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The drug discovery community faces high costs in bringing safe and effective
medicines tomarket, in part due to the rising volume and complexity of data which
must be generated during the research and development process. Fully utilising
these expensively created experimental and computational data resources has
become a key aimof scientists due to the clear imperative to leverage the power of
artificial intelligence (AI) and machine learning-based analyses to solve the
complex problems inherent in drug discovery. In turn, AI methods heavily rely
on the quantity, quality, consistency, and scope of underlying training data. While
pre-existing preclinical and clinical data cannot fully replace the need for de novo
data generation in a project, having access to relevant historical data represents a
valuable asset, as its reuse can reduce the need to perform similar experiments,
therefore avoiding a “reinventing thewheel” scenario. Unfortunately, most suitable
data resources are often archived within institutes, companies, or individual
research groups and hence unavailable to the wider community. Hence,
enabling the data to be Findable, Accessible, Interoperable, and Reusable (FAIR)
is crucial for thewider community of drug discovery and development scientists to
learn from thework performed and utilise the findings to enhance comprehension
of their own research outcomes. In this mini-review, we elucidate the utility of
FAIR data management across the drug discovery pipeline and assess the impact
such FAIR data has made on the drug development process.
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Introduction

Ensuring effective exploitation of experimental and computational data resources is a
major issue within the drug discovery community, which faces rising costs in bringing safe
and effective medicines to market. As part of the search for new medicines, large amounts of
data are generated in order to support decision-making on the efficacy, safety, and
developability of a potential new drug as it progresses along the discovery pipeline.
These new data are generated on a daily basis as a part of in silico, laboratory, or
clinical studies, and the high cost incurred directly impacts the overall capacity of the
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pharmaceutical and biotech industries to bring treatments to the
clinic. The average cost of research and development (R&D) to bring
a new drug to market is estimated to be around 900 million to
2.8 billion dollars (Wouters et al., 2020; Simoens and Huys, 2021).
Research expenditure is eventually transferred to the price of
treatments and represents a significant part of healthcare
spending. To add a further burden, in recent years, the volume
and complexity of data generated by scientists involved in research
and development have increased exponentially, creating what has
been termed a “Big Data” challenge. This has followed the increased
adoption of large-scale automated experimentation methods. For
example, it is routine to sequence cancer patients’ tumour biopsies to
identify which specific genetic mutations are associated with their
individual tissue malignancies. As part of drug research efforts, these
same tumour-derived tissues can then be analysed using powerful
high-resolution imaging microscopes to help identify prototype
drugs which kill the tumour cells and have the potential to be
further developed into new medicines. The challenge scientists now
must face in the light of economic constraints is to make the data
which has been expensively generated within their studies reusable
so that the entire community has the chance to learn from the work
performed and, ideally, apply the results to understand the results of
their own studies better. It is far more cost-effective to reuse well-
validated results from a trusted database rather than repeat the same
experimental study again. This situation has led to the previously
“un-exciting” process of data management becoming increasingly
important in drug discovery, as it directly supports the use of
artificial intelligence (AI) and machine learning (ML) based
analyses. Such advanced analyses are highly dependent on the
quality, consistency, and scope of the training data upon which
predictive models are built. In situations where effective data
management and quality assessments are not prioritised, then
there is a risk of low-quality, poorly controlled or out-of-scope
training data emerging, which in the worst case can lead to a
counter-productive “garbage-in garbage-out” scenario.

The costs associated with data generation are distributed across
the pre-clinical and clinical stages of drug discovery. In the
preclinical stage, complex and diverse data are generated, mainly
on cellular or in-vivo models, to establish the development and
toxicity profile of potential drug candidates. In clinical stages, where
the major costs of a development programme are incurred, drug
candidates are tested for safety and then efficacy in humans,
resulting in large amounts of electronic health record-type data.
These clinical trial data may be simple numerical results, for
example, the level of a diagnostic marker in a blood sample, or
highly complex data, which require additional analysis tools such as
a low-dose CT image of a patient’s lung. Although existing
preclinical and clinical data cannot fully replace the need to
generate new data in clinical trials, especially when developing a
new drug that has not been tested in the clinic before, they are very
valuable as they can help to reduce the need to perform redundant
research. An additional potential strategy is the usage of “virtual
clinical cohorts”, created based on information in electronic health
records (Tan et al., 2021). Electronically assembled cohorts can act
as placebo or control arms in both Phase 2 and 3 trials (wherein the
drug is administered to a larger diseased population and observed
for long-term effects) creating a situation where all trial participants
have the chance to benefit from the therapeutic, as well as reducing

the total number of individuals involved. At this point, it is
important to highlight that up to 90% of the cost of bringing a
drug to market is incurred when conducting clinical trials. In most
cases, these cannot be replaced by accessing existing data because the
drug being developed is novel and has not been in the clinic
previously, rather, the existing data can enable directed decision-
making for novel drugs (for, e.g., drugs with active scaffolds).
Nevertheless, it has been estimated that the availability of high-
quality data could reduce the capitalised R&D costs by about
200 million dollars for each new drug brought to the clinic
(Simoens and Huys, 2021). On the other hand, it has been
estimated that a high quality data platform in neurology could
bring more efficient research and development of new drugs with an
annual value of 2.8 billion dollars (https://www.mckinsey.com/
industries/life-sciences/our-insights/better-data-for-better-
therapies-the-case-for-building-health-data-platforms).

Despite the value represented by large data resources, many are
often archived within institutes, companies, or individual research
groups and hence effectively unavailable to the wider community.
As a consequence, they are in practice “invisible” to the wider
community and in some cases even divisions within the same
company. This leads to the need for data to be Findable,
Accessible, Interoperable, and Reusable (FAIR) (Wilkinson et al.,
2016). Each FAIR aspect can be tackled individually. Associating
standardised metadata (i.e., information that describes the data) to
globally unique and persistent identifiers can then readily ensure the
findability of the data it describes. Data needs to be accessible and
should be made available via repositories (which are storage spaces
for researchers to deposit data sets associated with their research)
with a clearly-defined access protocol potentially integrating an
authentication and authorisation procedure to control access.
Overall FAIR data should be “as open as possible and as close as
necessary” (Collins et al., 2018): “open” in order to foster the
reusability, or, if relevant, “closed” to safeguard the privacy of the
information. This is very important for commercial organisations
seeking to generate intellectual property, as they can protect their
data and control its sharing for instance during a patent deposition
or for collaborations (van Vlijmen, 2020). Similarly, it is important
to protect sensitive personal data, such as patients’ medical records
and to ensure compliance with data protection regulations. Then is
the interoperability factor, which involves adopting standards using
consistent models, formats, dictionaries (ontologies) and
vocabularies for the terms and documentation of the data,
including the methods used to generate the data. Several
standards exist with their applicability to the Life Sciences
(https://fairsharing.org/search?fairsharingRegistry=Standard).
Failure to ensure data are interoperable can lead to extensive time
and resource expenditure since additional curation must occur
before data can be used. Finally, information about the
restrictions defined in consent, local and international laws and
rules, or user licences for the data collected ensures that a firm legal
framework exists to support the eventual reuse of the data by others.
Academic and industry research groups have acknowledged the
need to drive reusability and have adopted changes to working
practices, for example, collaborating with scientific journals to
implement better documentation and deposition of research data
in public repositories (McNutt, 2014; van Vlijmen, 2020).
Furthermore, pharmaceutical industries have adopted data
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standards aligned with FAIR principles to strengthen cross-
collaborations with academic and industry partners in the
research years. Roche and AstraZeneca have provided a holistic
overview of their FAIRification pipelines alongside their
downstream impact (Harrow et al., 2022). Despite these efforts,
there’s still a considerable need to regularly improve the state of
FAIR data (Begley and Ioannidis, 2015; Baker, 2016). This simply
indicates that FAIR is a journey and needs to be re-visited at specific
time points during data evolution to ensure the data follows a FAIR
path as addressed by Harrow et al. (2022).

In the following part of this mini-review, we will illustrate with
examples the application of FAIR data at various stages within the
drug discovery pipeline, starting from the preclinical through to the
clinical stages. Beyond these applications, FAIR data is a valuable
resource supporting research across multiple scientific and non-
scientific fields.

Preclinical applicability of FAIR data

As mentioned, large efforts have been initiated to organise and
structure data commonly used in research and development. These
involve the establishment of large-scale open-source repositories
such as UniProt (UniProt Consortium, 2023) which reports data
related to the proteins potentially involved in disease processes,
ChEMBL (Gaulton et al., 2012) which includes results on drug-like
compounds which are investigated in the early discovery phase,
and SureChEMBL (Papadatos et al., 2016) which covers patent-
related data. Such repositories serve two main functions within the
FAIR context: first, the formalisation of a structure for storing
domain-specific information, and second, the open source feature
of the repositories allow researchers across the globe to store,
access, and interpret the underlying data. As machine-readable
and interpretable resources, the data stored in these repositories
can become training data for advanced machine algorithms such as
artificial intelligence (AI). A compelling example of the impact of
data reuse is provided by AlphaFold, an AI model developed by
DeepMind (Jumper et al., 2021). The model can predict protein 3-
D organisation, thus expanding the repertoire of knowledge from
the existing “known” protein structures (which had been solved
experimentally) to now include previously “unknown” protein
structures. In the drug discovery field, such predictive models
play a role in identifying protein-protein and drug-protein
interactions that contribute to our understanding of how drugs
act at a molecular level. An important aspect of such modelling
systems is that they allow computational assessment of the binding
efficiency of a molecule to a protein of interest for which an
experimentally derived 3-D structure is not available. This can save
costs when identifying new compounds which bind proteins and
also creates new ways to help understand how the function of the
protein can be modulated to change a disease process in a
beneficial way. The model owes its success to the presence of
open-access and FAIR data repositories and infrastructures.
AlphaFold has been trained on data available in UniProt for
sequence-based similarity and Protein Data Bank (PDB) for
computation of the 3D structure of the model (Berman et al.,
2000). Without such repositories supported by machine-
interpretable data formats, the training and building of a

groundbreaking AI model such as AlphaFold would not have
been possible.

It is, unfortunately, the case that only a limited subset of data in
the drug discovery field is FAIR and efforts to mobilise the
community to implement FAIR-compliant systems need to be
initiated (Wise et al., 2019). One prominent effort leading the
way in bringing FAIR into practice is the IMI Innovative
Medicines Initiative (IMI) FAIRplus project (https://fairplus-
project.eu/). FAIRplus was established with the aim to generate
reproducible workflows for data FAIRification in the life science
field and promoting the FAIR principles among academic and
industrial researchers. One project, focussed on reducing drug-
associated toxicology, is a useful example of how FAIR data can
be leveraged to enable automated downstream tasks. For each
potential compound, toxicity data associated with specific
chemical structural features can be identified and act as a guide
when designing novel compounds with fewer or less acute safety
issues. Acknowledging the importance of effectively reusing
toxicology data, the project IMI eTOX (http://www.etoxproject.
eu/) was established. Within eTOX, a database of preclinical
toxicity data from participating pharmaceutical companies was
created. After the completion of the project, the FAIR pipelines
built by IMI FAIRplus for eTOX were provided to the IMI
eTRANSAFE project for further reuse (Custers et al., 2021).
Similarly, the IMI CARE project was initiated in response to the
COVID-19 pandemic, and as part of the project, ~5,500 FDA-
approved drugs and clinical candidates were screened in vitro for
anti-SARS-CoV-2 activity. Therefore, IMI FAIRplus project assisted
in disseminating these data into the ChEMBL public repository
(Custers et al., 2022). While these data did not lead to the discovery
of an eligible compound for further development to treat COVID-
19, they are still very valuable information for informing
community-wide COVID-19 drug development efforts. The
eTRANSAFE (https://etransafe.eu/) project also developed
predictive models for translational clinical research. A common
tool, known as FLAME, was published in the project, which reused
the bioactivity data within ChEMBL and assisted in activity
prediction, specifically toxicity, for compound libraries of interest
(Pastor et al., 2021). A key advantage of the tool is its ability to be
repurposed for datasets not available in public repositories, such as
in-house pharmaceutical company databases (Steger-Hartmann
et al., 2018; Sanz et al., 2023). Thus, researchers can re-use the
tool for proprietary data by simply harmonising the data format for
in-house generated bioassay data to a ChEMBL-compliant format.

FAIR data in clinical studies

During the latter clinical phases of drug development, testing of
candidate drugs in patients is done to assess the drug’s efficacy for
the intended indication. Furthermore, an investigational drug’s
short- and long-term effects are measured to confirm the safety
and tolerability profile of the drug. A recently proposed alternative
approach to the design of clinical trials involves generating synthetic
patients in the form of virtual cohorts. Such virtual cohorts can
represent the diverse human population that differs across ethnicity,
anatomy, genetics, environmental, and lifestyle factors, and can be
constructed using access to standardised, anonymised FAIR clinical
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data. Of particular utility is the potential to replace control cohort
participants in trials, patients who normally receive a placebo or
comparator drug treatments (Azizi et al., 2021). This diverse
population representation allows for two significant advantages:
first, the ability to evaluate virtually large patient groups
irrespective of geographic location or condition; second, it is
relatively cost-efficient since analyses are computational in nature.

Two fundamental ingredients are needed to generate useful
synthetic data that can mimic the features of a real dataset:
advanced algorithms/methods and access to high-quality clinical
data and healthcare records. Many ML-based methods have been
derived for the method aspect, acknowledging the interest of the
drug discovery industry in synthetic patient generators. Models such
as Synthea (Walonoski et al., 2018) and SASC (Khorchani et al.,
2022) leverage statistical rules defined on real-world healthcare data
to generate the synthetic patient cohort. On the other hand, deep
neural network-based models like autoencoder-based VAMBN
(Gootjes-Dreesbach et al., 2020) or an agent-based simulation
model (Popper et al., 2021) have accelerated the field with virtual
patient simulation being closer to the real patient. With respect to
the data ingredient, resources have been built towards different types
of data related to biomedical research. The clinicaltrials.gov is a large
open-access database for clinical trial data. The European Health
Data & Evidence Network (EHDEN, www.ehden.eu) has built a
federated network to enable FAIRness of electronic health record
data. A broader list of synthetic data resources has been summarised
in the FAIR Cookbook (https://w3id.org/faircookbook/FCB069).
Overall, there are ongoing efforts to improve and automate the
process of cohort generation, given the benefits which can be
accrued in terms of flexibility to share virtual clinical data, lower
costs, and reduced data privacy needs relative to real-world clinical
data. In summary, it is essential to note that although synthetic data
is closed aligned with FAIR principles (given its seamless data
sharing and reuse without infringing on privacy), the importance
of this data is mainly in building ML/AI algorithms that can mimic
real-world scenarios. Consortiums like Common Infrastructure for
National Cohorts in Europe, Canada, and Africa (CINECA, https://
www.cineca-project.eu/) have aligned their mission in this direction.

FAIR data and drug repurposing

In the scenarios discussed above, we have examined the role
played by the analysis of FAIR data in the classical drug discovery
process, in which the goal is the identification of new drug
candidates for the disease in question. Equally, however, re-
use of data can be applied in the search among existing
marketed drugs for new therapeutic purposes. This approach
is referred to as “drug repurposing” or “repositioning” and is of
particular interest in the search for treatment for rare diseases,
where the very small number of patients hampers the conduct of
clinical trials (Whicher et al., 2018; Pushpakom et al., 2019). The
identification of repurposed drugs is supported by resources such
as the Drug Repurposing Hub (https://clue.io/repurposing) that
comprehensively aggregate pre-clinical and clinical data to assist
in decision-making (Corsello et al., 2017). Furthermore, the open
resources with curated data generated during pre-clinical and
clinical drug discovery pipelines like Open Targets (Koscielny

et al., 2017), SureCHEMBL (Papadatos et al., 2016), PubChem
(Kim et al., 2016), allow for tools such as Swiss Target Prediction
(Gfeller et al., 2014), COVID-19 Pharamcome (Schultz et al.,
2021), Patent EnrichMent Tool PEMT (Gadiya et al., 2023a), and
others to access, extract, evaluate, and predict patterns in the
underlying data. The COVID-19 Pharamcome based approach
by Schultz et al. (2021) enabled the integration of existing data
(both literature and experimental) on Sars-CoV-2 allowing for
the identification of synergistic drug combinations like
remdesivir-thioguanosine and nelfinavir-raloxifene. On the
other hand, the applicability of the PEMT tool by Gadiya
et al. (2023B) focused on retrospective analysis of patent
documents to identify the reasoning behind existing drug
repurposing cases like Cleave Biosciences’s CB-5083, from
cancer to rare diseases, for its target specificity. Both these
approaches emphasise the significance of adopting a legacy
data perspective to inform future decisions in drug discovery.
Furthermore, these endeavours have garnered recognition from
European communities resulting in the launch of drug
repurposing initiatives such as REPO4EU (https://repo4.eu/)
and REMEDI4ALL (https://remedi4all.org/).

Discussion

There is an urgent need to lower the costs and accelerate the
process of drug discovery. To help achieve these necessary
improvements, access to FAIR data can make a major
contribution to community-wide learning of lessons from past
failures and successes. FAIR data can also support ML predictions
based on well-curated findings from past experiences. The
increased adoption of ML methods also drives the further
adoption of FAIR principles. FAIR data management involves
ensuring that data is easily located, accessible to all who need it
(and by machines/automated access and analyses), structured in a
way that allows it to be used with other data, and accompanied by
sufficient metadata to make it understandable and interpretable.
The implementation of FAIR principles in data management
comes with an initial cost but has the potential to significantly
accelerate scientific discovery by enabling the effective use of data
across a range of domains and disciplines. Given the benefits of
following the FAIR data principles, it is clear that the effort of
making data FAIR is considerable. Any attempt to implement
FAIR should be carefully planned, and its benefits should be
evaluated prior to starting. Obstacles, as well as potential solutions
or strategies to overcome them, have been reviewed in recent
works (Gu et al., 2021; Alharbi et al., 2022). Through the journey
of making data FAIR, maintaining a close watch on FAIR
pipelines’ reusability is always encouraged by FAIR Doers. This
has led to the establishment of practical recipes on how to
implement FAIR in practices such as the FAIR Cookbook
(https://faircookbook.elixir-europe.org, Rocca-Serra et al., 2023)
created by biopharmaceutical and academic professionals and
guidance on data management practices, such as the RDMKit
(https://rdmkit.elixir-europe.org/); both community-driven
resources welcome contributions from knowledgeable
individuals to share examples and showcase resources that help
researchers in their FAIR journey.
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