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Machine learning (ML) in toxicological sciences is growing exponentially, which
presents unprecedented opportunities and brings up important considerations
for using ML in this field. This review discusses supervised, unsupervised, and
reinforcement learning and their applications to toxicology. The application of
the scientific method is central to the development of a ML model. These steps
involve defining the ML problem, constructing the dataset, transforming the data
and feature selection, choosing and training a ML model, validation, and
prediction. The need for rigorous models is becoming more of a requirement
due to the vast number of chemicals and their interaction with biota. Large
datasets make this task possible, though selecting databases with overlapping
chemical spaces, amongst other things, is an important consideration. Predicting
toxicity throughmachine learning can have significant societal impacts, including
enhancements in assessing risks, determining clinical toxicities, evaluating
carcinogenic properties, and detecting harmful side effects of medications.
We provide a concise overview of the current state of this topic, focusing on
the potential benefits and challenges related to the availability of extensive
datasets, the methodologies for analyzing these datasets, and the ethical
implications involved in applying such models.
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1 Introduction to machine learning

Machine learning (ML) has developed into a powerful tool in toxicological sciences,
revolutionizing how we analyze and interpret complex datasets. The fundamental concepts
of ML are explored here in its applications to toxicology, with attention to specific areas
regarding drug toxicity. ML has undoubtedly impacted the research landscape, and the
number of publications in the area of ML is growing exponentially (Figure 1). It is not
practical to summarize the literature due to this level of activity; however, this review
intends to provide foundational knowledge and applications of certain critical aspects of ML
algorithms and how they are used in specific areas of toxicology.

1.1 What is artificial intelligence and machine learning?

Artificial Intelligence (AI) is a branch of computer science dedicated to creating systems
capable of tasks that normally require human intelligence. Machine Learning (ML), is a
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subset of AI, which involves developing algorithms that allow
machines to learn and make decisions from data (Figures 2, 5).

1.2 Main types of machine learning
algorithms

Machine learning encompasses a variety of algorithms, falling
into three primary categories: supervised learning, unsupervised
learning, and reinforcement learning (Ribba et al., 2020). Each type

addresses distinct learning objectives and is tailored to specific
applications in toxicology (Figure 3). Although these algorithms
are different, they can be used to manage the same questions, with
the difference being prediction capabilities.

1.3 Machine learning model representation

The intersection of ML and drug toxicology holds immense
promise. By leveraging machine learning, researchers can analyze
vast datasets to predict and understand adverse drug reactions,
aiding in developing safer pharmaceuticals.

As with all pathways of scientific inquiry, the first steps are
critical to choosing the right approach. In Figure 4, we present a
workflow for ML for scientific questions, toxicological ones in this
case. We begin to “define an ML problem” at the beginning of the
research workflow. This step aims to define the unsolved problem or
research question, which differs from other approaches because of
its potential mathematical complexity. This usually involves finding
patterns, features, and classifications that ultimately lead to
predictions. ML requires a large amount of data, that must be
reliable. The next step is data collection. Data (i.e., categorical,
nominal, or numerical) can be annotated with labels intended to
represent accurate answers, although it should be mentioned that
these labels, often considered gold-standard, may be subject to
human error or bias. Notably, the data must contain parameters
relevant to addressing theML problem.ML requires 1) training data,
2) testing data, and 3) validation data. There is no single “right”
answer to the amount of data required for ML. Ideally, one should
collect about 1,000 samples. For most “average” problems, you need
to have 10,000–100,000 samples, although examples in the literature
have been published with <1,000 data points (the layers therein can
enhance the usefulness of the data). For “hard” problems like
machine translation, high dimensional data generation, or
anything requiring deep learning, one should aim for
100,000–1,000,000 samples. Equally crucial to data collection is
data transformation or data cleanup. Clean up the data involves
removing repeats, filling in or imputing missing values, reformatting
for compatibility, fixing outliers, grouping sparse classes, in essence,
data cleansing. This also involves converting categorical or nominal
data to numeric data, one-hot encoding (converting categorical
variables to binary), normalizing skewed data, and range scale,
i.e., data transformation. Feature engineering involves selecting
relevant features and discarding irrelevant data through methods
based on statistical analysis or expert guidance. Once the data is
ready, one can choose and train a model. This step will entail
selecting the approaches as mentioned earlier, where supervised,
unsupervised, or reinforcement models can be applied. Testing and
validating ensures that the ML model is not using too few
parameters (under fitting) or too many parameters (overfitting).
The problem of overfitting (when too many parameters are used)
can be prevented by 1) external validation datasets, 2) K-fold cross-
validation, 3) leave-one-out methods, and 4) permutation testing or
the combinations of all four methods. Data splitting is an integral
part of validation. The data set can be divided into two groups (the
holdout method), where 2/3 (66% of the data) is the training data,
and 1/3 (33% of the data) is the testing data, which is “held out” and
used to test the model. The rule in model training is that the testing

FIGURE 1
The exponential growth of publications in ML and drug toxicity.
This graph is based on a scopus.com search (January 2024): “machine
learning” and “toxicity” for all fields.

FIGURE 2
The relationship between AI, ML, deep learning, and generative
AI. AI is a broad field of study, and ML is a branch of AI that focuses on
algorithms mimicking human learning. Deep learning utilizes multiple
layers of neural networks. Generative AI can synthesize new
content based on existing data from deep learning.
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data must remain unseen during the training phase. One can further
divide the training data into smaller parts or “folds” to avoid training
bias. Studies that report on the validation of their model will
typically report on assessing models based on confusion matrix
or ROC curves (Rashidi et al., 2023; Valero-Carreras et al., 2023).
For more details on evaluation metrics, such as accuracy, precision,
and mean squared error (MSE), refer to a recent review (Sinha et al.,
2023). Ideally, once the model is validated, it is ready for use and
application. This may result in an end-user interface, webpage, or
other resource. However, it should be kept in mind that models can
be continually improved and that the workflow presented in Figure 4
is an iterative process that can be continually tweaked to minimize
error and maximize accuracy in prediction. Lastly, It is important to
recall and apply the fundamental framework in ML (Mitchell, 1997).
A computer program (algorithm) learns from experience (E)
concerning tasks (T) and a performance measure (P), where its
performance at tasks measured by P improves with
experience (Figure 5).

An important point to emphasize is the “all-metrics” approach,
where models and algorithms are evaluated based on a wide range of
performance metrics. The latter is important in considering a
comprehensive view of a model’s performance. However, there
are some key consideration in order to make a holistic
conclusion for performance. For instance, a surface-level analysis
with greater focus numerical readouts rather than mechanistic
information can be misleading. The value of certain metrics is
also important to consider, as not all metrics are of equal value.
The latter can also lead to overfitting (Figure 6), where a real-world
test of an arguably perfect model may fail. Thus, keeping in mind the

practical applications, potential biases, ethical implications, and
general application of the model are more tangible criteria in
performance evaluation (Duffull and Isbister, 2022; Muntean and
Militaru, 2023).

1.4 Machine learning applications in
toxicology

Machine learning has numerous applications in toxicology,
ranging from predicting the toxicity of chemicals to identifying
new drug targets. We have focused on selected areas in toxicology,
particularly human drug toxicology. Guidance on other literature is
provided as appropriate.

1.4.1 Chemoinformatics, bioinformatics and
structure-toxicity relationships

Machine learning is crucial in bridging bioinformatics with
chemoinformatics and quantitative structure-toxicity relationships
modelling, facilitating the prediction of chemical properties,
biological readouts, and toxicity. Chemoinformatics involves the
acquisition or collection of chemical information and can be
considered a combination of information technology and
chemistry (Lo et al., 2018). This is a critical area of study, per se,
where chemical fingerprints are related to a functional endpoint.
The latter is where ML comes into play and is essentially a more
complex application of structure-activity relationships. Classical 2D
linear regression analysis would utilize indices such as logP,
Hammett constants, and acid ionization constants pKa (to name

FIGURE 3
Different algorithms of ML, and applications to toxicology.
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a few) and correlate these to the EC50 (LC50, IC50) of a desired effect.
This type of analysis is named after Corwin Hansch from Pomona
College, co-founded by Fujita, who founded this area in the 1960s
(Hansch and Fujita, 1964). Free-Wilson analysis emerged around
the same time (Free and Wilson, 1964; Martin, 2012). Such
relationships are essentially linear free energy relationships and
are fundamentally modelled by the earliest equations relating
function with structure (Kubinyi, 2002)

ΔΦ � f ΔC( )
where the change in physiological activity (ΔΦ) is a function of

the chemical constitution (C). Analogous to anatomy, structure is
related to function. Note that the “C” for chemical constitution can
easily be replaced with a “B” for Bioinformatics. These linear free
energy relationships are still useful today, perhaps due to
understanding the basis for computational process and the
accessibility of analysis tools. A recent study used such
approaches to investigate the potency of monoamine oxidase

FIGURE 4
The generalized workflow for ML application. The first step requires the definition of the unsolved problem. Dataset collection is highly dependent
the availability or acquisition of reliable data. Robust models require significant data points for training, testing and validation. Data transformation is a
critical step to ensure the “cleanliness” of data. Machine learning algorithms, such as decision trees/random forests, hidden Markov models, and artificial
neural networks, are selected for model building only after the data set has been curated and cleaned.

FIGURE 5
The ML framework (as per Mitchell). The task (T) is what the ML
model is designed to do or the problem it is supposed to solve. The
experience (E) refers to the data that the ML model uses to learn and
make predictions. The performance measure (P) is a metric or
evaluation criterion that quantifies how well the machine learning
system is performing the task, T, based on Mitchell (1997).

FIGURE 6
A graphical representation of fitting. Hypothetical data was
plotted on an XY plot in GraphPad Prism 9. The “Best” fit should form a
prediction based on appropriate training set parameters.
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inhibition (Pisani et al., 2023). A model in ML is typically a
mathematical function that maps input data to desired output:

hθ x( ) � θ0 + θ1 × x1 + θ2 × x2 + . . . .. + θn × xn

hypothesis function( )

where that function could be, for example, in linear regression,
hθ(x), x is input data, and θ represents parameters. The latter are
parameters called weights or coefficients that need to be learned
from the training data. The goal is to find the optimal value for θ that
minimizes the cost function:

J θ( ) � 1
2m

∑
m

i

hθ(xi( ) − yi)
2 cost function( )

where m is the number of training examples, hθ(xi ) is the
model’s prediction for the ith example, and yi is the actual target
value for the ith example. The cost function (also known as the loss
or objective function) measures how well the model’s predictions
match the actual target values in the training dataset. It quantifies the
error or mismatch between predicted values and ground truth. The
choice of the cost function depends on the specific type of machine
learning problem (e.g., regression or classification) and the nature of
the data. For example, a common cost function in linear regression
is the MSE.

Linear modeling approaches are still useful, but sometimes they
encounter challenges with large datasets and the need to predict
toxicity in both existing and new chemicals, some of which have
unknown properties. The California Department of Toxic
Substances Control reports that the US has more than
80,000 commercially available chemicals, of which 2,500 are
produced at >1 million pounds/year, almost half of which lack
adequate toxicology testing (https://dtsc.ca.gov/emerging-
chemicals-of-concern/). As such, a workflow is needed to reliably
address the information gap on the numerous chemicals found in
the environment and to which humans are exposed. The term
molecular informatics combines both chemoinformatics and
bioinformatics. The latter can involve data from various omics
platforms as the biological readout. As one can imagine, this vast
amount of data demands powerful computational algorithms to
produce valuable conclusions from the data (Figure 7). Furthermore,
regulatory agencies face the daunting task of risk management for
large numbers of anthropogenic compounds (discussed further in
Section 1.4.5). Regulatory agencies rely on experimental data
readouts to carry out risk assessment strategies, which becomes
challenging with producing new and dealing with existing chemicals
concurrently (Yauk et al., 2019).

1.4.2 Toxicity prediction
The combination of data sets described above using appropriate

ML models can contribute to the accurate prediction of toxicity,
enabling early identification of potential hazards associated with
chemical compounds. The type of toxicity will depend on the
particular study and is quite diverse. There appear to be ML
applications in almost every area of toxicology, including (but
not limited to) drug discovery and development (Gupta et al.,
2021), oncologic drug efficacy and toxicity (Badwan et al., 2023),
human health hazard assessment of industrial azo dyes (Keshava
et al., 2023), and histopathology from toxicological findings to name

a few (Mehrvar et al., 2021). Other studies include small molecule-
induced mitochondrial toxicity (Zhao et al., 2021; Garcia de Lomana
et al., 2023). More broad endpoints for toxicology include
hepatotoxicity, cardiotoxicity, respiratory toxicity, nuclear
receptor binding, mutagenicity, carcinogenicity, and acute oral
toxicity (reviewed in (Cavasotto and Scardino, 2022; Yang et al.,
2018)). What has made such approaches to toxicity prediction
feasible is the availability of big data, i.e., publicly available
toxicology databases (Yang et al., 2018). In silico drug toxicity
prediction offers clear advantages, especially considering that
drug attrition rates are always a concern. Analogous to organ-on-
a-chip technologies, ML prediction models for multiple organs have
been reported (Hu et al., 2023). This study applied six algorithms to
model carcinogenicity, cardiotoxicity, developmental toxicity,
hepatotoxicity, nephrotoxicity, neurotoxicity, reproductive
toxicity, and skin sensitization. This systems toxicology approach
is important and has great potential to provide a comprehensive
prediction assessment.

1.4.3 Adverse drug reactions
Adverse drug reactions (ADRs) are unwanted, undesirable,

unexpected, or harmful effects that result from normal
pharmacotherapy. Predicting ADRs through machine learning
may enhance drug safety assessments during development and
post-market surveillance (i.e., approved drugs on the market).
ML applications during drug development can aid in minimizing
or preventing ADRs once a drug reaches the market. However,
ADRs happen in various settings, and many jurisdictions have
significant pharmacovigilance strategies in place, such as the
Canada Vigilance Adverse Reaction Online Database, the FDA’s
Adverse Event Reporting System (FAERS), the European Database
of Suspected Adverse Drug Reaction Reports, the Database of
Adverse Event Notifications (Australia), and the Japanese

FIGURE 7
Conceptual interplay between chemoinformatics and
bioinformatics and the synthesis of ML models using relevant
databases (Generated by DALL-E and modified by author).
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Adverse Drug Event Report (JADER) Database. One specific study
used VigiBase® (described below) to determine individual case
reports of ADRs occurring in African countries (Ampadu et al.,
2016). To capture the global implications of the side effects of
medications, the World Health Organization launched VigiAccess
in 2015 (vigiaccess.org), which is reportedly the largest database of
its kind; in collaboration with the WHO, the Uppsala Monitoring
Centre (UMC) operates and maintains VigiBase® on a cost-recovery
basis (who-umc.org/vigiBase/). Another resource called “SIDER”
(http://sideeffects.embl.de/) also contains a searchable database for
the end user. The DrugBank (https://go.drugbank.com/) contains
diverse information that also includes drug side effects. Other useful
datasets include ClinTox, Tox21, and RTECS (discussed later). A
challenge with these approaches is their reliance on user input to
populate these databases and data curation.

On a population scale, ADRs can affect a significant proportion
of individuals. ADRs account for 6%–12% of hospital admissions
among older patients, costing almost $36 million annually
(Parameswaran Nair et al., 2016). About 1/10th of elderly
individuals discharged from a hospital have been shown to
experience drug-related readmission, and half of those were
considered preventable (Prasad et al., 2023). The American
Society of Health-System Pharmacists defines an ADR as an
occurrence where a person is adversely affected by a drug,
encompassing both medication errors and ADRs (Demler and
Chehovich, 2021). The demand for ML, in this instance, is
particularly unique because not all ADRs are predictable. This
has been of particular significance and detriment to patients and
the pharmaceutical companies. There are different classifications of
ADRs (Table 1), which have remained the same for the past two
decades (Edwards and Aronson, 2000; Besco et al., 2022).

Although this classification of ADRs by type is functional, it only
sometimes captures the severity of the reactions. Furthermore, the
specific organ or organ systems are also an important classification
parameter. Another method of classification could involve
severity (Table 2).

Based on the classifications described in Tables 1 and 2, there are
numerous possibilities to use ML in pharmacovigilance and ADRs.

One critical review proposed that deep learning strategies were more
powerful than earlier approaches using supervised learning; this is
considered feasible due to the multiple layers used in deep learning
(Lee and Chen, 2019). As described, the presence of the ADR is not
associated with the severity of the ADR, e.g., drug-induced liver
injury (DILI) can range from a marginal increase in liver enzyme
levels to fulminant hepatic failure. However, if the readout for an
ADR is “yes” or “no,” a binary classifier, it is worthwhile considering
decision trees or random forests. The SIDER database and
DrugBank were used to create a knowledge graph that could be
used to vectorize drugs and ADRs and utilize a binary classifier
based on logistic regression for the causality of the ADRs. This
model was also applied to discriminate for DILI (using the DILIrank
dataset), which was able to discriminate liver injury but not predict
severity (Zhang et al., 2021). The DILIrank dataset contains
1,036 drugs that rank drugs by their risk for developing DILI
(Chen et al., 2016).

DILI is one of the most frequent causes of drug attrition, black-
box warnings, or withdrawal from the market. As indicated above,
there is a broad spectrum of harm that drugs can cause to the liver,
with varying degrees of severity. The liver, responsible for the
majority of drug metabolism, may produce potentially harmful
by-products such as reactive metabolites and free radicals during
this process (Chalasani et al., 2008). Some cases of DILI are dose-
dependent (e.g., acetaminophen overdose, a type C ADR), while
others could occur unpredictably at therapeutic doses (Type B
ADR). The exact mechanisms underlying the latter are still being
studied, but it is thought that both drug-related and host-related
factors play roles. In one study, a model was trained on a database
called TG-GATEs (a toxicogenomics database from Japan) (Igarashi
et al., 2014) and used two external databases (JNJ-I, JNJ-II) for test
data sets (Moein et al., 2023); this challenging yet crucial area
employs several different ML algorithms (support vector
machine, linear regression, and random forest). The authors
faced challenges related to the difference between the compounds
(and, thus, the chemical space) in each data set. The TG-GATE
system, which contains liver imaging for the 170 drugs tested, was
analyzed with PathologAI (referred to by the authors as a weakly

TABLE 1 ADRs classified by type.

Type Key features

A (Augmented) • Exaggerated effects related to the mechanism of action

• Most common • Predictable, manageable with altered dosage

B (Bizarre) • Unrelated to the mechanism of action

• Rare • Can be life-threatening; requires halting treatment regimen

C (Chronic) • Time-related (e.g., NSAID chronic use over years) or concentration (e.g., acetaminophen dose-dependent hepatotoxicity)

• Rare

D (Delayed) • Long-term effects not due directly to cumulative exposure, e.g., carcinogenesis, antipsychotic-induced tardive dyskinesia

• Rare

E (End of use) • Effects occurring from withdrawal (ending use) of a drug (e.g., opiate withdrawal)

• Uncommon

F (Failure of therapy) • Ineffective dosage regimen leading to poor therapy (e.g., drug-drug interactions; atypical drug clearance)

• Common

The bold values indicates the ADR type.
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supervised deep learning network) to predict liver necrosis for over
800 compounds from whole slide images, where the classification
accuracy was over 80% (Bussola et al., 2023).

A study utilizing the SIDER database focused on developing ML
models to link cheminformatics with drug-induced autoimmune
disease (Guo et al., 2022). This study used approximately 600 drugs
(combining training and validation sets) and tested 35 classification-
based models; the selected models were based on support vector
machines and MACCS keys methods that associated
physicochemical properties with autoimmune reactions and
developed a website based on the findings (http://diad.
sapredictor.cn/). Off-target toxicity, which can become apparent
in a Type A ADR, is an important consideration both during drug
development and post-market release. One study used a feed-
forward neural network (with TensorFlow and Keras) to identify
bias in public data compared to proprietary data. In addition, using
both datasets revealed with certainty specific enzyme inhibition by
two compounds, suggesting that consensus scores from models
using different datasets can be an advantage (Smajić et al., 2023).
An important aspect to consider is that enzyme inhibition can lead
to drug-drug interactions. One approach on cytochrome P450 2D6,
an important drug-metabolizing enzyme, compared some ML
algorithms. The MACCS fingerprint models performed best
(based on accuracy and area under the ROC curve) (Li et al.,
2023). Another study focused more on the dominant drug-
metabolizing isoform, cytochrome P450 3A4, found that
regression-based ML (using a support vector regressor) was most
effective for drugs from 120 studies (Gill et al., 2023).

In certain instances, a drug-drug interaction is desirable. For
example, nirmatrelvir and ritonavir are sold under the brand name
Paxlovid™. Ritonavir inhibits cytochrome P450 3A4, consequently
inhibiting the metabolism of nirmatrelvir and is considered a
pharmacokinetic enhancer. A specific application to predict
synergistic drug-drug interactions in cancer patients used a deep-
learning model (combining convolutional neural networks,
recurrent neural networks, and mixture density networks). The
latter was concluded to outperform existing ML models based on
a smaller root MSE (Kumar Shukla et al., 2020).

1.4.4 Drug discovery toxicology
ML can enhance drug discovery by optimizing candidate

selection and predicting the likelihood of success in the
development pipeline by mitigating toxicity. Toxicity has
traditionally been a significant cause of drug attrition, which is
why significant efforts are made to root out potentially harmful
compounds during the hit or hit-to-lead phase of active
pharmaceutical ingredient identification. ADMET (absorption,

distribution, metabolism, excretion, toxicity) prediction is of
significant importance in this area. Tools for the end users are
becoming increasingly accessible. This includes ADMET Predictor®,
which is becoming increasingly important concerning time and cost
saving for researchers and industry. It appears that supervised
learning algorithms for ADMET are more frequently applied,
although this is continually evolving (Maltarollo et al., 2015).
Fast supervised learning methods (random forest, deep and
graphical neural networks) are used for toxicity (and efficacy). In
contrast, unsupervised learning methods (including clustering,
biomarker extraction, and generative autoencoders) are used for
drug design (Badwan et al., 2023).

1.4.5 Risk assessment
ML contributes to risk assessment models, improving our ability

to evaluate and manage potential risks associated with chemical
exposures. A combination of large data sets, such as toxicogenomics
and high-throughput screening (in vitro) with ML, aids in
unravelling toxicity pathways, analyzing genomic data, and
screening large datasets, advancing our understanding of
toxicological mechanisms but also risk. Risk assessment or
chemical safety assessment relies heavily on large datasets, but
molecular informatics (chemoinformatics) can be used to draw
reliable conclusions for policymakers. The use of computational
approaches appears to be the path forward in this respect.
Considerable effort is being placed on the next-generation of risk
assessment. The ChemTunes•ToxGPS® platform is a commercial
product, which draws on the combination of integrating numerous
databases, including physicochemical parameters, xenobiotic
metabolism, toxicokinetics, ToxCast/Tox21 database (EPA, 2023),
and others. This study used a hybrid platform to combine ML
methods with quantitative structure-toxicity relationships for a final
assessment of a given compound (Yang et al., 2023). The study
focused on cosmetic products, for which testing has evolved from
animal (in vivo) to in vitro to in silico approaches over the last few
decades. The term read-across is usually found in large-scale risk
assessment strategies to provide a method for hazard identification
in instances, where all the data for a specific compound is unknown
or unavailable (e.g., unknown physicochemical parameters, toxicity,
etc.). The read-across approach is based on analogs to fill the data
gap in these instances, which can be significant when considering
thousands of chemicals.

An important consideration for risk assessment involves the in
silico adverse outcome pathways (AOPs) and integrated approaches
to testing and assessment (IATA). In silico modelling can aid in
moving from structure-activity relationships to more advanced
methods of deep learning within the context of AOPs. Machine
learning models have evolved from structure-activity approaches,
but are critiqued if using black box algorithms. The approach to
utilize AOPs can relate an exposure to a molecular initiating event,
which links to a key event that can form an AOP network
(Hemmerich and Ecker, 2020). Some examples have been
successfully applied to neurotoxicity studies in producing models
that predict xenobiotics agents that can cause deleterious effects,
such as Parkinsonian motor deficits (Kan et al., 2022; Dong et al.,
2023). While AOPs tend to focus mainly on mechanistic
understandings for prediction, the IATA represent a broader
framework that integrates data and methods from various

TABLE 2 ADRs classified by severity.

Severity (=Risk) Key features

Minor No intervention or hospitalization needed

Moderate A change in pharmacotherapy; ≤1 day hospitalization

Severe Potentially life-threatening; medical treatment and
consequences

Lethal The ADR is directly linked to patient mortality

Frontiers in Drug Discovery frontiersin.org07

Tonoyan and Siraki 10.3389/fddsv.2024.1336025

http://diad.sapredictor.cn/
http://diad.sapredictor.cn/
https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2024.1336025


sources, including AOPs. As such, an IATA represents a more
holistic assessment of toxicity that is useful for regulatory
decision making (Willett, 2019). The approach of IATA or next-
generation risk assessment should utilize animal data (keeping the
3 R’s in mind) in combination with in vitro data, in silico data, non-
mammalian data, biomarkers and epidemiology studies for a
comprehensive assessment of chemical hazards (Tollefsen et al.,
2014; Halappanavar et al., 2020; Bajard et al., 2023).

1.5 Some applications of supervised and
unsupervised learning for
toxicological problems

1.5.1 The iris classification using decision trees
The primary goal of a decision tree is to create a model that

predicts the value of a target variable based on several input features.
This approach comprises training, model building, prediction, and
evaluation. The decision tree approach can be used for classification
(e.g., toxic vs. non-toxic) or regression (e.g., structure-activity
relationships). The key difference between these approaches is
that classification outputs a label, whereas regression produces a
continuum of values (e.g., IC50 concentrations to halt cancer cell
growth). A combination of these methods is called CARTs. Just like
any approach, the decision tree algorithm has advantages and
disadvantages.

The classic example of a decision tree that is frequently
encountered is the iris flower classification. This illustrative
example is based on work relating the flower petal characteristics
(inputs) to its species (output). The original study was presented by
the statistician Ronald Fisher, from the iris flower derived from the
dataset from Edgar Anderson in the Gaspe peninsula, Quebec,
Canada (Fisher, 1936). The decision tree still appears most useful
for this application, although others have been proposed (Poojithaa
and Malathib, 2022).

1.5.2 Classification of cannabis strains and
their effects

Data availability is a critical aspect of any successful ML
application. In the case of cannabis, the website Leafly.com
contains products and consumer-reported behavioural profiles of
cannabis products. Though the abundance of data is essential, it is
just as important to have good-quality data. Relatable examples of
toxicological questions today can utilize cannabis classification. It is
assumed that consumer cannabis consumption is relatively
innocuous, and the consumer can achieve their desired effect
based on the selected type (i.e., indica, sativa, or hybrid).
However, there are a wide variety of strains that have diverse,
potentially adverse effects in some situations. A GitHub
repository used logistic regression to analyze the dataset
containing 2,350 unique strains of cannabis. Based on the
provided input, this repository reported a 63.4% accuracy in
predicting new strain types (Kowel, 2019). Part of the challenge
is that the data relies on user responses. For example, the indica type
“9-pound hammer” strain produces “Relaxed, Sleepy, Euphoric,
Happy, Hungry” effects, whereas the indica type “Athabasca”
strain yields “Talkative, Uplifted, Happy, Relaxed, Giggly” effects.
Though both strains have relaxed as a common characteristic, the

former also produces sleepiness, whichmay be more of a concern for
impairment of activities. A comprehensive study that associated
subject response with flavour and chemical composition used
methods including the random forest to discriminate between
effect and flavour vs. strain type (de la Fuente et al., 2020). The
findings suggested that flavour perception could be a reliable marker
for the behavioural (e.g., psychoactive) effects of specific strains
of cannabis.

1.5.3 Predicting carcinogenicity and mutagenicity
Another important application of decision trees involves the

classification of carcinogens. According to the International Agency
for Research on Cancer classifications, chemicals can be classified
based on evidence for causing human cancer: Group 1
(carcinogenic to humans), Group 2A (probably carcinogenic to
humans), Group 2B (possibly carcinogenic to humans), and Group
3 (not classifiable as to its carcinogenicity to humans) (https://
monographs.iarc.who.int/agents-classified-by-the-iarc/). About
five decades ago, a publication on estimating a toxic hazard
proposed a decision tree of 33 levels (questions) to categorize a
compound as low, moderate, or seriously toxic (Cramer et al., 1976).
More recently, a combined model used a hybrid neural network
compared with other machine learning algorithms, including a
modified decision tree, random forest, and others (Limbu
and Dakshanamurthy, 2022). Although the “bagged” decision
tree (which reduces variance and overfitting) was found to
provide statistically indistinguishable accuracy, AUC, sensitivity,
and specificity for a dataset of carcinogens, the authors suggested
their hybrid neural network was superior (Limbu and
Dakshanamurthy, 2022). The employed algorithms appear
critically important for the predictive outcome. A random forest
method that used physicochemical and structural parameters could
predict over 70% mutagens in a test set of 1,400 carcinogenic
compounds (Moorthy et al., 2017). The gold standard for
mutagenicity testing is the Ames test, which is based on
the ability of a xenobiotic to cause mutations in the bacterium,
S. typhimurium. The bacteria that are used have a defect preventing
them from growing without histidine. If the xenobiotic corrects this
defect (histidine reversion), the bacteria can grow, suggesting that
the chemical is likely mutagenic (and thus, potentially
carcinogenic). Xenobiotic metabolites can be assessed via an
activating system, such as liver enzyme fractions. There has been
a sufficient buildup of data to facilitate predictive techniques for
mutagenicity. A study sought to enhance mutagen prediction by
employing “multiple instance learning,” aiming to augment
traditional “single instance” learning methods. This approach
aimed to capture various aspects of xenobiotics, including
distinct metabolite activities arising from enzymatic
bioactivation, which often differ from the mutagenic activity of
the parent compound (Feeney et al., 2023). Another important
consideration relates to the input of data from the bacteria
themselves. A study using neural network ML models employed
splitting of strain tasks. Multitask neural networks were more
accurate than single-task neural networks, and grouped multitask
neural networks were superior, most likely because the latter was
grouped rationally by mutagenic and metabolic mechanisms (Lui
et al., 2023). However, complete automation and reliance on theML
models may not produce the most accurate results.
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1.5.4 Using Hidden Markov Models
Hidden Markov Models (HMMs) are characterized by a

stochastic chain of events or states that adhere to the Markov
property. The Markov property states that the probability of
transitioning from one state to another depends only on the
current state and not on the events that preceded it. This
characteristic has been described as being “memoryless”
(Kouemou and Dymarski, 2011).

HMMs represent a specific type of probabilistic model, wherein
the system behaves as a Markov process with “hidden” states being
not directly observable. These hidden states influence the observed
events, introducing a level of abstraction to the modelling process.
HMMs assume a hidden process, A, that can be inferred upon
observable states, B. The goal is to learn about A (hidden) by
observing B (apparent). As HMMs are built on a time course,
the effect of A can be inferred by observing B during each time
interval, for which there is an associated probability distribution.
These hidden states form a Markov chain, where each state
represents a particular situation at a given time.

The Central Limit Theorem can apply to Markov chains under
conditions like irreducibility and aperiodicity. With enough steps,
the distribution of state values converges to a normal distribution.

In the context of HMMs, the transition between hidden states is
governed by transition probabilities. These probabilities determine
the likelihood of moving from one hidden state to another,
providing a framework for understanding the dynamic nature of
the system (Gámiz et al., 2023). The utilization of hidden states in
HMMs allows for modelling scenarios where certain aspects of the
system are not directly measurable, making it a valuable tool in
various fields, including finance, speech recognition, and
bioinformatics.

1.5.5 Application of HMMs in toxicology
A significant advance in the application of HMMs evolved due

to ample sequenced bacterial genomes in the late 1990s. The HMMs
are used in bioinformatics, for example, identifying open reading
frames (ORFs) in nucleotide sequences. An open reading frame is a
part of a reading frame in a DNA sequence that has the potential to
be translated into a protein. In prokaryotic nucleotide sequences,
HMMs can be used to identify ORFs by modeling various hidden
states. These hidden states include start and stop codons (which
signal the beginning and end of a protein-coding region), non-
coding regions, and coding regions in both the forward and reverse
directions (Lukashin and Borodovsky, 1998). Similarly, HMMs have
also been constructed for use in modelling eukaryotic genes (Yoon,
2009). Furthermore, an interesting application of gene findings for
toxins (e.g., Shiga toxin) was reported to use a modified HMM to
identify potential bacterial toxins, including sequences related to
virulence factor and antimicrobial resistance. This HMMmodel was
reported to be faster and more specific than other approaches that
depend on BLAST searches (Xie and Fair, 2021).

Key advances should be discussed regarding the application of
HMMs to toxicology, which appear to be less commonly used than
other algorithms. The potential for biomarker discovery, toxicokinetics,
xenobiotic exposure, and toxicological responses are all attainable
objectives in using HMMs. The models can be used to analyze
genes (toxicogenomics), protein expression (toxicoproteomics), and
metabolite analysis (toxicometabolomics) patterns in response to a

toxin or toxicant, where the hidden states can be indicative of stage or
pathobiology severity. The power of this approach is that the algorithms
are data-driven, not rule-based, which can provide findings that could
be overlooked (Martinelli, 2023).

There are opportunities to apply HMMs to toxicological
problems, although there are few applications in this area.
Employing an HMM model for ADMET parameters of toxicant
exposure in an organism or model system, where the hidden states
in this scenario could reveal specific transporters, drug-metabolizing
enzymes, and physicochemical properties of the toxicant itself. The
toxicity (hidden states) occurring from toxicant exposure could be
revealed based on the toxidrome (symptoms) in a clinical setting. For
example, an HMM was recently used to predict schizophrenia (the
hidden state) based on motor activity (the observed state) (Boeker
et al., 2023). Also, a study evaluating different states of depression in
youth over 90 weeks (time-series data is well-suited for this algorithm)
used HMMs to report that some were more likely to transition from a
low to a highly depressed state and the need for intervention (Liu et al.,
2023). In evaluating opioid use disorder patients over 12 months, an
HMMmodel could predict the effect of addiction consult services on
the disposition of those individuals (King et al., 2021).

2 Looking forward—unlocking the
future of ML in toxicological sciences

This foundational exploration of ML applications in toxicological
sciences presented will continue to grow [the term ToxAIcology was
coined recently (Hartung, 2023)]. This short review has covered
fundamental concepts, highlighted key algorithms, and introduced
the workflow that guides effective ML model implementation in
specific areas of toxicology. The algorithms used in toxicological
studies range from neural networks and decision trees as the most
popular, followed by deep learning, support vector machines, random
forests, and HMMs. However, there are essential considerations
from an overall vantage point that should be emphasized when
undertaking an ML-based approach to scientific inquiry. A
growing number of studies are evolving beyond the single-instance
ML approach and are using multi-instance ML techniques across
platforms. Findings from clinical studies can positively interplay with
risk assessment in the sense that there are large numbers of patients or
individuals for which different sources of risk must be mitigated
(i.e., drugs vs. industrial chemicals). Combining in vitro, in vivo, and
clinical data with ML algorithms using multi-task deep neural
networks is a beneficial and powerful approach. However, in the
study of Sharma et al. (Figure 8), clinical toxicity predictability was
more accurately modelled (based on AUC) from in vitro data rather
than mouse in vivo data (Sharma et al., 2023). Despite its seemingly
contradictory nature, this outcome highlights the critical need for
vigilance against bias, as it arises from the chemical parallels in the
in vitro (Tox21) and clinical (ClinTox) databases.

2.1 Evaluating prospects: navigating
challenges and embracing opportunities

A foundational requirement for any ML model is high-quality
and available data. Toxicological datasets often come from varied
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sources, potentially leading to inconsistencies. While there are
techniques to delineate the distinctions, particularly in database
comparison, these can nonetheless impede the pace of advancement.
The multifaceted challenges of big data are often represented by a
series of “V”s: volume, velocity, variety, veracity, variability, validity,
visibility, visualization, volatility, and value, each reflecting a critical
dimension of this complex field (Richarz et al., 2019). Furthermore,
issues can arise in terms of the availability of data within a particular
chemical space. Lastly, if datasets are biased towards certain
compounds or outcomes, models can perpetuate and amplify
those biases, leading to misclassifications or missing
potential toxicants.

• Opportunity: Rigorous data curation and addressing biases
can enhance model accuracy, which is achievable. Enriched
analyses can realize personalized toxicology to assess
individual risk, and the intercommunications of large omics
data sets can bring significant progress. Prediction of
unknown toxicological entities with accuracy is an
ideal outcome.

• Challenge: Ensuring representativeness and fairness (i.e., no
bias) in datasets remains challenging. General rules may miss
rare ADRs or rare toxicological events.

The interpretation of a givenmodel can also become a challenge
for some ML models. The “black box” models refer to a level of
complexity in how the ML methods work that is unclear to the
individual involved. For example, clinicians who have relied on
linear or logistic regression find barriers if the ML algorithm is not
transparent (Vellido, 2020). This has been a concern for clinicians
for some time, which is quite understandable if it can affect patients’
outcomes (i.e., whether they live or die) (Stiglic et al., 2020; Petch
et al., 2022). This kind of “black box” (as with the black box warning)
can be problematic in a field like toxicology, where understanding
the underlying mechanisms is vital.

• Opportunity: understanding how models arrive at specific
predictions will provide transparency, enhance trust and
facilitate broader acceptance and uptake.

• Challenge: the trade-off between model complexity and
interpretability can limit the predictive power of simpler

models. Complex models may provide superior accuracy
but lack interpretability. Bridging the gap between
traditional toxicological methods and the reliability of ML
algorithms remains an ongoing challenge.

There are numerous ethical considerations for using ML in
toxicology, which will depend on the specific setting. Key
considerations across toxicology disciplines include accuracy,
reliability, and reproducibility. Experimentalists need to have a
clear understanding of the algorithms for the sake of
transparency and mechanistic understanding. Such issues also
affect the uptake in regulatory affairs and risk management. The
accountability of such systems currently rests with the individuals
creating the ML toxicology applications. Some of the issues
described above regarding data sets’ accuracy and reliability tie
into the ethical considerations here, especially if they are used to
make a decision that affects populations and society as a whole
(Guan et al., 2022).

• Opportunity: Enhance the 3 R’s (replacement, reduction,
refinement) for animal welfare (Hubrecht and Carter,
2019), guide alternative testing for in vitro—in silico
models, and engage automated systems for patient health
management and protect populations efficiently.

• Challenges: Reliance on ML algorithms for direction and
guidance that brings harm, who (or what) is ultimately
accountable in decision-making, and transparency for the
widespread use of complex “black box” ML models in
regulatory and public policy settings. Striking the right
balance and ensuring collaboration between ML and
human experts is critical.

Machine learning is a powerful tool in toxicology research that
has the potential to revolutionize the field. By enabling the rapid
identification of potential toxicants and new drug targets, machine
learning can help develop safe and effective drugs and reduce the
impact of environmental pollution on human health. However, the
use of machine learning in toxicology also raises ethical and
regulatory concerns that must be addressed to ensure this
technology is safe and responsible use. Just as these techniques
can be used to optimize drug efficacy, the same principles can be

FIGURE 8
A representation of learning transfer from in vitro and in vivo platforms to clinical toxicity. It will be important to determine which models more
accurately predict clinical toxicity, discussed in Sharma et al. (2023).
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used for developing poisons. The calls for regulatory oversight must
be addressed (Meskó and Topol, 2023).
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