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Purpose:Optimizing brain bioavailability is highly relevant for the development of
drugs targeting the central nervous system. Several pharmacokinetic parameters
have been used for measuring drug bioavailability in the brain. The most
biorelevant among them is possibly the unbound brain-to-plasma partition
coefficient, Kpuu,brain,ss, which relates unbound brain and plasma drug
concentrations under steady-state conditions. In this study, we developed
new in silico models to predict Kpuu,brain,ss.

Methods: A manually curated 157-compound dataset was compiled from
literature and split into training and test sets using a clustering approach.
Additional models were trained with a refined dataset generated by removing
known P-gp and/or Breast Cancer Resistance Protein substrates from the original
dataset. Different supervised machine learning algorithms have been tested,
including Support Vector Machine, Gradient Boosting Machine, k-nearest
neighbors, classificatory Partial Least Squares, Random Forest, Extreme
Gradient Boosting, Deep Learning and Linear Discriminant Analysis. Good
practices of predictive Quantitative Structure-Activity Relationships modeling
were followed for the development of the models.

Results: The best performance in the complete dataset was achieved by extreme
gradient boosting, with an accuracy in the test set of 85.1%. A similar estimation of
accuracy was observed in a prospective validation experiment, using a small
sample of compounds and comparing predicted unbound brain bioavailability
with observed experimental data.

Conclusion: New in silico models were developed to predict the Kpuu,brain,ss of
drug candidates. The dataset used in this study is publicly disclosed, so that the
models may be reproduced, refined, or expanded, as a useful tool to assist drug
discovery processes.
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1 Introduction

Characterization of the Absorption, Distribution, Metabolism
and Excretion (ADME) profile of drug candidates has gained a
remarkable relevance in drug discovery (Reichel and Lienau, 2015),
including the assessment of drug bioavailability (BA) at the site of
action (Cook et al., 2014). For drugs that aim to treat central nervous
system (CNS) disorders, brain BA implies crossing the blood–brain
barrier (BBB), one of the least permeable and most selective barriers
in the human body (Keaney and Campbell, 2015). In addition to
well-developed tight junctions that impair paracellular transport, the
BBB expresses a variety of efflux transporters that prevent the
passage of xenobiotics (Liu et al., 2018).

Several parameters have been used tomeasure drug bioavailability
in the brain (Lanevskij et al., 2013). The most biorelevant is possibly
the ratio of unbound drug in the brain to unbound drug in plasma
under steady-state conditions (Kpuu,brain,ss, Eq. (1)):

Kpuu,brain,ss � Cu,brain,ss

Cu,plasma,ss
(1)

where Cu,brain,ss and Cu,plasma,ss are the unbound brain and plasma
concentrations under steady-state conditions, respectively (Morales
et al., 2017). In contrast to Kpbrain (total brain-to-plasma
concentration ratio), Kpuu,brain,ss considers only the free drug
concentrations under steady-state, which are the most relevant
from a pharmacological perspective because they are directly
responsible for the pharmacological effect (Smith et al., 2010;
Benjamin et al., 2012; Summerfield et al., 2022). If a drug readily
crosses the BBB by passive diffusion, Kpuu,brain,ss should have an
approximate value of 1 (a similar value may be observed if active
uptake and efflux compensate each other, though (Liu et al., 2018)). In
contrast, Kpuu,brain,ss values below 1 indicate limited drug access to the
brain owing to efflux transporters and/or low passive permeability.
Conversely, values greater than 1 suggest active uptake mechanisms
(Summerfield et al., 2016). It should be emphasized that the above is
valid if concentrations are measured once steady-state has been
reached, and dynamic equilibrium of the concentrations on both
sides of the BBB has been achieved.

The determination of Kpuu,brain,ss by brain microdialysis is
considered the gold standard approach because it is the only
approximation that allows direct measurement of the in vivo free
drug concentration in the brain (Kielbasa and Stratford, 2015).
However, it is time-consuming and can only be performed by
highly trained staff members. In contrast, homogenate binding
(Kalvass et al., 2002) and brain slice (Loryan et al., 2013) methods
have been developed as medium to high-throughput techniques,
which allow estimation of brain unbound concentrations by
correcting the in vivo total brain concentration with an in vitro
determined parameter, either the unbound volume of distribution,
Vu,brain, or the fraction of unbound drug, fu,brain. The agreement
between the results of both in vitro techniques depends on the
compound under examination, and the slice method is considered
more reliable. Compared with microdialysis, the homogenate method
exhibits greater deviations from the in vivo results (Fridén et al., 2011).

With regard to the in silico prediction of Kpuu,brain,ss by means of
Quantitative Structure-Activity Relationships (QSAR), a relatively
small number of models have been reported, and they exhibit an

overall moderate performance (Liu et al., 2018; Ma et al., 2024).
Table 1 presents a summary of some of the previously reported in
silico QSAR models for predicting Kpuu,brain,ss.

The first QSAR model to predict Kpuu,brain,ss was reported in
2009 by Fridén et al. (Fridén et al., 2009), based on a regression
approach on a training set of 41 marketed drugs, with Kpuu,brain,ss
values derived from either the homogenate, brain slice or
microdialysis techniques. As stated earlier, Kpuu,brain,ss values can
be estimated by combining an in vivo estimate of Kp,brain in rat, and
the in vitro estimation of binding parameters in both brain (fu,brain)
and plasma (fu,plasma) (Eq. (2)).

Kpuu,brain � Kpbrain
fu,brain

fu,plasma
(2)

In terms of predictive power, the model had a modest
performance (Q2 = 0.452 and RMSE = 3.49 in the test set),
maybe due to the fact that only 16 descriptors were considered
in the pool of possible predictors. Since this work initiated the in
silico prediction of CNS unbound drug bioavailability, the publicly
available dataset used in the study was later used for benchmarking
purposes (Loryan et al., 2015; Dolgikh et al., 2016).

As shown in Table 1, an improvement in the Kpuu,brain,ss
predictive power was achieved by some of the QSAR models
developed later, although reproducibility was somehow
compromised by the fact that the corresponding datasets were
totally or partially undisclosed (Chen et al., 2011; Loryan et al.,
2015; Varadharajan et al., 2015; Dolgikh et al., 2016; Zhang et al.,
2016). Furthermore, in order to expand the size of the dataset and
thus achieve a wider applicability domain of the models, experimental
Kpuu,brain values were obtained by any of the three described methods,
as well as in different conditions (steady-state/non-steady-state) and
species (rat/mice). It should be noted that Table 1 is not exhaustive, as
other models were developed until today. Nonetheless, they all have
similar performancemeasures, andmost of them still rely on totally or
partially undisclosed (not publicly available) datasets (see, for
example, Ma 2024 and citations therein).

The present study aimed to develop new in silico classification
models to predict unbound drug brain bioavailability, following
good practices of QSAR model development (Tropsha, 2010). The
models reported here are based on a publicly available dataset, with a
balanced training set and an explicit curation procedure. Our best
models showed good performance on the hold-out dataset, and their
predictive ability was externally validated in a prospective manner.

2 Materials and methods

2.1 Dataset compilation and
characterization

After a careful bibliographic search, 711 Kpuu,brain values
corresponding to mice, rats, cynomolgus monkeys and humans were
obtained from literature. Data sources are listed in the Supplementary
Material. This dataset was then curated using different inclusion/
exclusion criteria. As the first inclusion criterion, only the data
values obtained under steady state conditions were considered.
Secondly, only data obtained by homogenate, microdialysis, or brain
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slice techniques were considered for modeling purposes, while
experimental data obtained by other techniques were disregarded.
When the Kpuu,brain,ss value of a compound was reported by more
than one of the mentioned techniques, the data were prioritized
according to the following hierarchy: 1) microdialysis; 2) brain slice
and; 3) homogenate. After these selection criteria, the dataset was
reduced to 157 compounds. The dataset compounds were then
standardized using Standardizer 16.7.4.0 (ChemAxon) by following
these actions: 1) Strip salts; 2) Remove Solvents; 3) Clear Stereo; 4)
Remove Absolute Stereo; 5) Aromatize; 6) Neutralize; 7) Add Explicit
Hydrogens; and 8) Clean 2D. Duplicated structures were removed.

Classification models were then trained and validated. A binary
classification scheme (high/low CNS unbound BA) was defined
using a cut-off value of Kpuu,brain,ss of 0.4, which is a more
conservative value than previously used ones (Zhang et al., 2016).
Classification models were chosen over regression models to
mitigate the noise linked to data obtained from different
laboratories and different experimental settings (Talevi et al.,
2012). Based on the previously defined cutoff criteria,
74 compounds were labeled as high CNS unbound BA
compounds (Kpuu,brain,ss ≥ 0.4) and 83 compounds were labeled
as low CNS unbound BA compounds (Kpuu,brain,ss < 0.4).

Except otherwise indicated, the R environment (R Core Team,
2021) was used for data analysis. Heatmaps illustrating the molecular
dissimilarity between the compounds were built using ECFP_6 as a
fingerprinting system, and Tanimoto distance as a dissimilarity
metric. Principal Component Analysis (PCA) and frequency
distribution were used to characterize the chemical diversity and
chemical space covered by the dataset. For this, eight physicochemical
descriptors (widely recognized as key parameters in drug discovery
(Lipinski et al., 2001; Veber et al., 2002; Ritchie andMacdonald, 2009;
Ward and Beswick, 2014) were used: molecular weight [MW],
topological polar surface area [TPSA(Tot)], Moriguchi octanol-

water partition coefficient [MLOGP], number of donor atoms for
H-bonds [nHDon], number of acceptor atoms for H-bonds [nHAcc],
number of rotatable bonds [RBN], number of rings (cyclomatic
number) [nCIC] and sum of atomic van der Waals volumes [Sv].

2.2 Splitting the dataset into training and
test sets

The compound dataset was divided as follows: a) a training set used
to build themodels, and b) an independent test set, to assess the predictive
ability of the resulting models. To split the database into representative
sets, we combined two clustering methodologies: first, a hierarchical
clustering method using LibraryMCS software, (Chen and Guestrin,
2016) which relies on the Maximum Common Substructure to cluster
a set of chemical structures without exhaustive pairwise comparison
(Böcker, 2008). Subsequently, the resulting clusteringwas optimized using
the k-means algorithm, randomly choosing k seeds from the clusters
defined via LibraryMCS (R Core Team, 2021). This 2-step clustering was
performed independently for the high and low CNS unbound BA
categories.

Ideally, the training set should present a balanced class
composition to prevent bias towards the prevalent category.
Therefore, a balanced training set containing 110 compounds
(55 from each category) was obtained by randomly taking 74%
of each cluster from the high CNS unbound BA category and 66% of
each cluster from the low CNS unbound BA category.

The previous dataset, which from now on will be called “complete
dataset”, was further refined to examine the influence of substrates for
ABC transporters on the modeling results, particularly over the
descriptor selection step. For this purpose, we excluded compounds
whose Kpuu,brain,ss values had been obtained using the homogenate
technique (which is subject to greater experimental variability and

TABLE 1 Summary of QSAR models developed to predict Kpuu,brain,ss. When more than one model was obtained in the same study, the values of the best
model are presented.

Reference Statistical Descriptors Data N Test set

Analysis Set R2 RMSE Acc AUROC

Friden et al. (2009) PLS 16 2D descriptors training 41 NA 3.99
(x-fold)

NA NA

test 145

Chen et al. (2011) SVM, RF 196 2D and 3D descriptors training 173 0.58 0.46 85% NA

test 73

Varadharajan et al.
(2015)

SVM, RF 196 2D, 3D and signature descriptors training 242 0.65 0.45 84.3% NA

test 104

Loryan et al. (2015) PLS 188 1D, 2D and 3D descriptors training 29 0.82 0.31 NA NA

test 11

Zhang et al. (2016) naive Bayes, RF, tree model, NN,
SVM, LDA

Multiple sets of physicochemical and 2D
descriptors

training 677 NA NA 73% 0.77

test 169

Dolgikh et al. (2016) SVM (light), RF 1800 2D descriptors training 1,030 0.53 0.57 80% NA

test 91

PLS: partial least squares; SVM: support vector machine; RF: random forest; NN: neural network; LDA: linear discriminant analysis; R2: coefficient of determination; RMSE: root mean squared

error; Acc: accuracy; AUROC: area under the Receiver Operating Characteristic curve; NA: not available.
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does not preserve tissue viability) and those compounds that according
to the DrugBank database (Wishart et al., 2018) are substrates for
P-glycoprotein (P-gp) and/or Breast Cancer Resistance Protein (BCRP),
the two efflux transporters with the highest expression levels in the BBB
(Liu et al., 2018). The previously described clustering procedure was
applied to this “refined dataset” (67 compounds), resulting in a 38-
compound training set (including 19 compounds with high and 19 with
low CNS free drug BA) and a 29-compound test set (10 drugs with high
and 19 with low CNS free drug BA), that is less likely to be influenced by
active efflux mechanisms. The compositions of the completed and
refined training and test sets are summarized in Table 2. Both
datasets are included as Supplementary Material.

2.3 Descriptor calculation

After curating the chemical structures, the molecular descriptors
were computed. For this purpose, we used Dragon software (version
6.0; Milano Chemometrics, 2011) to calculate 3,668 conformation-
independent descriptors. We removed molecular descriptors with
missing values for any training set compound as well as descriptors
with very low variance. These criteria yielded a pool of
1848 molecular descriptors that were used for modeling purposes.

2.4 Modeling methods

Models were built through a series of supervised machine learning
algorithms: Support Vector Machine (SVM), Gradient Boosting
Modeling (GBM), k-nearest neighbors (kNN), classificatory Partial
Least Squares (cPLS), Random Forest (RF) and Extreme Gradient
Boosting (XGBOOST), provided by the kernlab (Karatzoglou et al.,
2004), gbm (Greenwell et al., 2020), caret (Kuhn et al., 2018), pls
(Mevik and Wehrens, 2007), randomForest (Liaw and Wiener, 2002)
and xgboost (Chen and Guestrin, 2016) R packages. A grid search with 5-
times 10-fold cross-validation experiments was used in all cases to
optimize the hyperparameters of the models. See Supplementary
Material for a brief description of machine learning methods and
hyperparameter grid search.

Deep Learning (DL) algorithm was additionally implemented using
Keras (Chollet, 2015), a Python deep learning library, and Theano (The
Theano Development Team, 2016) as a backend. The recommendations
made byMa et al (Ma et al., 2015) to develop theDLmodel were followed.
The Scikit-learn library (Pedregosa et al., 2011) was used to implement 3-
times 10-fold cross validation as a way to optimize the number of epochs
during model training and avoid overfitting.

Additionally, an in-house random subspace-based modeling
method (Alberca et al., 2018) was applied to obtain 1,000 random
subsets of 200 potential independent variables (descriptors). This
strategy reduces the probability of finding correlations by chance and
allows stochastic exploration of the feature space. The Linear
Discriminant Analysis (LDA) approach was then applied on each
random subspace. A class label of 1 was used for compounds with
Kpuu,brain,ss ≥ 0.4, and a class label of 0 was used for compounds with
Kpuu,brain,ss < 0.4. A maximum variance inflation factor (VIF) value of
2 was set to exclude highly correlated descriptor pairs. A minimal 10:
1 ratio between the number of training instances and the number of
independent variables allowed in the model was used to prevent
overfitting. The best models (up to five), based on the area under the
ROC curve (AUROC) in the training set, were combined by the
minimum and average operators (ensemble learning) to further
improve their performance (Polikar, 2012). A description of this
machine learningmethod is also provided in the SupplementaryMaterial.

2.5 Applicability domain estimation

To avoid excessive extrapolation, similarity measurements were
used to define the applicability domain of the model on the basis of
the mean Euclidean distance between the training set compounds
and each test compound. The distance of a test compound to its
nearest neighbor in the training set is compared to a predefined
applicability domain threshold (APD). If the distance exceeds this
threshold, the prediction is considered unreliable. APD is calculated
according to the following expression:

APD � 〈d〉 + Z · σ〈d〉 (3)

The calculation of 〈d〉 and σ is performed as follows. First, the
mean Euclidean distance between all points of the training set is
obtained. Then, using those distances lower than the mean, a second
mean distance 〈d〉 is computed, as well as its corresponding
standard deviation σ〈d〉. Z is an empirical cutoff value, which was
fixed at 0.5 (Zhang et al., 2006).

2.6 Evaluation of model performance

Accuracy (Acc), sensitivity (Se), specificity (Sp) and Matthews
correlation coefficient (MCC) were computed to assess the
performance of the obtained models. These parameters are
defined by Eq. 4–7, where TP, FP, TN, and FN are the true
positive rate, false positive rate, true negative rate, and false

TABLE 2 Composition of the two datasets employed for modeling. Refined dataset excludes compounds whose Kpuu,brain,ss value was obtained by the
homogenate technique, as well as those labeled as P-gp or BCRP substrates in DrugBank.

Complete dataset Refined dataset

Total number of compounds 157 67

Compounds with high CNS free drug BA 74 29

Compounds with low CNS free drug BA 83 38

Training set composition 110 (55/55) 38 (19/19)

Test set composition 47 (19/28) 29 (10/19)
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negative rate, respectively. Note that in this context, a compound
with high CNS unbound BA will be considered a “positive” case.

Se � TP

TP + FN
(4)

Sp � TN

FP + TN
(5)

Acc � TP + TN

TP + FP + TN + FN
(6)

MCC � TP · TN − FN · FP�����������������������������������������
TP + FN( ) · TP + FP( ) · TN + FN( ) · TP + FP( )√ (7)

MCC is a measure of the quality of binary classifications, and it
ranges between −1 and +1, with higher values indicating agreement
between observed and predicted classes (Matthews, 1975). Receiving
Operating Characteristic (ROC) curve analysis was also performed.

Once the best models were selected, the variable importance
(VI) was established using different approaches depending on the
modeling method (see Supplementary Material for further details).

2.7 Validation of the models

Each generated model was validated by:

〉 Leave-group-out cross-validation (CV). The training set was
split randomly into 10 subsets of equal size; in each round of
validation, one of these subsets was reserved and the remaining
nine sets were used to retrain the model. It was ensured that
each training example was removed at least once. The previous
scheme was repeated 500 times to assess the model predictivity
and robustness. In the case of DL, it was repeated only three
times because of the computational cost.

〉Hold-out validation. An independent test set (sampled from the
complete and refined datasets, as mentioned in a previous
section) was used to assess the predictive ability of the
generated models. Visual inspection and two in-house small
molecules clustering approximations, SOMoC and IRaPCA
(Prada Gori et al., 2022) were used to detect possible
chemical similarities across the misclassified compounds of
the test set. SOMoC and IRaPCA default parameters were used.

2.8 Experimental validation

The predictive ability of the best classifier model derived from
the complete dataset was validated prospectively by experimentally
estimating the Kpuu,brain,ss value of five compounds and comparing
the predicted and the observed CNS unbound BA categories.

For this purpose, we experimentally determined the free
fractions in plasma and brain of compounds whose Kp value was
already reported (in steady-state and using rats as an animal model),
but whose Kpuu,brain,ss value had not been determined yet. As
additional criteria, the compounds also had to be representative
of both groups (high and low Kpuu,brain, according to our
predictions), and be commercially available in our country. To
select such compounds, we performed a bibliographic search, and
five drugs were selected: chlorpheniramine (Doan et al., 2004),
lidocaine, 4-aminobenzoic acid (PABA) (Nakazono et al., 1991),

ranitidine (Young et al., 1988) and theophylline (Yasuhara and Levy,
1988). Drugs were provided by Saporiti (Argentina).

The determination of the free drug fractions was performed by
equilibrium dialysis at 37°C, with six independent replicas for each
compound. The dialysis experiments were carried out in 6-well
Costar Snapwell plates (Corning INC., Corning, NY, United States),
by replacing the polycarbonate membrane of the inserts by dialysis
membranes of 12 kDA molecular weight cut-off (Merck KGaA,
Darmstadt, Germany).

In the plasma experiments, 700 μL of fresh rat plasma spiked
with the compound under test (10 μM) were placed in the lower
chamber (bottom of the well), and 300 μL of isotonic phosphate
buffer solution pH 7.4 were placed in the upper chamber (insert).
The system was allowed to equilibrate for at least 6 h on an orbital
shaker at 37°C (Chen et al., 2019).

The fu,plasma calculation was carried out following the method
proposed by Banker et al. (Banker and Clark, 2008), which requires
simultaneously carrying out an equilibrium control (replacing
plasma with buffer), and the quantification of the analyte
concentration in the acceptor compartments. Therefore, after 6 h,
samples were taken from these compartments (sample and control)
and analyzed using high performance liquid chromatography
(HPLC). The free (unbound) drug fraction in plasma was then
calculated as:

fu � R
V1+V2( )B−V2R[ ]

V1
{ } (8)

Where R is the drug concentration in the samples dialysate, V1

and V2 are the volumes of the donor and acceptor chambers,
respectively, and B represents the concentration of the analyte in
the control dialysate.

A similar protocol was followed to estimate the free fraction in
the brain, except that rat brain homogenate was used instead of
plasma. For the preparation of the homogenate, rat brains were
harvested and immediately diluted in twice their weight of 100 mM
sodium phosphate buffer solution pH 7.4. Homogenization was
carried out with a Pro Scientific Bio-Gen Pro200 high shear
homogenizer (PRO Scientific Inc., Oxford, CT, United States), for
at least 1 min. Subsequently, the dialysis was performed as in the
case of plasma, but placing 700 μL of brain homogenate in the donor
compartment, spiked with the analyte to reach a 1 μM
concentration. The fu,brain values obtained according to Equation
8 were corrected for the dilution of the tissue (Kalvass et al., 2002).
For a dilution factor D (in our experiments, 3), the correction
proposed by Kalvass et al. is:

fu,undiluted �
1 /

D

1/fu,diluted
( ) − 1( ) + 1 /

D

(9)

Finally, the Kpuu,brain,ss value of each compound was obtained by
means of Equation 2, using the fu values experimentally determined
and the bibliographic values of Kp.

2.8.1 Chromatographic methods
After the dialysis experiments, analytical determinations were

carried out in a Dionex Ultimate 3000 UHPLC apparatus (Thermo
Scientific, Sunnyvale, CA, United States), equipped with a dual
gradient ternary pump (DGP-3000) and a diode array detector
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(DAD-3000). A Hibar C18 RP column (125 mm × 4 mm, 5 μm,
Merck KGaA, Darmstadt, Germany) was used as stationary phase.
The mobile phase and the wavelength of detection for each
compound were: a mixture of methanol and 50 mM KH2PO4

buffer pH 2.5 (40:60) for chlorpheniramine, with detection at
261 nm; a mixture of methanol and 50 mM KH2PO4

pH 2.5 buffer solution (25:75) for lidocaine, with detection at
220 nm; a mixture of methanol and 50 mM KH2PO4

pH 2.5 buffer solution (5:95) for PABA, with detection at
281 nm; a mixture of methanol and 20 mM Na2HPO4

pH 7.4 buffer solution (40:60) for ranitidine, with detection at
316 nm, and; a mixture of methanol and 20 mM KH2PO4

pH 2.5 buffer solution (20:80) for theophylline, with UV
detection at 271 nm. In all cases, the equipment was operated
isocratically at room temperature, with a mobile phase flow of
1 mL/min. HPLC grade Methanol and MiliQ water were used for
the preparation of mobile phase. Other reagents were of
analytical grade.

Prior to the injections (in duplicate), the samples were
centrifuged at 10,000 rpm for 5 min and injected directly or
diluted with premixed mobile phase, in order to reach
concentrations within the linear range of the methods. A manual
injector (Rheodyne, CA, United States) with a 20 μL fixed loop was
used for injection.

3 Results

711 data of compounds with their corresponding Kpuu,brain
values were retrieved from literature. Of these, 276 data were
disregarded because they have been obtained under non-steady
state conditions. 11 data were excluded since they corresponded
to determinations in cerebrospinal fluid (not brain) or because they

did not correspond to the microdialysis, slice or homogenate
techniques. Finally, 267 repeated values were discarded, retaining
data for 157 compounds. The heatmap shown in Figure 1 provides
graphical evidence of the molecular diversity of the compounds that
compose the complete dataset. The predominant color indicates a
wide chemical diversity, which is a desirable feature that contributes
to ensure a wide applicability domain of the models derived from
this dataset.

The data distribution among the physicochemical space of the
complete dataset can be visualized in the PCA and histograms plots
(Figures 2, 3).

From the PCA displayed in Figure 2, constructed using the eight
physicochemical descriptors listed in the methodological section, it
is clear that the distribution of those properties is wider among the
low CNS free drug bioavailability group of compounds (low CNS
BA, green triangles in the figure) than for the high CNS free drug
bioavailability group (high CNS BA, red circles in the figure). For the
latter, which represent our “active” or pursued group, it can be seen
that the physicochemical region covered is narrower, and fully
embedded within the region covered by the low CNS BA
group. The histograms in Figure 3 represent the distribution
frequency of the eight selected physicochemical descriptors across
the complete dataset. Green and red bars represent low and high
CNS BA groups, respectively, whereas gray bars represent the sum of
both categories. As expected, the frequency distributions of Figure 3
agree with the previously discussed PCA analysis, with the low CNS
BA compounds displaying wider diversity, and a significant overlap
between both groups.

Whereas the distribution of the compounds in the chemical
space is very informative (for instance, it tells us that some regions of
the chemical space are very unlikely to be occupied by compounds
with high free CNS BA), the overlapping regions between both
groups pose a major challenge for the development of models to
predict Kpuu,brain,ss. It was thus decided to explore a large feature
pool as well as several machine learning algorithms to overcome
this obstacle.

Table 3 summarizes the performance of the models developed
using the complete dataset. The table displays the AUROC and Acc
values for both the training and the test sets, as well as the MCC, Se
and Sp for the test set. These parameters serve to evaluate the
classificatory ability of the models, and to select the best-performing
algorithm. The results of the 10-fold CV, in terms of mean accuracy
on the hold out examples of each leave-group-out round, are also
shown. The value of the metrics shown in the table correspond to the
score cutoff value that maximizes MCC.

In terms of explanatory power (i.e., the ability to accurately
classify the training examples), the best-performing algorithms are
either extremely flexible ones (DL) or those that resort to some sort
of ensemble learning and produce a meta-classifier (RF, GBM,
XGBOOST, and the 5-model ensemble of our in-house selective
combination of linear classifiers). All of them produce perfect or
almost perfect classification of the training set compounds.
However, judging from the results of the internal and external
cross-validations, it is evident that all the algorithms, with the
sole exception of kNN (whose performance on the test set is
above that on the training set), have resulted in overfitting.
Remarkably, the algorithms with best explanatory power are the
ones that seem to present a higher degree of overfitting (as reflected

FIGURE 1
The heatmap illustrates the molecular diversity of the
compounds in the complete dataset (157 compounds). Dark coral
regions indicate dissimilarity. Morgan fingerprints (radius 3) were used
as molecular fingerprinting system and Tanimoto distance was
used for dissimilarity calculations. RDKIT and Seborn Python packages
were used to compute similarity and build the heatmap, respectively.
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by the difference between Acc in the training set minus Acc in the
test set, always positive except for kNN, see Figure 4). This is in line
with the well-known fact that using disproportionally flexible
algorithms often results in memorization of features of the
training set and poor predictive ability.

On the other hand, the algorithms with modest performance are
the ones with less overfitting (LDA) or no overfitting at all (kNN).
This may reflect, in part, that the sampling approach that we used to
split the dataset has not provided good results (training and test sets
that present a similar coverage in the chemical space). However, it is
more likely that the best-performing algorithms are excessively
flexible to deal with our small dataset without some degree of
overfitting, as exemplified by the DL model, which provides the
best performance in the training set but one of the worst in the test
set. Importantly, XGBOOST (in bold in Table 3) matches the
explanatory power of DL but also shows the best performance in
the external validation, for which an accuracy above 85% was
observed, similar to the one of the best classification model
shown in Table 1. Based on this analysis, the XGBOOST model
was chosen as the best-performing one and it was used to predict the
categories of those compounds submitted to experimental
confirmation of their unbound brain BA.

Regarding the Sp and Se ratio, kNN, LDA (5-model ensemble)
and RF are the methods that provide the most balanced relationship
between Sp and Se (i.e., Sp/Se ratio closest to one, see Figure 4) at the
cutoff score value that maximizes MCC. It is worth highlighting that
our 5-model ensemble of linear classifiers greatly improved the

robustness of the predictions, judging from the poor behavior in the
cross-validation of the individual models that compose the
ensemble and the good accuracy (83%) of the combined models
in the test set. On the other hand, in the context of CNS drugs
R&D, the focus will be on compounds that present good unbound
BA in the brain; therefore, due to its Sp/Se ratio >1, XGBOOST
results in a conservative model (that is, associated with a low rate of
false positives), and therefore useful for optimizing the use
of resources.

According to the applicability domain assessment, 44 out of
47 compounds in the test set belong to the applicability domain and
thus have been reliably predicted. It should be noted that none of the
compounds incorrectly classified by the model were out of the
applicability domain. Furthermore, the compounds used for the
prospective experimental validation also fall within the application
domain of the best model.

The seven compounds that were mispredicted by the XGBOOST
model are shown in Figure 5. No clear chemical relationship can be
observed across them, apart from the obvious structural relationship
between trazodone and ziprasidone. To detect possible structural
patterns between these compounds beyond the ones emerging from
visual inspection, they were subjected to clustering exercises using
two in-house clustering approximations, SOMoC and IRaPCA.
SOMoC allocated the seven compounds to three different clusters
(three compounds in one cluster, three compounds in another, and
the remaining compound in a third cluster). Similarly, IRaPCA
allocated the seven compounds to different clusters or subclusters,

FIGURE 2
PCA plot of the complete dataset (157 compounds) based on eight physicochemical descriptors (MW; TPSA(Tot); MLogP; nHDon; nHAcc; RBN;
nCIC and Sv). Data points are colored according to their category (green triangles and red circles for low and high CNS free BA, respectively). The drawn
ellipses assume a multivariate normal distribution of the data by group with a confidence level of 0.9; they are drawn to facilitate the observation of the
degree of overlapping between both groups.
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except for trazodone and ziprasidone, which were assigned to the
same subclusters, consistently with visual inspection. Regarding the
incorrect predictions by the cPLS and RF models derived from the
refined dataset, each of these models misclassified four compounds

from the test set, with three common misclassifications (probenecid,
gabapentin, and trifluoperazine). According to DrugBank, several of
the misclassified molecules (e.g., trifluoperazine, probenecid,
ondasetron) have reported interactions with different transporters

FIGURE 3
Histograms showing the frequency distribution of the selected physicochemical descriptors across the complete dataset. Gray bars represent the
complete dataset, while red and green bars correspond to high and low CNS unbound BA categories, in that order.
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that are expressed at the BBB, including ABC efflux transporters,
which may have contributed to their misclassification by the models
emerging from the refined dataset.

Table 4 details the results from the experimental validation. Our
external validation set was based on five compounds, three of low
and two of high Kpuu,brain,ss. Four of these compounds were correctly
predicted, confirming the predictive power of the models. Of note,
the accuracy on this small set of compounds (80%) is right between
the mean Acc in the cross-validation rounds (75%) and the Acc in

the test set (85%). Although the size of this set of compounds is
clearly small, the results of the internal, external and experimental
validation seem fairly comparable.

Finally, when working with the refined dataset (i.e., after
removing the compounds which are known substrates of the
ABC polyspecific transporters with the highest expression levels
at the BBB, P-gp and BCRP), the best-performing algorithms differ
from those that performed best on the complete dataset (Table 5), as
expected due to the fact that removing the transporter substrates

TABLE 3 Performance metrics of the models derived from the complete dataset. The selected algorithm has been highlighted in bold letters (best model,
according to the values of MCC and AUROC in the test set).

Algorithm Training set Test set

AUROC Acc Av AUROC Acc MCC Se Sp

Acca

SVM 0.904 84.5 69.4 0.840 78.7 0.557 0.579 0.929

GBM 0.999 99.1 72.9 0.900 80.9 0.653 0.947 0.714

kNN 0.775 71.8 69.2 0.827 76.6 0.546 0.842 0.714

cPLS 0.967 93.6 69.4 0.828 78.3 0.547 0.684 0.852

RF 1.000 100.0 72.9 0.860 82.6 0.638 0.737 0.889

XGBOOST 1.000 100.0 75.1 0.891 85.1 0.696 0.684 0.964

DL 1.000 100.0 70.3 0.830 78.3 0.588 0.474 1.000

LDA—best individual model 0.958 90.9 68.7 0.821 78.7 0.553 0.684 0.857

LDA—Ensemble of the 2 best-performing individual models
(minimum operator)

0.965 90.9 (68.7; 70.5)b 0.829 76.6 0.620 1.00 0.607

LDA—Ensemble of the 5 best-performing individual models (average
operator)

0.987 94.5 (61.6; 62.7; 66.9; 68.7;
70.5)b

0.850 83.0 0.647 0.789 0.857

aAverage Acc corresponding to k-fold cross validation.
bAcc of the individual models of the ensemble.

FIGURE 4
The green bars represent the value of the difference between the accuracy in the training setminus the accuracy in the test set, for each algorithmor
meta-algorithm (scale in the left vertical axis). The gray bars represent the Sp/Se ratio (scale in the right vertical axis).
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greatly modifies the characteristics of the dataset (notably, its size).
According to their performance on the test set, the best algorithms
were cPLS and RF, which yielded identical results in terms of Acc
(86.2), MCC (0.716), Se (0.9) and Sp (0.842). More interesting,
however, is the change in the pattern of relevant descriptors selected
by the models trained with the complete or the refined dataset.
Figure 6 shows the comparative distribution of the most relevant
descriptors and descriptor classes selected by the models in both
datasets. To establish the “relevance”, descriptors were listed in
descending order according to the number of times that they were
selected as one of the 20-most relevant variables by the different
algorithms, and the first 20 were included in the figure. The cPLS
and RFmodels derived from the refined dataset have been applied in
the prediction of the five compounds subjected to experimental
confirmation. Surprisingly, and despite ranitidine is a known P-gp
substrate, the five compounds were correctly predicted by the
“refined” models.

4 Discussion

It is probable that several factors may have contributed to the
good performance of the classification models developed in the
present work. Among them, we can cite the different machine
learning algorithms used to find the correlation patterns between
the data, as well as the large number of molecular descriptors used to
characterize the dataset. The careful curation of the complete dataset
was possibly a key factor to obtain accurate machine learning
models. We have implemented a “less is more” approximation,
choosing the use of a small-size but high-quality dataset to derive
and validate our models, instead of a large dataset with data of highly
variable quality. It is worth noting that the dataset comprised data on
unbound partition coefficients obtained from different species,
including rodents and primates, which may constitute a source of
uncertainty because of inter-species variability. However, we expect
that the use of classification models mitigates, at least partially, the

FIGURE 5
Structures of the seven incorrectly classified test set compounds by the best model derived from the complete dataset.

TABLE 4 Performance of the best model (XGBOOST) in the external validation set.

Compound Kp (ref) fu,plasma (SD) fu,brain (SD) Kpuu,brain,ss (SD) Real class Pred. class

Chlorpheniramine 34 (Doan et al., 2004) 0.15 (0.01) 0.06 (0.01) 13.6 (3.9) High High

Lidocaine 2.2 (Nakazono et al., 1991) 0.45 (0.06) 0.18 (0.04) 0.88 (0.23) High High

PABA 0.04 (Nakazono et al., 1991) 0.97 (0.11) 0.30 (0.08) 0.012 (0.002) Low Low

Ranitidine 0.058 (Young et al., 1988) 0.78 (0.16) 0.49 (0.08) 0.036 (0.01) Low Low

Theophylline 0.7 (Yasuhara and Levy, 1988) 0.40 (0.06) 0.07 (0.01) 0.122 (0.03) Low High

Accuracy (%) = 80% (4/5).
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noise associated with this issue, especially if inter-species variability
does not result in mislabeling of the compound class.

In relation to the refined dataset, it should be emphasized that
absence of information in Drugbank regarding whether a specific
compound is a substrate of an ABC transporter, does not strictlymean
that this compound is not substrate for such transporters, but rather
that no evidence exists so far on it being a substrate. The compounds
that comprise the refined dataset, on the other hand, may be substrates
of other (efflux or influx) transporters not considered in the analysis.
In any case, the 42 compounds removed from the complete dataset
were predominantly from the low CNS BA group (27 compounds), as
expected for a substrate of BCRP or P-gp.

As mentioned in the precedent section, there was, for almost all
the machine learning algorithms used and for both the complete and
refined datasets, a general trend to observe higher explanatory than
predictive power (i.e., higher performance on internal than external
data). This may have arisen from some degree of overfitting, as
reflected by the fact that the differences in internal and external
accuracies were accentuated for very flexible approximations such as
gradient boosting or DL algorithms. Another possible explanation to
this phenomenonmay be related to the fact that we have preferred to
use balanced training sets to avoid biased models favoring the
majority class. This has resulted, however, in the enrichment of
the dataset’s majority class in the test set, i.e., relatively highly
imbalanced test sets. It is possible that imbalanced training sets
may provide models with better predictivity on imbalanced external
datasets, especially if the predictivity is not even across classes.
However, as our main focus is the prediction of bioavailability of
active scaffolds for the potential treatment of CNS conditions, we
preferred to train our models from balanced training sets so that
they are not biased towards the majority class (here, the compounds
with low CNS unbound BA) so that valuable scaffolds with high
CNS unbound BA are not disregarded due to a misprediction related
to biased models.

When analyzing the patterns of descriptors included in the models
derived from the complete and refined dataset (Figure 5), they included
several descriptors linked to molecular properties that are relevant for
the passive movement of a compound across the BBB, such as surface
area (e.g., TPSA(Tot), TPSA(NO)), molecular weight or size (e.g.,
AMW, P_VSA_m_3) and lipophilicity (e.g., P_VSA_LogP_4),
among others (Fridén et al., 2009). However, there are remarkable
differences across both datasets in the descriptors incorporated to the
models: in the complete dataset the most frequent descriptors
correspond to 2D autocorrelations, whereas in the refined dataset
information indices predominate. Autocorrelation descriptors encode
the relative distribution of atomic properties (e.g., electronegativity,
polarizability or atomic mass) in a given molecule, and might be
conceptually related with pharmacophoric patterns, although in 2D
autocorrelations topological distances are considered instead of
geometrical distances (Sliwoski et al., 2016). Thus, it is reasonable
that this type of descriptors appears more frequently in models derived
from a dataset that includes substrates of drug transporters, as theymay
reflect molecular features that facilitate recognition by such
transporters. Contrariwise, the refined dataset, which excludes
substrates for two polyspecific efflux transporters (P-gp and BCRP)
with high expression levels at the BBB, is more likely to produce models
with higher incidence of descriptors related to passive diffusion across
the BBB, with less incidence of pharmacophore-like descriptors. In
particular, information indices reflect information content associated to
the subgraphs that may be derived from amolecule. Their values reflect
the complexity of the molecules (in terms of bond types and atomic
composition) and their symmetry/asymmetry. Because of the rather
limited number of atoms that compose organic compounds, it can be
expected that compounds with high information content will possess
several heteroatoms and will thus be less likely to permeate the BBB
passively. Consistently, these indices appear in the models associated
with negative loads or coefficients, and thus their increment (i.e., greater
molecular complexity) is associated with the low CNS unbound BA

TABLE 5 Performancemetrics of the models derived from the refined dataset. The best performing algorithms (according to the values of MCC and AUROC
in the test set) are highlighted in bold letters.

Algorithm Training set Test set

AUROC Acc Av AUROC Acc MCC Se Sp

Acca

SVM 0.975 94.7 70.6 0.821 75.9 0.569 0.800 0.789

GBM 1.000 100.0 72.8 0.911 82.8 0.701 1.000 0.737

kNN 0.868 78.9 67.3 0.771 72.4 0.508 0.900 0.632

cPLS 0.983 97.4 78.1 0.863 86.2 0.716 0.900 0.842

RF 1.000 100.0 73.5 0.890 86.2 0.716 0.900 0.842

XGBOOST 1.000 100.0 72.0 0.890 86.2 0.688 0.700 0.947

DL 1.000 100.0 70.2 0.795 82.8 0.611 0.700 0.895

LDA—best individual model 1.000 100.0 98.1 0.753 79.3 0.525 0.500 0.947

LDA—Ensemble of the 2 best-performing individual models (minimum operator) 1.000 100.0 (88.5; 97.1b 0.761 72.4 0.461 0.800 0.684

LDA—Ensemble of the 2 best-performing individual models (average operator) 1.000 100.0 (88.5; 97.1)b 0.816 79.3 0.569 0.800 0.789

aAverage Acc corresponding to k-fold cross validation.
bAcc of the individual models of the ensemble.
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class. Furthermore, the second more abundant group of relevant
descriptors in the refined dataset are matrix-based descriptors, which
reflect complex structural patterns, such as molecular shape, size,
cyclicity and branching (Grisoni et al., 2017). In other words, by
removing the P-gp/BCRP substrates, the group of main descriptors
is enriched in chemical features that may be linked to passive diffusion,
showing that the modeling approaches are somehow sensitive to the
mechanism of passage through the BBB.

Interestingly, the best model obtained from the complete dataset
(XGBOOSTmodel) provided accurate classifications for four of the five
compounds used for prospective validation through the homogenate
approach, while the bestmodels obtained from the refined dataset (cPLS

and RF models) accurately predicted the five compounds. Although the
number of compounds used for the prospective validation is small and
does not allow any generalization, the models obtained from the refined
dataset outperformed the ones obtained from the complete dataset for
this limited set of compounds, even when one of them (ranitidine) is a
known P-gp substrate and despite the refined dataset does not include
homogenate data. This may possibly indicate that the passage of these
five compounds through the BBB is majorly governed by a simple
diffusion phenomenon that, as previously mentioned, is better captured
by the molecular descriptors incorporated to the refined models.

5 Conclusion

We report a diversity of classifiers to predict unbound drug
bioavailability in the brain, which in general displayed good
performance. We have chosen to use a dataset of relatively
limited size which was however subjected to careful curation,
including compounds with Kpuu,brain,ss values determined either
by microdialysis, the brain slice and the homogenate techniques,
and excluding data points non representative of the steady state
conditions. Such data curation could have served to reduce noise in
our final dataset (“complete dataset”). Based on the high variability
reported for homogenate data, we conceived a second dataset
(“refined dataset”) from which homogenate data was omitted.
This dataset also excludes reported substrates for ABC efflux
transporters P-gp and BCRP; therefore, it was expected that the
models obtained from the refined would be much more influenced
by molecular descriptors associated with simple diffusion through
the BBB. These decisions may, in turn, limit the applicability domain
of our models, which is expected to be narrower when using training
data of limited size. The best models derived from the complete and
the refined datasets have obtained good predictivity using a small
prospective validation set. The models inferred from the refined
dataset achieved better performance in the prospective validation.

It is convenient to underline that Kpuu,brain,ss experimental data
for all the compounds used for modeling and validation purposes are
publicly available since they have been published in scientific
literature (and are also provided as supplementary online
resources). We have also provided our datasets, code, and search
range for hyperparameters; accordingly, it is possible to reproduce
and even refine or expand our modeling approaches.

While our models could prove useful to assist the drug
discovery stage when seeking for CNS therapeutics, it should
be remembered that, while the free drug BA influences the
chances for a drug candidate to become a CNS approved
drug, the interplay between BA and intrinsic potency of the
drug should always be taken into consideration. Low permeation
of a drug could occasionally be compensated by high potency: if
very low therapeutic concentrations are required, they may be
achieved despite poor CNS bioavailability.
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FIGURE 6
Main descriptors (first 20) selected by the models trained in the
complete dataset (up) and in the refined dataset (down). A table
indicating the meaning of each descriptor is provided as
Supplementary Material.
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