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Drug discovery is a costly and time-consuming process, especially because of the
significant expenses connected with the high percentage of clinical trial failures.
As such, there is a need for new paradigms enabling the optimization of the
various stages, from hit identification to market approval. The upsurge in the use
of artificial intelligence (AI) technologies and the advent of deep learning (DL)
demonstrated a lot of promise in rethinking and redesigning the traditional
pipelines in drug discovery, including de novo molecular design. In this regard,
generative models have greatly impacted the de novo design of molecules with
desired properties and are being increasingly integrated into real world drug
discovery campaigns. Herein, we will briefly appraise recent case studies utilizing
generative models for chemical structure generation in the area of anticancer
drug discovery. Finally, we will analyze current challenges and limitations as well
as the possible strategies to overcome them, outlining potential future directions
to advance this exciting field.
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1 Introduction

The path from the identification to successful market approval of a new medicine is
lengthy and complicated, often lasting more than 10 years and requiring impressive
financial resources (Kiriiri et al., 2020). This process depends upon many steps, from
target discovery and validation, hit identification, lead optimization, rigorous validation and
testing in both preclinical and clinical context, regulatory approval, and post-marketing
surveillance. However, due to intrinsic safety concerns, unsatisfactory efficacy against
specific diseases, and complex regulatory procedures, the attrition rate of therapeutic
candidates remains substantial (Waring et al., 2015). Therefore, exploring new technologies
is pivotal for the industry to improve the efficiency of the drug discovery process.
Computational approaches have emerged as valuable tools to model, simulate, and
evaluate molecular interactions and processes or to predict physicochemical properties
relevant for pharmacokinetics (PK) and toxicity. For instance, virtual screening enables the
quick evaluation of compound libraries, to facilitate the discovery of prospective drug
candidates with the desired interactions and characteristics (Lavecchia and Di
Giovanni, 2013).

The increasing amount of biomedical data and the advancements in computing
capabilities laid the foundations for the use of machine learning (ML) or artificial
intelligence (AI) techniques for mining such data, retrieve useful patterns and support
decision making (Lavecchia, 2015; 2019; Cerchia and Lavecchia, 2023). In addition, deep
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learning (DL) has demonstrated significant potential in tackling
challenging tasks related to drug discovery, such as de novo
molecular design, that is the process of (computationally)
creating novel potential ligands from scratch (Lecun et al., 2015).
Deep generative models have evolved as a fascinating area of
research, with implications across a multitude of domains,
delivering exceptional outcomes in the realm of image generation
(Radford et al., 2016), textual synthesis (Bowman et al., 2016),
speech reproduction (Oord et al., 2016), and even music
composition (Engel et al., 2017). In the case of generative models
for molecule generation, a DL-based model is trained using chemical
structures (typically obtained from databases) to identify patterns
and learn the basics of chemistry; then, the extracted knowledge is
employed to construct novel molecules, that is, the de novo design
(Cerchia and Lavecchia, 2023). In this mini-review, we focus on the
most recent case studies on the application of generative models in
the field of anticancer drug discovery; rather than delving into the
technical details about the models used, which have been extensively
reviewed elsewhere (Cheng et al., 2021; Meyers et al., 2021; Tong

et al., 2021; Bilodeau et al., 2022; Wang et al., 2022; Cerchia and
Lavecchia, 2023; Pang et al., 2023), we decided to put more emphasis
on the preclinical evaluation of the generated candidates.

2 Generative models in brief

The rise of generative models prompted fresh ideas and new
perspectives in the challenging field of drug design and
development. While conventional approaches mostly depend on
human expertise, generative models rely on the recent
advancements in deep learning to address molecular design:
identifying a set of compounds that possess the desired
characteristics for a specific target by establishing a mapping
function between properties and molecular structures (Kusner
et al., 2017; Segler et al., 2018; Jin et al., 2021). In the last years,
the application of generative models with varying molecular
representations, architectures, and target design problems had an
exponential growth (Cheng et al., 2021; Meyers et al., 2021; Tong

FIGURE 1
(A) Schematic overview of generative model workflow. Molecular structures are encoded either as SMILES strings or molecular graphs. The deep
learning (DL)-based model is first trained with data from molecular databases and then generates new chemical structures with similar properties.
Evaluation metrics are then used to validate the compounds’ structure quality. Compounds designed with the aid of generative models (B) Compound
B003, identified by using a LSTM-based generative model, and its optimized derivative B026 as inhibitors of p300 histone acetyltransferase. (C)
Compound 7a, designed by a goal-directed molecular generation approach, and its derivative 10r, as ATM kinase inhibitors. (D) Compound 1, identified
by the AI-based platformChemistry42, and its optimized derivative 23 as CDK8 inhibitors. (E)Compound 1, generated bymeans of the GENTRL approach
as DDR1 kinase inhibitor.
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et al., 2021; Bilodeau et al., 2022; Wang et al., 2022; Cerchia and
Lavecchia, 2023).

The process of molecule generation with generative models can
be divided into main steps (Figure 1A): first, a reference database or
dataset is selected and converted into a computer-readable
representation. In most cases, such representation is string-based,
such as SMILES format, or graph-based, in the form of molecular
graphs. These latter are subsequently converted into a numeric
feature matrix, in order to train the generative model to learn
chemical patterns from existing molecules. On the basis of the
different model’s architecture, the matrices feed the model, and
the molecular generation process is reiterated until the desired
properties scores are reached.

Most generative models rely on deep neural networks. These
latter usually sample new compounds from a latent representation of
molecular structure learned by the neural network during model
training; thus, they basically behave, as “statistical structure
generators” (Tropsha et al., 2023). The most critical and prone to
error step in the design process is the evaluation of the target
property of the generated molecules, and multiple approaches to
accomplish such evaluation procedure have been proposed,
including quantitative structure-activity relationship (QSAR)
models, or systematically adjusting the parameters of the
generative model to prioritize the construction of molecules with
the required properties (for example, by one-shot or few-shot
learning, or reinforcement learning), or setting the evaluation
criterion to the probabilities that the generative model learned.
On the basis of the ML algorithm used for the adaptive model
optimization, we can refer to “reward” or “fitness” functions. The
encoding of chemical structures and the subsequent learning phase
are key aspects of the model optimization, which could be
considered similar to chemical descriptor calculation in
traditional QSAR modelling (Tropsha et al., 2023). QSAR
methods have progressively evolved with regard to both the
complexity of statistical or ML-based approaches to build models
and the size of the data sets used. While in QSAR modelling the
molecular descriptors are conceptualized to numerically
characterize molecular structures at different levels of structure
representation, DL-based models require molecular descriptors to
be properly engineered, because molecules are represented by
vectors in artificially constructed high-dimensional spaces that

are used in learning tasks using neural network architectures
(Tropsha et al., 2023). Moreover, DL-models are more
computationally demanding, require higher amounts of data for
training and suffer of a “black box problem,” that is, tracing how and
why the DL model makes a certain decision. Traditional ML
approaches depend more on domain knowledge, such as
statistical theories and mathematical models, whereas DL models
rather extract patterns that are not necessarily explainable.

Among the first and most prominent contributions, it is worth
mentioning the work from Gomez-Bombarelli et al. (Gómez-
Bombarelli et al., 2018), and the REINVENT model developed
within AstraZeneca (Olivecrona et al., 2017; Blaschke et al., 2020;
Loeffler et al., 2023). In order to enable insightful comparisons
between the growing number of generative models with different
flavors (outlined in Table 1), a variety of benchmarks and metrics
have been proposed. These benchmarks evaluate models on the basis
of factors such as distribution learning, chemical diversity, validity
and novelty (Brown et al., 2019; Polykovskiy et al., 2020).

The molecule “validity” refers to the generated molecules’
adherence to chemical rules, including valence criteria and
acceptable atom and bond types. Validity confirms the chemical
feasibility of the structures generated. In order to gauge the model’s
ability to produce novel chemical matter, “uniqueness” assesses the
proportion of non-redundant chemical structures among the valid
ones, while “novelty” refers to the portion of generated molecules
that are absent from the training set or other reference datasets. The
drug-likeness of the generated molecules is quantified in terms of
“quantitative estimation of drug-likeness” (QED) (Bickerton et al.,
2012), and mostly refers to the adherence of physicochemical
descriptors to marketed oral drugs. A higher QED would be
desirable, as it indicates the attractiveness of compounds as
“hits.” The “synthetic accessibility score” (SAS) gives an
estimation on the difficulty to synthesize the generated
compounds (Ertl and Schuffenhauer, 2009). A SAS value higher
than 5 denotes a compound that is more challenging to synthesize.
The publicly available platforms MOSES (Polykovskiy et al., 2020)
and GuacaMol (Brown et al., 2019) allow the evaluation of the
quality of generated molecules as well as the performances of the
model against other “baseline”models. Most of the works published
on generative models built upon 2D ligand information (Tong et al.,
2021; Bilodeau et al., 2022), thus possibly missing information about

TABLE 1 Exemplary deep-learning models for molecule generation.

Model Description References

Recurrent neural network (RNN) Performs recursive computation on the input sequence and all computation units are connected in a
chain. The initial RNN has the problem of long-term dependencies.

Mikolov et al. (2010), Bowman et al.
(2016)

Long Short-Term Memory
(LSTM)

Advanced variant of RNN which incorporates gate mechanisms to retain crucial input information
over extended time steps, addressing a limitation of traditional RNNs.

Hochreiter and Schmidhuber (1997)

Variational autoencoder (VAE) Comprises an encoder and decoder. The encoder converts the high-dimensional original input data
into a low-dimensional representation, or latent space. The decoder parses the latent space and
recreate the original input data.

Kingma and Welling (2014)

Generative adversarial
network (GAN)

Based on a generator-discriminator framework. It is inspired by the zero-sum game. The generator
tries to generate real data to deceive a discriminator unit.

Goodfellow et al. (2020)

Reinforcement learning (RL) Has three components: an agent, a reward function, and an environment. The objective is to
optimize the agent’s behavior towards a user-defined target. The reward function provides feedback
to the agent based on domain-specific rules.

Silver et al. (2017), Popova et al.
(2018)
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protein-ligand binding sites; however, some exemplary applications
of “3D generative models” are reviewed elsewhere (Xie et al., 2022;
Cerchia and Lavecchia, 2023). In the following section, we report
recent case studies regarding the application of generative models to
discover potential anticancer agents and corroborated by extensive
experimental validation.

3 Applications of generative models in
anticancer drug discovery

The evolution of deep-learning and generative models has also
opened new perspectives in anticancer drug discovery. The first
applications reported in literature mostly described theoretical work,
focusing on the model’s performances rather than on the
experimental validation of the generated compounds (Cerchia
and Lavecchia, 2023).

In the work proposed by Zhou et al. (Yang et al., 2020), a neural
network model based on LSTM (long short-term memory) was used
to design small molecules able to inhibit the histone
acetyltransferase (HAT) class of enzymes. These enzymes, which
include p300 and CREB-binding protein (CBP), play crucial roles in
many biological processes, including cell development, cell
differentiation, environmental stress response, and, in
pathological contexts, cancer progression (Iyer et al., 2004). The
model was first trained with about 200,000 bioactive molecules taken
from ChEMBL and then fine-tuned with a set containing
135 p300 inhibitors and 576 macrocycle molecules with proved
activity against challenging targets, e.g., protein−protein interactions
(PPI). Among the 500,000 molecules generated, 670 were selected by
using specific filters: (a) they do not violate more than one of
Lipinski’s rules of five, (b) they possess less complicated
structures (synthetic accessibility score ≤4.5), and (c) they show
favorable molecular docking scores. Through these filters, the
selection was reduced to 20 molecules and after visual analysis
compound B003 was proposed for synthesis and bioactivity assays
(Figure 1B). This compound showed an IC50 value of 10 nM against
p300 using radioactive acetyltransferase activity assay. Compound
B003 underwent optimization cycles to improve potency, drug
metabolism and pharmacokinetic properties, thus leading to the
identification of compound B026 (IC50 = 1.8 nM). This latter
exhibited very high (2000-fold) selectivity within the HAT family,
as well as significant inhibition of growth of androgen-receptor-
positive (AR+) prostate cancer cell lines (IC50 values of 9.8 and
4.4 nM in LnCaP-FGC and 22Rv1 cell lines, respectively). In Balb/c
female mice bearing MV-4-11 tumor cells, orally administered
B026 significantly inhibited tumor growth by 75% at 50 mg/kg
and 85.7% at 100 mg/kg.

Deng et al. (2023) proposed a combination of goal-oriented
molecule generation and virtual screening to discover new inhibitors
of the ATM (ataxia telangiectasia mutated) enzyme. This latter is a
member of the Phosphoinositide 3-kinase (PI3K)-related kinases
(PIKKs) and is activated in response to DNA damage, particularly
DNA double-strand breaks. When DNA damage occurs, as a result
of exposure to ionizing radiation or other damaging agents, ATM is
activated and initiates a signaling cascade that helps coordinate
DNA repair, regulate cell cycle checkpoints, and activate cellular
defense mechanisms such as apoptosis (Lee and Paull, 2007). As

ATM represents a feasible target for radiotherapy and chemotherapy
sensitization, specific ATM inhibitors have been studied to increase
the efficacy of anticancer therapies. However, no ATM inhibitor has
been approved to date, while there are only few inhibitors in clinical
trials. Since PI3K and ATM kinases share a good degree of structural
homology, they might display affinity for similar chemical moieties.
Some well-known PI3K inhibitors possess peculiar scaffolds, such as
quinolines and quinoxalines, that could be repositioned for ATM
inhibitors. To this aim, the authors employed a scaffold-constrained
goal-directed generative model. They first obtained a representative
conformation of ATM in complex with the inhibitorM4076 (Stakyte
et al., 2021) bymolecular dynamics. Then, they established the target
specificity and ligand electrostatic similarity as target optimization
properties. The ligand similarity part involved obtaining scores by
calculating the Tanimoto similarity of the generatedmolecules to the
electrostatic fingerprint of the inhibitor molecule template. The
target specificity, on the other hand, involved the structure-based
binding affinity prediction. The authors used an advanced
reinforcement learning algorithm, the hill climbing algorithm, to
fine-tune the RNN generation model to maximize the generation of
the highest-scoring molecules. This procedure generated
20,194 compounds; according to Lipinski’s rules, 6,543 potential
leads were obtained, which were then further reduced to 1,868 on the
basis of synthetic feasibility and drug-like characteristics. Through
molecular docking simulations, 30 molecules were selected.
Following ADME analysis and experimental evaluations,
compound 7a (Figure 1C) was chosen as the starting compound
demonstrating strong inhibitory activity on ATM (IC50 = 5 nM).
Extensive SAR studies eventually led to compound 10r (IC50 =
1.15 nM), with potent inhibitory activity on ATM and improved
metabolic stability. Compound 10r showed synergistic
antiproliferative effects with irinotecan against MCF-7 and
SW620 cells. Further experiments showed that 10r combined
with irinotecan suppressed HCT116 cells proliferation by
inducing apoptosis and cell cycle arrest in the G2/M phase. The
oral administration of compound 10r combined with irinotecan
(40 mg/kg) induced a significant and dose-dependent tumor volume
and tumor weight inhibition (up to 85.35%) in a human colon
cancer SW620 xenograft model, suggesting its potential as a
promising candidate drug combined with chemotherapy for
cancer treatment.

Zhavoronkov et al. (Li et al., 2023) reported the discovery of
cyclin-dependent kinase 8 (CDK8) inhibitors for the treatment of
cancer by using a suite of computational tools, including also
generative models. CDK8 is an enzyme belonging to the cyclin-
dependent kinase (CDK) family. This kinase regulates the cell cycle
and is active in the regulation of gene transcription through
phosphorylation of specific proteins involved in this process
(Szilagyi and Gustafsson, 2013). The overexpression of CDK8 has
been associated with the development of various cancers, including
colorectal cancer (Xi et al., 2019). Starting from the crystal structure
of CDK8 in complex with a reference inhibitor (PDB: 5IDN), the
authors first highlighted the important interactions between the
residues composing the binding pocket and the co-crystallized
ligand. Then, they decided to keep fixed the chemical groups
forming interactions with the “hinge” motif and the P-loop of
the kinase while modifying the linker, a pyrrolidine group, by
using a combination of generative chemistry and structure-based
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approaches. Compound 1 (Figure 1D), with a
dihydropyrrolotriazole fragment as a linker was thus identified,
showing a strong affinity for CDK8 with an IC50 of 0.4 ± 0.1 nM
as well as antiproliferative effects on the acute myeloid leukemia
(AML) cell line MV4-11 with an IC50 of 2.4 ± 0.4 nM. Although
compound 1 qualified as a good starting point, it displayed low
selectivity for CDK8. In fact, compound 1 and its first-generation
derivatives showed strong binding affinity to GSK3B (glycogen
synthase kinase-3 beta), which is involved in some cellular
toxicity processes. Further modifications to the chlorophenyl
group led to the discovery of compound 23, which displayed
strong affinity with CDK8 (IC50 = 0.70 ± 0.4 nM) and promising
anti-proliferative activity against MV4-11 (IC50 = 11.8 nM). It also
showed good microsome stability and low clearance in vivo, with
increased CDK8 selectivity. Compound 23 also showed significant
tumor growth inhibition in the AML CDX model as monotherapy
and in solid tumor syngeneic models as a combination with the
PDL1 antibody. The results of further preclinical profiling for
compound 23 are being awaited. The generative chemistry
approach employed in the above-described work has been
incorporated into Chemistry42, an AI-based commercial platform
(Ivanenkov et al., 2023), integrating different, interconnected
generative and predictive models (about 40) together with a
reinforcement learning system to evaluate and select optimal
molecules and make comparisons. The platform allows to
generate a huge number of molecules that pass within a reward
pipeline. This latter prioritizes high-scoring molecules, those that
achieve specific objectives such as metabolic stability, safety,
potency, and synthetic feasibility. Then, the models “learn” from
both highly- and poorly-scoring molecules and thus they are re-
trained to generate better molecules.

Before the release of this platform, Zhavoronkov et al. published
several studies about generative models for de novo design (Putin
et al., 2018b; 2018a; Polykovskiy et al., 2018; Zhavoronkov et al.,
2019), also establishing a network of collaborations among research
groups involved in this field. One of the most prominent works was
related to GENTRL (generative tensorial reinforcement learning)
(Zhavoronkov et al., 2019), a deep generative model used to discover
potent discoidin domain receptor 1 (DDR1) inhibitors in a very
short time. DDR1 is a collagen-activated kinase whose
overexpression has been associated with many pathological
phenomena such as fibrosis and cancer (Moll et al., 2019).
GENTRL model combined reinforcement learning, variational
inference, tensor decomposition (to capture the relationships
between the compounds and their properties) and self-organizing
maps (SOMs) as reward functions. The model was trained using first
ZINC datasets, and then DDR1 kinase inhibitors. Among the
identified compounds, 1 and 2 strongly inhibited DDR1 with
IC50 of 10 nM and 21 nM, respectively. Then, compounds 1 and
2 were tested in human cells to evaluate the inhibition of DDR1 and
the effect on fibrosis. Both molecules demonstrated high inhibitory
activity, reducing the induction of fibrosis markers such as α-actin,
CCN2 and collagen production. Finally, 1 (Figure 1E) showed good
efficacy and pharmacokinetic properties also in mice, confirming
good oral bioavailability, with half-life of about 3.5 h and significant
plasma concentrations after intravenous and oral administration.
The results presented in the work (Zhavoronkov et al., 2019) raised
some critiques, in particular that the selectivity profile towards

different kinases might be questionable; moreover, compound
1 was very similar to ponatinib (Walters and Murcko, 2020). The
authors acknowledged that selectivity of compound 1 should have
been assessed more in depth and that it requires further
optimization; however, the compound was still novel, and
therefore, patentable (Zhavoronkov and Aspuru-Guzik, 2020).
This debate stimulated the reflection that the scientific
community should adopt some guidelines to better assess the
molecules obtained by generative models, similarly to those
generated by medicinal chemists.

4 Challenges and potential future
directions

Undoubtedly, generative models provided proof-of-concept of
their significance within drug discovery projects. However, there is
room for improvements, in order to overcome some limitations.
Alternative molecular representations should be more extensively
explored, to address the problem of molecule’s validity often
encountered using SMILES. While few studies have implemented
three-dimensional representation and featurization (Xie et al., 2022),
SELF-referencIng Embedded Strings (SELFIES) (Krenn et al., 2020),
or DeepSMILES (O’Boyle and Dalke, 2018) have been also proposed.
However, their performances highly depend on the model’s settings.

There is a compelling need of robust benchmarks and metrics
towards more standardized procedures as well as uncertainty
quantification in model’s predictions, to improve decision
making (Mervin et al., 2021; Ballester, 2023). The existing
metrics are inherently limited and provide only an incomplete
view of the effectiveness of the generative models for real-world
applications. Given the increasingly complex DL architectures that
are currently being reported in literature, suitable methods and best
practices to fairly judge model’s performances are absolutely
required. Further crucial elements for expanding the use of DL-
based models in the biological sciences and reducing their black box
nature are the model’s interpretability and rationality of the
predictions. In fact, there is increased interest in explainable
artificial intelligence and a rise in the utilization of feature
attribution methods (such as SHAP values) (Rodríguez-Pérez and
Bajorath, 2020). Still, the most reliable and rigorous standard for
evaluating the generated molecules is the experimental validation;
moreover, assessing whether or not the candidate will make it to the
clinic requires further investigation, well outside the model’s
predictive ability. It is worth noting that, in the above-described
case studies, the role of the generative models was mainly to generate
new initial molecular design, which then underwent several
optimization cycles. Optimization was mostly guided by more
classical approaches, such as structure-based design, docking,
and, above all, human expertise.

5 Conclusion and outlook

The realm of drug discovery is currently facing exciting new
opportunities and challenges as a result of the constant growth and
implementation of AI technologies. These latter made significant
strides in the field of small molecule design, particularly in the areas
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of molecular generation and protein structure prediction, with a
growing number of AI-derived medications undergoing clinical
testing (Pun et al., 2023). Herein, we focused on the most recent
advances and exemplary applications of molecular generative
models in the field of anticancer drug discovery. However, there
are differing views. On the one hand, there is a generalized
dissatisfaction over the fact that the AI-promised revolution has
yet to happen, at least in the field of chemistry (Author Anonymous,
2023). One main concern regards the lack of high-quality data
available in an appropriate amount to feed the hungry AI systems.
Undoubtedly, more data are required, both from simulations and
experiments, as well as the cryptic information from failed
experiments. In addition, such data should be more readily
accessible to the public domain. It has been suggested that a
possible solution lies in pre-training models using abundant
unlabeled data for self-supervised learning (Ballester, 2023). The
majority of AI successes were accomplished in text, speech, and
images processing, whereas dealing with the more complex biology
data requires considerably more work and time. Therefore, at least
for the time being, the knowledge and skills of human experts
remain still crucial. Future significant developments in this area are
anticipated, with the long-term goal of creating an autonomous
design-make-test-analyze cycle with the integration of generative
models into automated laboratory systems capable of synthesizing
the generated compounds and conducting their experimental
evaluation (Schneider et al., 2020; Mervin et al., 2021).
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