and generation
of written and spoken languages, programming languages, images
and videos (Islam et al., 2023). At the core of the Transformer is the
attention layer, a neural network layer inspired by cognitive
attention, the human ability to focus on important signals and
exclude irrelevant information. Through attention the model learns
the relative importance all parts of the input sequence (tokens) have
with respect to each other. This is used to generate a vector
representation of each token in the sequence (embedding) that
can be leveraged for specific tasks. Training is performed with
either a Masked Language Modelling (MLM) objective, the
prediction of a randomly chosen subset of masked tokens, a

Causal Language Modelling (CLM) objective, the prediction of
the next token based on the preceding tokens, or both (Figure 1).

When trained on large collections of protein sequences [UniProt
(UniProt Consortium et al., 2023), UniRef (Suzek et al., 2007) and
BFD (Steinegger and Söding, 2018)] as protein Language Models
(PLMs) (Table 1), these models capture information on evolutionary
constraints, secondary and tertiary structures (Ahmed et al., 2022;
Lin et al., 2023; Rives et al., 2021). For a comprehensive overview of
NLP applied to the protein sequence domain we refer to the available
reviews (Ofer et al., 2021; Valentini et al., 2023; Dounas et al., 2024).

The concept of PLMs was later applied to antibody sequences,
resulting in Antibody Language Models (ALM) (Table 1). Most of
these models have been trained on unpaired data, either a single
model including both chain types (AntiBERTa (Leem et al., 2022),
AntiBERTy (Ruffolo et al., 2023), IgLM (Shuai et al., 2021), BALM-
unpaired (Burbach and Briney, 2024), Bio-inspired Antibody
Language Model (Jing et al., 2023)) or with chain-specific models
[Sapiens (Prihoda et al., 2022), AbLang (Olsen et al., 2022)]. Other
models, such as BALM-paired (Burbach and Briney, 2024), ESM2-
paired (Burbach and Briney, 2024), SC-AIR-BERT (Zhao et al.,
2023), and AbLang2 (Olsen et al., 2024a), make use of paired
sequence information to capture inter-chain residue
dependencies. Applications of these models include paratope
prediction [AntiBERTa (Leem et al., 2022)), humanization
(Sapiens (Prihoda et al., 2022)], sequence completion [AbLang
(Olsen et al., 2022)] and generation conditioned on species and

TABLE 1 Specification for general protein language models (top) and antibody-specific language models (bottom). Base, base model architecture; Params,
number of trainable parameters; Code, model and code availability; Training data, dataset used for training; License, release license; Refs, references; Year,
year of first release. ProtTrans is a collection ofmodels with base architecture Transformer-XL (Dai et al., 2019), XLNet (Yang et al., 2020), BERT (Jacob et al.,
2019), Albert (Lan et al., 2019), Electra (Clark et al., 2020), T5 (Raffel et al., 2023). For disambiguation we refer to Baseline Antibody Language Model (BALM)
as blBALM and to Bio-inspired Antibody Language Model (BALM) as bioBALM. GH: GitHub. HF: HuggingFace.

Model Base Params Code Training data License Refs Year

ProtTrans Multiple 224M-11B GH, HF UniRef50, BFD AFL-3.0 Ahmed et al. (2022) 2020

ESM-2 BERT 8M-15B GH, HF UniRef50 MIT Lin et al. (2023) 2022

ProteinBERT BERT 16M GH UniRef50 NA Brandes et al. (2022) 2022

ProtGPT2 GPT2 738M HF UniRef50 Apache-2.0 Ferruz et al. (2022) 2022

EvoDiff Diffusion 38M-640M GH UniRef50 MIT Alamdari et al. (2023) 2023

Ankh T5 450M-1.15B GH, HF UniRef50 CC NC SA 4.0 Ahmed et al. (2023) 2023

AntiBERTy BERT 26M GH OAS MIT Ruffolo et al. (2021) 2021

AntiBERTa RoBERTa 86M GH OAS Apache-2.0 Leem et al. (2022) 2021

Sapiens RoBERTa 569K GH OAS MIT Prihoda et al. (2022) 2021

IgLM GPT-2 1.4M-13M GH OAS JHU Shuai et al. (2021) 2021

AntiBERTa2 RoFormer 203M HF OAS NC Leem et al. (2022) 2022

AbLang RoBERTa 86M GH OAS BSD Olsen et al. (2022) 2022

ProGen2-OAS GPT 764M GH OAS BSD-3-Clause Nijkamp et al. (2022) 2022

blBALM RoBERTa 650M GH Jaffe et al. (2022) MIT Burbach and Briney (2024) 2023

bioBALM ESM-2 150M GH OAS MIT Jing et al. (2023) 2023

SC-AIR-BERT BERT 23M GH BCRs and TCRs PNL Zhao et al. (2023) 2023

AbLang2 ESM-2 45M GH OAS BSD Olsen et al. (2024a) 2024

IgBert, IgT5 BERT, T5 420M-3B HF OAS MIT Kenlay et al. (2024) 2024
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chain type [AntiBERTy (Ruffolo et al., 2023), IgLM (Shuai et al.,
2021)]. pAbT5 (Simon et al., 2023) stands out as it is tasked to
predict one chain type starting from the other.

3 Antibody folding and inverse folding

AlphaFold2 (Jumper et al., 2021) led to impressive
improvements in the accuracy of protein sequence-to-structure
prediction. One of major bottlenecks for the runtime of
AlphaFold2 is the need to construct a Multiple Sequence
Alignment (MSA) from the input sequence. Recently, structural
information learned with PLMs has been leveraged to substitute the
MSA dependency leading to the release of sequence-only models
(ESMFold (Lin et al., 2023), BALMFold (Jing et al., 2023),
OmegaFold (Wu Ruidong et al., 2022), HelixFold-Single (Fang
et al., 2023) and EMBER3D (Weissenow et al., 2022)). Barret and
coauthors (Barrett et al., 2022) compared an AlphaFold architecture
using either only MSA or sequence (MonoFold) or both inputs
together (PolyFold) and showed that the two input modes are
complementary to each other, although using MSA has still
higher performance. The reliance of AlphaFold2 on the MSA is
also reflected in the lower accuracy when predicting the structure of
orphan and de novo proteins. Both RGN2 (Chowdhury et al., 2021)
and trRosettaX-Single (Wang et al.) have been proposed to address
this limitation. More recently several models have been published
addressing the structure prediction at the atomic level [Protpardelle
(Chu et al., 2023), EquiFold (Lee et al., 2022), RoseTTAFold All-
Atom (Krishna et al., 2024)] instead of the amino acid level, opening
up new possibilities for modelling protein complexes with DNA,
RNA, and small molecules. This is also the focus of AlphaFold3
(Abramson et al., 2024).

The prediction of antibody structure carries additional
challenges with respect to other proteins. The Complementary
Determining Regions (CDRs) responsible for the binding with
the antigen are the most variable and therefore difficult to
predict, especially the CDR3 region of the heavy chain (HCDR3).
Several models have been published to address these challenges
[ABlooper (Brennan et al., 2022), IgFold (Ruffolo et al., 2023),
EquiFold (Lee et al., 2022), DeepAB (Ruffolo et al., 2022),
ABodyBuilder2 (Brennan et al., 2023)]. ABodyBuilder2 is part of
the ImmuneBuilder (Brennan et al., 2023) suite and has better
performance with respect to ABlooper, IgFold, EquiFold and
AlphaFold-Multimer (Evans et al., 2021), specifically for the
prediction of the HCDR3 loops, achieving a RMSD of 2.81 Å.
This improvement was achieved by using an ensemble of four
models built on the structure module of AlphaFold-Multimer
followed by refinement with OpenMM and pdbfixer. tFold-Ab
(Wu Jiaxiang et al., 2022) first computes single chain structure
predictions using the PLM ProtXLNet (Ahmed et al., 2022) and then
predicts the multimer conformation of the heavy and light chains
using a simplified version of the Evoformer module of AlphaFold
that takes single sequence in input. However, the availability of this
method only as a web-server hinders the possibility to assess its
performance with respect to available benchmarks.

DL has been recently applied to the inverse folding problem, that
is the problem of determining which sequences can fold into a
predefined structure. This is especially useful in the context of

protein and antibody design. For instance, the structure for a
particular antibody sequence can be first derived with folding
models, further optimized in structure space for developability
properties and then converted back into sequence format for
experimental validation. Inverse folding models for general
proteins include ESM-IF1 (Hsu et al., 2022), KW-Design (Gao
et al., 2024), ProRefiner (Zhou et al., 2023), GraDe_IF (Yi et al.,
2023), ProteinMPNN (Dauparas et al., 2023) and SeqPredNN
(Adriaan Lategan et al., 2023). Inverse folding methods
specifically designed for antibodies are AntiFold (Haraldson Høie
et al., 2024), AbMPNN (Dreyer et al., 2023), IgDesign
(Shanehsazzadeh et al., 2023) and DiscoTope-3.0 (Haraldson
Høie et al., 2024). AntiFold is a version of ESM-IF1 fine-tuned
on experimental and predicted antibody structures.

Table 2 summarizes the information of the models mentioned in
this section with the respective licenses.

4 Developability

Screening for a high affinity antibody is only the first step in the
antibody development process. To match the characteristics of
therapeutic antibodies, the selected antibody must be further
optimized to adhere to the properties of therapeutic antibodies
(developability) (Fernández-Quintero et al., 2023; Khetan et al.,
2022). Raybould and coauthors (Raybould et al., 2024) developed
the Therapeutic Antibody Profile, a webserver used to evaluate
antibody developability as including immunogenicity, solubility,
specificity, stability, manufacturability, and storability. They
focused on five metrics calculated from the CDRs based on total
length, surface hydrophobicity, positive and negative charge of
surface patches, and net charge of VH and VL chains.

Habib and coauthors (Habib et al., 2023) have compiled a list of
40 sequence- and 46 structure-based developability parameters
(DP). They showed that sequence DPs are better predictors than
structure DPs in single DP ablation experiments using Multiple
Linear Regression (MLR) layer, especially when using sequence-
based embeddings generated with the PLM ESM-1v as features. This
reflects the fact that ESM-1v has direct access to the sequence
information it is trained on and only learns structure
information indirectly from sequence.

For the scope of this review, we will focus on ML methods for
humanization and prediction of solubility, Methods for aggregation
predictions are not mentioned, and viscosity. Humanization is the
process of lowering the risk of immunogenicity by increasing the
human-like content of the antibody sequence while maintaining
binding affinity (Carter and Rajpal, 2022). Solubility, aggregation,
and viscosity are properties that determine if an antibody will
perform well in a solution. These are properties that are
important for sub-cutaneous delivery, which represent an
attractive alternative with respect to intra-venous delivery because
of ease and speed of administration (Viola et al., 2018) but require
maximizing the dose (Jiskoot et al., 2022). If an antibody has been
selected in a screening procedure that uses the naive immune
repertoire of a non-human species, when administered to a
patient it can elicit an immunogenic response, whereby Anti-
Drug Antibodies (ADAs) are raised against the engineered
antibody by the immune system of the host. Humanization is the
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process by which non-human residues lying outside of the epitope-
binding regions are iteratively swapped with human-like residues to
increase the humanness of the antibody while retaining its binding
affinity. Several ML methods have been presented to address
humanization. Hu-mAb (Marks et al., 2021) uses a set of V gene
type-specific Random Forest (RF) models to iteratively select the top
scoring single-site mutation in the framework region based on a
humanness score until it reaches a target score.

BioPhi (Prihoda et al., 2022) is a platform for humanness
evaluation and humanization. Humanness is evaluated using
OASis, a database of 9-mers (k-mers of nine residues)
constructed from over 188 million sequences from 231 human

subjects comprising 26 studies. Humanization is performed with
Sapiens, which comprises two chain-specific ALMs, one for the
heavy and one for the light chain, trained using a MLM objective on
20 million heavy chain human sequences from 38 OAS studies from
2011 to 2017, and 19 million light chain human sequences from
14OAS studies from 2011 to 2017. The Sapiens network returns per-
position posterior probabilities for all 20 amino acids conditioned on
the input sequence that are used to introduce humanizing
mutations. BioPhi includes an interface (Designer) that allows to
select which of the suggested mutations the user would like to
introduce. The software is available as a web-server or with a
command line interface for processing set of sequences.

TABLE 2 Specification for general protein foldingmodels (top), antibody-specific foldingmodels (middle) and inverse foldingmodels (bottom). DeepAb and
ABodyBuilder2 are ensemble of models. The table follows the same structure as Table 1, apart from the Base column that does not apply here. The models
for which we could not determine the number of parameters are indicated as NA in the Params column. GH: GitHub. HF: HuggingFace.

Model Params Code Training data License Refs Year

AlphaFold2 93M GH PDB Apache 2.0 Jumper et al. (2021) 2021

RGN2 NA GH ProteinNet12, ASTRAL SCOPe NA Chowdhury et al. (2021) 2021

OpenFold 93M GH PDB Apache 2.0 Ahdritz et al. (2022) 2022

ESMFold 692M GH UniRef50, PDB, AlphaFold2 predictions MIT Lin et al. (2023) 2022

trRosettaX-Single NA Web-server PDB NA Wang et al. (2022) 2022

OmegaFold 795M GH UniRef50, PDB Apache 2.0 Wu et al. (2022a) 2022

EquiFold 2M GH Rocklin2017 (Rocklin et al., 2017), SAbDab Apache 2.0 Lee et al. (2022) 2022

HelixFold-Single NA GH UniRef30, Uniclust30, PDB, AFDB Apache 2.0 Fang et al. (2023) 2022

EMBER3D NA GH SidechainNet MIT Weissenow et al. (2022) 2022

MonoFold, PolyFold NA GH PDB NC-SA 4.0 Barrett et al. (2022) 2022

BALMFold NA GH SAbDab MIT Jing et al. (2023) 2023

Protpardelle 22M GH CATH S40 MIT Chu et al. (2023) 2023

RoseTTAFold All-Atom NA GH PBD, Cambridge Structural Database BSD Krishna et al. (2024) 2023

AlphaFold3 NA NA PDB, MGnify, Rfam, JASPAR NA Abramson et al. (2024) 2024

ABlooper 662K GH SAbDab BSD 3-Clause Brennan et al. (2022) 2021

DeepAb 6.4M x5 GH SAbDab Rosetta-DL Ruffolo et al. (2022) 2021

ABodyBuilder2 7.6M + 26.8M x3 GH SAbDab BSD 3-Clause Brennan et al. (2023) 2022

tFold-Ab NA NA SAbDab NA Wu et al. (2022b) 2022

IgFold 1.5M x4 GH SAbDab, AlphaFold predictions JHU Ruffolo et al. (2023) 2023

ESM-IF1 124M GH,HF CATH MIT Hsu et al. (2022) 2022

ProRefiner 2.5M GH CATH NA Zhou et al. (2023) 2023

GraDe_IF 3.8M GH CATH NA Yi et al. (2023) 2023

ProteinMPNN 1.7M GH PDB Apache 2.0 Dauparas et al. (2023) 2023

SeqPredNN NA GH PDB GPL-3.0 Adriaan Lategan et al. (2023) 2023

AntiFold 141.6M OPIG SAbDab, ABodyBuilder2 predictions BSD 3-Clause Haraldson Høie et al. (2024a) 2023

AbMPNN NA Zenodo SAbDab, ABodyBuilder2 predictions CC-4.0 Dreyer et al. (2023) 2023

IgDesign NA NA PDB, SAbDab NA Shanehsazzadeh et al. (2023) 2023

DiscoTope-3.0 NA BioLib PDB On request Haraldson Høie et al. (2024) 2024

KW-Design NA GH CATH Apache 2.0 Gao et al. (2024) 2024
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An alternative method not based on DL is AntPack (Parkinson
and Wang, 2024). First, the authors developed a new antibody
numbering method that is much faster than existing methods.
Then they fitted a gaussian mixture model on the numbered
antibody sequences using 60 million heavy and 70 million light
sequences from the cAbRep database (Guo et al., 2019). The authors
originally trained the model on human sequences of the OAS dataset
and by inspecting the sequences of the training set that were
responsible of giving unusually high probability to mouse
sequences were able to identify more than 7,000 sequences that
had been incorrectly labelled as both mouse and human.

Therapeutic antibodies are often produced and utilized at high
concentration, so they require high solubility and low aggregation.
Several methods have been proposed to predict solubility from
sequence-based and structure-based features. SOLart (Hou et al.,
2020) is a Random Forest model trained on a combination of
52 sequence-based and structure-based features. In a comparison
with 9 SOTA methods using a dataset of experimentally determined
and modelled structures of S. cerevisiae it was able to achieve a
Pearson correlation of 0.65. Language models have been recently
employed for binary prediction of soluble versus non soluble
proteins, either by using fine-tuning or by training only the last
classification layer of the neural network. NetSolP (Thumuluri et al.,
2022), an ensemble of fine-tuned ESM1b models, achieves a
performance comparable to the version of ESM with MSA input
on datasets of proteins expressed in E. coli that were assessed for
solubility.

Another favorable property related to developability for
antibodies to perform well in a solution is low viscosity. Rai et al.

(2023) proposed PfAbNet-viscosity, a 3D convolutional neural
network to predict viscosity from antibody structures trained
under a low training data regime. The authors used data
augmentation to try to mitigate the limitations of working with
few antibodies for training. PfAbNet-viscosity outperformed two
SOTA models, Sharma (Sharma et al., 2014) and Surface Charge
Model (SCM) (Agrawal et al., 2015).

5 Discussion

The field of antibody discovery and development is experiencing
an acceleration thanks to the successes of DL in protein structure
prediction and representation learning from protein sequences.
Here we focused on the applicability of these methods and
resources in an industrial setting, especially with respect to the
possibility of integrating these methods into commercial products.
In Table 3 we highlighted a selection of protein and antibody-
specific models for sequence, folding, inverse folding and
developability (humanization). Our choice is based on our
assessment of usability and license considerations.

To evaluate the performance of these models, a benchmark has
been recently proposed, Fitness Landscape for Antibodies (FLAb),
that covers six properties of therapeutic antibodies: expression,
thermostability, immunogenicity, aggregation, polyreactivity and
binding affinity (Chungyoun et al., 2024). The models considered
in the study include decoder-only generative models trained with
next token prediction [ProGen2 (Nijkamp et al., 2022), IgLM (Shuai
et al., 2021) and ProtGPT2 (Ferruz et al., 2022)], encoder-only

TABLE 3 A selection of models with highlighted strengths and limitations. General protein models (top) and antibody-specific models (bottom).

Type Models Strengths Limitations

PLM ESM-2, ProtTrans • available on HuggingFace
• multiple model sizes

• no antibody-specific pretraining

ProtGPT2 • available on HuggingFace

Folding AlphaFold2,
OpenFold

• accurate prediction of single protein chains and protein complexes (AlphaFold-
Multimer)

• only residue-level modelling

RosettaFold All-Atom • atomic-level modelling
• can predict multiple types of protein complexes

• not antibody-specific

Inverse Folding ESM-IF1 • large augmented training set • not antibody-specific

ProteinMPNN • experimentally validated

ALM AbLang2 • focal loss mitigates germline bias

IgBert, IgT5 • large antibody training set size • not available on HuggingFace
• limited training set for paired
antibodies

Ab Folding ABodyBuilder2 • computational cost
• improved accuracy at HCDR3 regions
• integrated in SPACE2 (Dreyer et al., 2023)

• not available on HuggingFace

ABlooper • CDR specific

Ab Inverse Folding AntiFold • antibody-specific • not available on HuggingFace

Developability BioPhi (Sapiens) • humanness report
• web-based and command line interfaces

• trained on unpaired chain data

AntPack • computational cost
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models for representation learning [AntiBERTy (Ruffolo et al.,
2023)], inverse folding models [ProteinMPNN (Dauparas et al.,
2023), ESM-IF (Hsu et al., 2022)] and a physics-based model
[Rosetta (Koehler Leman et al., 2020)]. The authors showed that
none of the models outperformed all the other models for all the
tasks, underscoring the challenges in the development and
application of these models for specific tasks.

Additional insights on how to improve these models will come
from extending these benchmarks to different models, including
PLMs like ESM-2 fine-tuned on antibody sequence data. With the
increased availability of predicted antibody structures the current
direction in the field is to integrate structural information in ALMs,
with AntiBERTa2 (Barton et al., 2024) being an example. Antibody
datasets, such as OAS, suffer from a germline content bias that can
prevent the model from suggesting mutations that are further away
from the germline sequence space. AbLang2 (Olsen et al., 2024b) is a
recent model that addresses this bias, where the authors trained the
model to focus more on non-germline residues using focal loss
instead of cross-entropy loss to handle the class imbalance of
germline versus non-germline residues in the training data.

The availability of models specifically developed for antibody
structure prediction and inverse folding models allows to address the
developability optimization problem both in sequence and structure
space. This is particularly important as optimization in sequence
space appears to be more constrained than in structure space (as
mentioned in the developability cartography study (Habib
et al., 2023)).

Humanization is the process that is best addressed by current
developability methods, while other methods aimed at predicting
solubility and viscosity suffers from the limited availability of
experimental data for training and have been exploring less the
application of language models.

These are exciting times for antibody discovery and
development with AI that is being leveraged as a catalyst to
accelerate and de-risk drug development on many fronts. We are

starting to see how the process of bringing a drug from discovery to
pre-clinical and clinical trials can be shortened and how the costs of
this process can be reduced. The next few years will continue to see a
fast-paced development and integration of these methods and
resources in industrial applications, with the goal of ensuring
that a newly found treatment can arrive faster to the patients.
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