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Quantitative structure activity relationship (QSAR) is a widely used tool in rational
drug design that establishes relationships between the physicochemical and
topological descriptors of ligands and their biological activities. Obtained
QSAR models help identify descriptors that play pivotal roles in the biological
activity of ligands. This not only helps the prediction of new compounds with
desirable biological activities but also helps with the design of new compounds
with better activities and low toxicities. QSAR commonly uses lipophilicity (logP),
hydrophobicity (logD), water solubility (logS), the acid–base dissociation constant
(pKa), the dipole moment, the highest occupied molecular orbital (HOMO), the
lowest unoccupied molecular orbital (LUMO), molecular weight (MW), molar
volume (MV), molar refractivity (MR), and the kappa index as physicochemical
parameters. Some commonly used topological indices in QSAR are the Wiener
index, Platt index, Hosoya index, Zagreb indices, Balaban index, and E-state index.
This review presents a brief description of the significance of themost extensively
used physicochemical and topological parameters in drug design.
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1 Introduction

A drug is defined as a chemical substance with a well-established and known structure that,
when introduced, brings about a positive biological effect by restoring or modifying the
physiology of the body (Benedetti, 2014). Developing a drug is a difficult, expensive, and tedious
exercise. It takes approximately two decades and an average expense of US$1–2 billion to make
a drug available at pharmacies. The high-risk nature of the process can be better comprehended
by realizing that 90% of drug development projects fail once they enter the initial phase of a
clinical trial. Possible causes reported for the failures are poor clinical efficacy (40%–50%),
toxicity (30%), poor druggability (10%–15%), and strategic factors (10%). The biological
activities of molecules primarily depend on their structure, physicochemical parameters,
topological parameters, and the mechanism they take up. It is therefore important to have
a better understanding of these parameters, which are significant in improving the activity of
molecules, to avoid failures in drug design at the latter stages (Macalino et al., 2015).

In silico is an innovative computer-aided drug design approach that employs computational
methods to identify potential drugs through the virtual screening of large chemical databases
(Wang et al., 2015). The potential toxicity and druggability of candidate drugs are also tested in
silico, which helps reduce the number of compounds that need to be evaluated in laboratories,
resulting in a rational drug design and a 50% reduction in cost and time (Wang et al., 2015;
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Surabhi and Singh, 2018). The in silico approach has shown accelerated
growth in recent decades because of the availability of large amounts of
data and introduction of advanced computational methods supported
by the latest AI techniques. Several drugs, such as darunavir, tipranavir,
lopinavir, and ritonavir used to treat HIV/AIDS; oseltamivir and
zanamivir to treat influenza; and imatinib, sorafenib, erlotinib,
crizotinib, and ribociclib to treat cancer, were developed in silico.
Rational drug design takes up two different courses: structure-based
drug design and ligand-based drug design (LBDD) (Philip et al., 2007).
LBDD is helpful when the experimental data and three-dimensional
structures of target proteins are not available. It adopts the indirect line
and studies the structural and physicochemical properties of known
ligands that are pivotal for their biological activities (Acharya et al.,
2011;Wilson and Lill, 2011). Quantitative structure activity relationship
(QSAR) and pharmacophore are two widely used tools in LBDD.

2 Quantitative structure activity
relationship

QSAR relates the chemical structures of ligands to their
biological activities. Two- and three-dimensional structures of
known ligands are evaluated to identify the molecular descriptors
that are vital for the biological activity. Based on the similar
descriptors, new ligands with similar structures are predicted to
have better inhibitory activity and lower toxicity (Rudrapal and
Egbuna, 2022).

3 Role of physicochemical descriptors
in drug design

Descriptors are the numeric expressions of the chemical
characteristics of compounds (Rudrapal and Egbuna, 2022).
Physicochemical descriptors of ligands that correlate well with
the binding energy are significant for biological activity.
Interaction of the ligand with the receptor and its energetic
and entropic terms decide its biological activity. For example, the
hydrophobicity of a compound indicates its dispersive and
electrostatic interaction with the receptor, and as there is a
close relationship between polarizability and the dispersive
force and density of a charge on an atom and electrostatic
forces, these factors have to be accounted for when
calculating hydrophobicity (Ghose and Crippen, 1987). Some
of the most common physicochemical properties are described in
the following sections.

3.1 Octanal–water partition coefficient
(lipophilicity logP and hydrophobicity logD)

Lipophilicity is one of the main influencing factors in the
transportation of a drug through a biological membrane in
lipophilic medium (Raevsky, 2004; Davis and Leeson, 2023). The
conventional method for determining lipophilicity is the partitioning
of a drug between n-octanal and water (Raevsky, 2004), as follows:

LogP � log10 Drugn−octanal /Drugwater[ ].

Most of the reported QSAR/Quantitative Structure Property
Relationship (QSPR) models have an integrated logP term that
indicates the significance of lipophilicity in predicting the biological
activity of a drug (Raevsky, 2004). The use of a 1-octanal–water pair
to measure logP was first reported, and Hansch et al. developed a
hydrophobic substituent constant π to determine it (Fujita et al.,
1964). Different approaches to determining the value of logP have
been reported, such as the fragmental approach, which was found to
be an easier method for determining logP (Leo et al., 1975; Rekker,
1977), and Computer Automated Structure Evaluation of Molecules
(MCASE) group contribution and atomic contribution approaches,
which found the logP values of the 935 and 893 compounds,
respectively (Ghose and Crippen, 1987; Klopman and Wang,
1991). Other methods reported to model logP are molecular
fingerprints (Liu and Zhou, 2008), multiple linear regression,
support vector machines, radial neural networks and artificial
neural networks (Chen, 2009), and E-state indices (Kier and Hall,
1999). Hydrophobicity is expressed as a distribution constant
through the partition of a drug at a certain pH value (Dearden,
2012; Davis and Leeson, 2023), as follows:

LogD(7.4) � logP– log(1 + 10pH – pKa) (in acidic medium).
LogD(7.4) � logP – log(1 + 10pKa− pH) (in basic medium).
LogD � logP– log(1 + 10pKa1 − pH + 10pKa2 − pH) (for a

zwitterion) (Davis and Leeson, 2023).

3.2 Water solubility (logS)

Several studies have been performed to determine the value of
water solubility from the molecular and physicochemical properties
of drugs to evaluate their Absorption, Distribution, Metabolism,
Excretion and Toxicity (ADMET) profile (Raevsky, 2004; Wenlock
and Barton, 2013). Water solubility and hydrophobicity are
inversely related to each other and can be estimated through the
relationship given as (Hansch et al., 1968; Yalkowsky and
Valvani, 1980)

Log S � −1.07 log P + 0.67.

With an increase in the hydrogen bonds effect, the solubility
in water increases and decreases with the increase in steric
bulk. Applying linear and nonlinear relationships, different
physicochemical descriptors were used to determine the value
of logS. These descriptors include molecular volume, molecular
weight, polar surface area, fractional hydrogen donor surface
area, molecular polarizability, molecular refractivity, Linear
Free-Energy Relationships (LSER) descriptors, log P, dipole
moment, heat of formation, total energy, electronic energy, the
number of hydrophilic rotatable bonds, the number of H-B
donor–acceptors, and E-state (Raevsky, 2004). As most of the
drugs are in solid form, crystal lattice energy is calculated, which
is related to its melting point (Dearden, 2012). Therefore,
aqueous solubility can be modeled using logP and the melting
point (Yalkowsky and Valvani, 1980) as follows:

Log S � 0.87–1.05 log P–0.012MP.
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3.3 The acid–base dissociation
constant (pKa)

The acid–base dissociation constant is another key factor that
affects the ADMET profile of a drug by influencing its lipophilicity,

aqueous solubility, and permeability. As drugs are either a weak acid
or base, the calculation of their dissociation constant assists in
understanding their ionic forms across different pH values
(Manallack, 2007). The dissociation constant is calculated using
the following formula (Wenlock and Barton, 2013):

FIGURE 1
Interrelated significance of physicochemical properties and the topological index.
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pKa � − log10 Ka ≈ − log10
H+[ ]aq Base[ ]aq

Acid[ ]aq .

Generally, the pKa, Hammett substituent constant (σ), and acid
dissociation constant are related to each other as (Livingstone, 2003;
Dearden, 2012)

pKa(derivative) � pKa(parent)–ρσ (where ρ = series constant).

4 Role of topological descriptors in
drug design

Topological indices or descriptors are the result of the successful
application of mathematical “graph theory” in chemistry, in which
chemical structures are represented as graphs. These two-
dimensional graphs are then used to obtain numeric values for
topological indices (Gozalbes et al., 2002). The calculation of
topological indices is easy and fast; they correlate quite well with
the physicochemical properties and biological activities of
compounds and are therefore widely used in QSAR/QSPR
(Dearden, 2017). The size and shape of the molecule, number of
rings present, branching of the carbon chain, π-electron energy,
molar refractivity, molar volume, heat of formation, and heat of
vaporization are molecular properties that decide the significant
interaction between the ligand and receptor. Some of the most
common topological indices are described in the following sections.

4.1 Wiener index (W) and Platt index

The Wiener index refers to the C-C bonds between all pairs of
C-atoms in alkane. This index has been used to determine the
boiling points of some straight-chain and branched-chain alkanes
(Dearden, 2017). Additionally, the Wiener index has been used to
predict the toxicity of some nitrobenzenes to T. pyriformis (Ivanciuc,
2000). The Platt index is the total sum of adjacent bonds for each
atom in alkane. This index has been used in several QSARmodels to
study the anti-leishmanial activity of phloroglucinol–terpene
adducts (Bharate and Singh, 2011).

4.2 Hosoya index (Z)

This index refers to the total number of non-adjacent bonds in a
compound (Dearden, 2017). The utility of the Hosoya index in
combination with other descriptors was reported in a QSAR study to
predict the anti-Alzheimer activity of a set of N-aryl derivatives
(Solomon et al., 2009).

4.3 Zagreb indices

The number of non-H-bonds formed by heavy atoms in a
compound is squared, and the total sum of these squares is
calculated as the Zagreb index (Dearden, 2017). The Zagreb
group parameters M1 and M2 were found to be useful in
predicting the pharmacokinetic parameters of cephalosporins in
humans (Dureja et al., 2008).

4.4 Balaban index (J)

The Balaban index is a connectivity index that takes the sum of
average distances between atoms in a molecule into account
(Dearden, 2017). The index significantly modeled the QSAR
study of benzenesulfonamide as a carbonic anhydrase inhibitor
(Thakur et al., 2004).

4.5 E-state index

This index was developed by Kier and Hall (1999) by integrating
the electronic and topological features that characterize the atomic
level of interaction inside themolecule (Gozalbes et al., 2002; Dearden,
2017). Successful QSAR modeling of benzofuran derivatives
(melatonin receptor) and hydroxyphenylureas (antioxidants) has
been reported using a combination of physicochemical descriptors
with the E-state index (Sengupta et al., 2004; Ray et al., 2010). Selecting
suitable physicochemical and topological parameters of compounds is
crucial in the identification of the inhibitory activities of compounds
(depicted in Supplementary Table S1).

5 Conclusion

Owing to the cost-effective and time-efficient nature of rational
drug design, almost every drug development project has adopted the in
silico method, which uses several computational and statistical
techniques that are constantly being improved. Therefore, the
success of these projects requires deep knowledge of and skill in
using these techniques efficiently. Moreover, advancements in
genome sequencing and crystallography have resulted in an
increasing amount of data becoming available in databanks. While
performing QSAR, it is essential to identify and select suitable
parameters, as this determines the credibility and reliability of the
model. The selection of an excessive number of descriptors in QSAR/
QSPR should be avoided as it can result in overfitting. In this review, we
have provided an overview of the significance of selecting and using
suitable physicochemical and topological descriptors in predicting the
biological activities of compounds. The interrelated role of
physicochemical and topological descriptors is depicted in Figure 1.

QSAR, machine learning, and virtual screening (VS) are artificial
intelligence (AI) approaches that have been successfully used in
rational drug design to reduce the time and cost. Recently, deep
learning (DL), a new AI approach, has gained popularity due to its
efficiency in analyzing big data. DL-de novo and DL-VS approaches
are widely used. The prediction of the three-dimensional structure of
proteins using one-dimensional amino acid sequences, drug DSP-
1181 entering clinical trials, and the prediction of anti-Plasmodium
falciparum are a few successes of DL. Owing to its efficiency in
dealing with massive data, it is expected that DL will be useful in
drug repurposing, genome mining, and toxicity prediction.
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