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More than sesquicentennial years of malarial research, however the unique
malarial parasite, Plasmodium still bewilders us with its atypical characteristic
features. Elimination strategies, deeper knowledge of the parasite biology and
pathways can help combat this global health concern that affects ~250 million
people annually. In this review, we unveil an unusual phenomenon observed in the
parasite proteome, N-terminal extensions in proteins and highlight that the
proteases that may be involved in their processing events, are potential
candidates to target this pathogen. Plasmodium encodes larger proteins as
compared to its eukaryotic counterparts with homology regions present in the
C-terminus of the protein. In contrast, the function of unusual extensions in the
N-terminus remainsmostly elusive. This novelty observed in Plasmodium proteins
is collated here with a focus on replication proteins. The plausible functions and
prevalence of these extensions, despite the reduction in genome size, through the
parasite evolution are also mentioned. We hypothesize that these extensions,
propagated via the energy consuming cellular processes in the otherwise host-
dependent obligate parasite, are beneficial to the parasite in ways that are yet to be
explored. Consequently, targeting the proteolytic processing of these proteins
and the involved proteases would serve as a new drug development regimen to
tackle the emerging resistance in parasites to existing antimalarials.
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Introduction

The deadly parasitic Plasmodium infection malaria, affects approximately 250 million
individuals annually worldwide. The WHO reported 619,000 deaths due to this global
menace in 2021 (Organization, 2022). Umpteen strategies and stringent measures have been
devised globally to eradicate this mosquito vector transmitted disease. Malaria-related
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symptoms include fever and chills; the severe form results in coma
and system failure. Among the five protozoa species, P. falciparum
and P. vivax are the culprits of maximum malarial deaths (Basu and
Sahi, 2017). This fatal parasite has been prevalent since ancient
history and is known to complete its complex life cycle in both
mosquito (definitive host) and humans (secondary host) (Garcia,
2010; Lee et al., 2019). A deeper understanding of the parasite
biology, rapid diagnostic tests, treatment approaches and prevention
strategies have proved quite remarkable in tackling this disease.
However, global malaria elimination and the ways to overcome the
alarmingly rise in drug resistance have become exigent. Moreover,
the inability of any malarial vaccine to induce a consistent immune
response has raised concerns (Saha et al., 2016). Genomic data,
genetic polymorphisms and profound knowledge of the parasitic
pathways can reduce the global burden on public health. Potential
drug target screening, along with the development of novel anti-
malarials through meticulous research, can assist in achieving the
global malaria eradication plan (Joshi, 2003; Garrido-Cardenas et al.,
2019; Kumpornsin et al., 2019).

Apicomplexan parasites have diverse hosts and need to replicate
their genomes within different niches, sometimes under complicated
stress conditions. This uphill battle is accomplished with the help of
dedicated replication machinery and gene regulators. The
appropriate timing and regulation of replication, multiple nuclear
division and cell division are the vital factors for these parasites to
thrive in different environments. Technological and genomic
advances have aided researchers to understand the complex
genomic, transcriptional, proteomic and metabolic details of
parasite. This information is helpful for the development of
drug-targeted intervention approaches. Genomic analyses have
revealed that these parasites have reduced genome size and lesser
number of genes as compared to their ancestors. The crafty nature of
the parasite is to hijack the host proteins and scavenge the host
nutrients, thus making up for the lineage-specific losses.
Plasmodium, a member of the apicomplexan parasite family is
also dependent on human host for its survival and has evolved
through endosymbiosis (Francia and Striepen, 2014; Deshmukh
et al., 2016; Swapna and Parkinson, 2017).

Any functional protein can be divided into two segments: N and
C terminus. The N-terminus carries critical information that
determines the fate of the protein within the cell and also acts as
intracellular postal codes. Here we review a novel insight depicting
an unusual phenomenon in Plasmodium proteins taking replication
proteins as our model. Plasmodium proteome exhibits unique
N-terminal extensions in proteins as compared to their
eukaryotic counterparts (Figure 1A) (Coppi et al., 2005; Gupta
et al., 2008; Deshmukh et al., 2012; Miao et al., 2013; Espinosa
et al., 2015; Osman et al., 2015; Seliverstov et al., 2015; Yusuf et al.,
2015; Sharma et al., 2018; Robert-Paganin et al., 2019; Bhowmick
et al., 2020). Phylogeny tree analysis revealed divergence among the
Plasmodium proteins taken here as model (ORC1, ORC5 and
GCN5), from S. cerevisiae and H. sapiens as indicated by branch
lengths (Figure 1B). We anticipate that this novelty, despite reduced
genome size, is a classical means adopted by the parasite as a
regulation strategy to synthesize multi-functional proteins and
carry specific information for protein localization (Figure 1C).
Thus, the proteases responsible for processing of these proteins
become important for their function that may lead to exploring

possibilities to use them as potential drug targets. These proteases
may have many substrates in the malaria parasite and, in turn, affect
many essential pathways of the parasite biology. Among several
substrates some could be proteins with unusual N-terminal
extensions, serving as substrates to specific proteases and
ultimately undergo proteolytic processing to deliver
multifunctional proteins. The proteases involved in the
processing can belong to either class of proteases: Serine,
Threonine, Aspartic, Cysteine and Metalloproteases. Therefore,
identifying and targeting the specific class of protease for such
processing presents an attractive way of targeting this deadly
parasite.

N-terminal extension idiosyncrasy through
the evolutionary process

Proteins with long N-terminus extensions (NTEs) that are
associated with DNA replication are not ubiquitous, but few are
present in different species. In eukaryotes, subunits of
Minichromosome Maintenance protein helicase complex;
MCM2, MCM4 and MCM6 possess large disordered NTEs.
Whereas, MCMs in archaea lack these NTEs (Riera et al.,
2017). Additionally, the mammalian Cdt1 comprises a long
extension at N-terminus, that is, advantageous to the protein
structure. The N-terminus of Cdt1 binds to MCM2, whereas
MCM4 and MCM6 bind at the C-terminus. A long loop at the
N-terminus attaches it to the C-terminus of Cdt1, making the
complex of MCM-Cdt1 intact (Wei et al., 2010; Liu et al., 2012).
Moreover, the N-terminal extension distinguishes human
mitochondrial single-stranded DNA binding protein from its
bacterial counterparts (Yang et al., 1997; Oliveira and Kaguni,
2010). Recent findings highlight the presence of long NTEs in
coronaviruses. SARS-CoV Nsp12 RNA-dependent RNA
polymerase contains a unique N-terminus extension. The NTE
has a nidovirus RdRp-associated nucleotidyl transferase
(NiRAN) and a kinase-like domain that assists in its binding
to co-factors nsp7 and nsp8 (Kirchdoerfer andWard, 2019). Long
NTEs are observed in SARS-CoV-2, the causative agent of the
pandemic. Long extensions of nsp8a and nsp8b provide binding
sites for an array of replication factors (Chen et al., 2020).

In prokaryotes, the majority of the repeat containing proteins
(RCPs) are uncharacterized. Those characterized function as
enzymes, transport proteins, structural proteins, and in
transcription/translation. Contrastingly, in eukaryotes (Human,
Drosophila and C. elegans) irrespective of the type of repeat,
RCPs are mostly associated with DNA, RNA or chromatin (Faux
et al., 2005). RCPs are located at the C-terminus as well as the middle
region of the protein but, they are preferentially positioned at the
N-terminus (Alba and Guigo, 2004). Plasmodium falciparum
genome is unique as many of the proteins encoded are oddly
rich in repetitive and low complexity sequences. Approximately
one in every 467 nucleotides, repetitive sequences occur in P.
falciparum (Tan et al., 2010). During the asexual blood-stage,
the insertion and deletion of these repeats are highly dynamic
(Hamilton et al., 2017). Gene sequences having these repeats
are variable among different Plasmodium strains (Moser et al.,
2020).
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Many of the Plasmodium proteins with repeats are intrinsically
disordered (Huntley and Golding, 2000; Feng et al., 2006).
Intrinsically disordered proteins are involved in cellular processes
and due to their flexible nature, they function as “molecular springs”
(Dunker et al., 2001). As explained above, since these repeats are
disordered in most cases, they have no functional importance. But
with an evolutionary point of view, they play a very different role.
These repeats contract and expand via strand slippage and unequal
crossing over events during DNA replication and meiosis, adds to
their ability to create more variation among strains (Gemayel et al.,
2010). This expansion or contraction leads to significant changes in
the activity of a protein or in the formation of a protein with novel

function (Davies et al., 2017). Plasmodium genome has a high
frequency of low complexity regions (LCRs) that evolve rapidly
(Pizzi and Frontali, 2001; Zilversmit et al., 2010). Further, single
amino acid repeats are abundantly found in the genome. 25% of the
proteome contains asparagine repeats (Muralidharan et al., 2011).
Like poly-Gln repeat, poly-Asn repeats also tend to form aggregates
at higher temperatures (Halfmann et al., 2011). Considering the fact
that protein aggregation is toxic to the cell, the presence of such a
large number of protein aggregates gives an evolutionary
disadvantage to Plasmodium. However, the Plasmodium
chaperones like Hsp110c protects the organism from such life-
threatening situation (Muralidharan et al., 2012).

FIGURE 1
(A) Pictorial representation of Saccharomyces, Human and Plasmodium ORC1, ORC5 and GCN5 proteins depicting unusually long N-terminal
extensions in Plasmodium proteins. The conserved regions in proteins with respect to Plasmodium proteins are shown in green color. (B) Phylogeny tree
depicting the divergence in Saccharomyces,Human and PlasmodiumORC1, ORC5 andGCN5. PhyML 3.0 (Guindon et al., 2010) was used to generate the
tree by using the alignment file in PHYLIP format (Dereeper et al., 2008). (C) Diagrammatic representation of multiple effects of the unusual
N-terminal extensions in Plasmodium proteins.
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N-terminal extensions in Plasmodium and
functional enigma

Proteins in P. falciparum parasite are longer in size, on average,
as compared to other species. Plasmodium proteome analysis reveals
that the homologous sequences within the proteins (when compared
with similar proteins from other systems) reside exclusively in the
C-terminus of the protein and the N-terminus has non-homologous,
unique extensions which may/may not have a specific function to be
performed. The critical role played by these unusual extensions
remains elusive and needs to be further characterized to understand
the parasite pathways and biology in a profound manner.
Furthermore, the long N-terminus extensions mostly consist of
repetitive sequences such as poly-asparagine tracts, found in
approximately one-fourth of the P. falciparum proteins (Davies
et al., 2017). These low-complexity regions help the parasite to
escape the host immune complex and enable protein-protein
interactions. It was assumed that these repeat regions do not
confer any advantage/disadvantage to the parasites. However,
recent evidences have shown that they are critical for parasite
protein function and can cause changes in the protein folding,
biochemistry or generate novel functional domains (Davies et al.,
2017). Moreover, these repeats are highly dynamic and are known to
have expanded evolutionary.

The manifestation of the clinical symptoms of malaria occur due
to the continuous multiplication of the parasite in blood (Chang
et al., 2008). Due to presence of the parasite, the host cell undergoes
constant remodeling. This coup is achieved by Plasmodium through
defenestration of numerous proteins from the parasite into the
erythrocyte. Most of the proteins, including the integral
membrane proteins, are fused with signal sequences to facilitate
their entry into the ER membrane. Apart from the signal sequence,
there is an additional downstream sequence, the vacuolar targeting
signal (PEXEL). This signal aids in the trafficking of the protein from
the parasitophorous vacuole to the host cell. It is located
20–30 amino acids downstream of the signal sequence.
Exceptions to this process are also present within the parasite as
there are proteins that lack the PEXEL sequence but are exported to
the host cell. The PEXEL sequences are recognized by an integral
membrane associated aspartic protease plasmepsin V. Chaperone
HSP101 and PTEX150 aid in the translocation of the cleaved
proteins across the parasitophorous vacuole membrane (PVM)
(Beck et al., 2014; Gabriela et al., 2022). Phosphatidylinositol-3-
phosphate (PI(3)P) binding in ER by the Host-targeting signal, prior
to and independent of plasmepsin V action, facilitates protein
export. The cleavage by protease plasmepsin V may be facilitated
by PI(3)P binding (Bhattacharjee et al., 2012).

Many of the Plasmodium proteins display a unique property of
possessing an unusually long N-terminus. FIKK8, a member of the
protein kinases FIKK subfamily, is reported to contain N-terminal
extension and conserved kinase domains within the C-terminus.
The N-terminal extension is an integral component of the FIKK
architecture. It consists of auto-phosphorylation components that
may be crucial for regulation purposes, but the functional
significance is unknown (Osman et al., 2015). Another example
of a protein with essential N-terminal extensions is CDP-DAG
synthase. The full length 78 kDa protein is cleaved into a 28 kDa
unusually long asparagine-rich N-terminal extension and a 50 kDa

fragment consisting of conserved C-terminal cytidylyltransferase
domain. The N-terminus fragment is trafficked to the
parasitophorous vacuole and is a peripheral membrane protein,
however, the function remains unknown. Intriguingly, Myosin A
tail-interacting protein (MTIP) and MyoA have unstructured “N-
terminal extension” that consists of phosphorylation sites that
regulate the output of the motor complex. The disordered
N-terminal extension of MTIP is crucial for its interaction with
GAP45, a component of the glideosome complex (Douse et al., 2012;
Yusuf et al., 2015; Robert-Paganin et al., 2019). The conserved key
acetyltransferase PfMYST, expressed in two isoforms in the parasite,
consists of chromodomain, MYST acetyltransferase domain and
zinc finger domain (Shekhar et al., 2022). Interestingly, N-terminal
extensions are present in PfMYST, upstream of the chromodomain.
The function of this extension is unknown, but it is reported to be
heavily acetylated with multiple acetylation sites within this
extended region (Miao et al., 2013).

The essential histone acetyltransferase, PfGCN5 regulates gene
expression in the parasite. This chromatin-remodeling enzyme is
170 kDa long and the conserved bromodomain (BrD) and
acetyltransferase domain (GNAT) reside within the C-terminus
region. The N-terminus of this protein is unusually long and the
functional significance of this extension is not yet known. The full-
length protein is subjected to a novel proteolytic processing event via
cysteine protease-like enzyme that results in the generation of
multiple fragments of the protein or the mature peptides
including ~45 kDa C-terminal fragment containing the HAT
domain. This proteolytic cleavage is crucial for the in vivo
activity of PfGCN5 (Bhowmick et al., 2020).

Thus, N-terminal extensions have been reported in multiple
proteins belonging to different pathways in the Plasmodium
parasite. One can understand its necessity for the proteins
exported out of the parasite and targeted to a particular organelle
within the parasite that it accommodates the vacuolar targeting
sequence and the signal sequence. However, unusually long
N-terminus is found in numerous proteins that are not exported
out of the parasite like the proteins involved in DNA replication. The
presence of these unusual long N-terminal extensions in the
machinery of this highly conserved process of replication is quite
astonishing that may reflect the unique properties of this deadly
parasite.

Prevalence of extensions in replication
proteins

The fundamental cellular life process DNA replication is
executed with the help of a closely monitored machinery. The
parasite circulates between two hosts and replication occurs five
times in the Plasmodium life cycle (Arnot and Gull, 1998; Mitra
et al., 2012). The unusual features of schizogony, asynchronous
replication, multiple rounds of replication, differences in the
machinery components and dynamics distinguish the parasite
from other eukaryotic species. In Plasmodium, the time taken for
genome duplication and the resultant number of daughter cells
varies significantly among the different rounds of replication. It
could be less than 4 min during gametogenesis to approximately
17 h for sporogony (Stanojcic et al., 2017; Matthews et al., 2018).
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Interestingly, some of the reported inhibitors of DNA replication
and the involved proteins are quite efficacious in killing drug-
resistant parasites as well. Acriflavine targeting PfGyrase B is a
potent therapeutic against both CQ-resistant and sensitive parasites
(Dana et al., 2014). Further, CQ-resistant parasites exhibited more
sensitivity towards the replication inhibitors, pyrrolobenzimidazole
RWJ68198 and pyridinylimidazole RWJ67657 (Brumlik et al., 2011).

The replicative machinery components include ORC proteins,
MCMs, PCNAs and DNA polymerases similar to eukaryotes. ORC1,
the first subunit of the complex to be identified in P. falciparum in
both sexual and asexual stages, binds to ARS like sequences (PfARS)
(Agarwal et al., 2017). PfORC1 is homologous with its eukaryotic
counterparts (yeast and human) and consists of conserved
sequences of the Cdc6/Cdc18/ORC1 superfamily (Li and Cox,
2003; Mehra et al., 2005). PfORC1, the largest subunit of origin
recognition complex (ORC), contains an extensively long
N-terminus region with potential phosphorylation sites. This
unusually long extension shows no sequence homology with any
other ORC1 protein in eukaryotes, whereas the C-terminus of the
protein is conserved. The N-terminus of yeast ORC1 protein is
involved in the interaction with different sirtuins and plays a role in
transcriptional silencing (Triolo and Sternglanz, 1996). BAH
domain (bromo adjacent homology domain) is present in the
N-terminus of human ORC1 and assists in chromatin binding
(Noguchi et al., 2006). Interestingly, the extended region in the
PfORC1 N-terminus has a significant number of charged amino
acids, indicating its involvement in interaction with other proteins.
PfORC1 is a nuclear protein as it contains two NLS sequences and a
leucine zipper motif in its N-terminus. The N-terminus of
PfORC1 localises at the nuclear periphery and has an affinity
towards the telomeric regions (TARES) and var gene promoters
(Deshmukh et al., 2012). In association with Sir2 (histone
deacetylase), PfORC1 plays a role in the silencing of var genes by
creating a heterochromatin like silencing zone. The study
established a crucial role of the N-terminus region, comprising
unusual extensions, in var gene regulation, that is, important for
the parasite virulence and pathogenicity. Thus, the single protein
behaves as a multi-functional protein in which the C-terminus plays
essential roles in DNA replication and the N-terminus containing
unusual extension is associated with var gene regulation.

ORC5 has also been characterized and it exhibits colocalisation
with ORC1 and PCNA, establishing its function as a replication
protein (Gupta et al., 2008). PfORC5 also has homology with its
eukaryotic counterparts at C-terminus only and is a critical
component of the fundamental process of replication. Like other
ORC members, PfORC5 also has an unusual N-terminal extension
consisting of asparagine/aspartic acid/lysine-rich repetitive
sequences (Gupta et al., 2008). The length of the conserved
C-terminus is ~440 amino acids which is comparable with the
eukaryotic ORC5 proteins (~450 residues). The full length
PfORC5 protein is ~899 residues long and therefore, the extra
residues apart from the conserved C-terminus comprise the long
N-terminal extension. The function of these extra residues
constituting the unique N-terminal extension is not known yet
and requires further detailed studies.

Another ORC subunit homologue ORC2, has been identified in
P. falciparum. A novel unconventional protein trafficking pathway
involving the ER association of this protein followed by

translocation to the nucleus has been proposed (Sharma et al.,
2018). PfORC2 has a NLS sequence in its long N-terminus, and
it shows conserved residues in the C-terminus. The full length
ORC2 protein undergoes processing and its N-terminal is cleaved
by a SPP like peptidase in the ER. Post processing, a smaller
C-terminal fragment travels to the nucleus via Golgi where it
performs essential functions in DNA replication (Sharma et al.,
2018). The remaining subunits of ORC are yet to be explored in P.
falciparum.

Followed by the initiator proteins, recruitment of helicase ring
completes the pre-RC formation. As in eukaryotes, P. falciparum
also has 6 MCM subunits, MCM2-7 that comprise the signature
MCM motif, WALKER-A domain and zinc-finger motif. MCM2,
6 and 7 have been characterized and the remaining subunits are not
yet studied (Patterson et al., 2006). The transition of pre-RC to
replication fork formation is critical to the replication process to
continue. The required enzyme for the primer synthesis during the
elongation step, primase, is annotated in the P. falciparum genome
and has 15 introns and codes for a 53 kDa protein that has conserved
motifs similar to eukaryotic primases. Moreover, PfPrimase has
regions homologous to DNA and RNA polymerases and reverse
transcriptases (Prasartkaew et al., 1996).

Eukaryotes have five polymerases, namely DNA polymerase
alpha (α), DNA polymerase gamma (γ), DNA polymerase delta
(δ), DNA polymerase beta (β) and DNA polymerase epsilon (ε). In
P. falciparum, Pol α and Pol β from the crude extract and Pol γ from
mitochondria have been characterized. Pol δ has also been studied in
detail (Abu-Elheiga et al., 1990; Fox and Bzik, 1991; Ridley et al.,
1991; Chavalitshewinkoon et al., 1993; Horrocks et al., 1996;
Chavalitshewinkoon-Petmitr et al., 2000; Hubscher et al., 2000;
Nunthawarasilp et al., 2007; Vasuvat et al., 2016). Remarkably, P.
falciparum encodes two PCNAs, PCNA1 and PCNA2 that have been
reported to play essential roles in increasing replication processivity
and DNA damage repair response (Kilbey et al., 1993; Horrocks
et al., 1996; Li et al., 2002; Patterson et al., 2002; Mitra et al., 2015;
Banu et al., 2018; Pradhan et al., 2019). Further, the sliding clamp
loader, RFC and the eukaryotic single-stranded DNA-binding
protein, replication protein A (RPA), have been well
characterized and studied in detail (Voss et al., 2002; Gangwar
et al., 2009; Jirage et al., 2010). The homolog of topoisomerase II has
also been identified in P. falciparum (Cheesman et al., 1994).

Replication proteins are the “sine quo non” of the Plasmodium
life cycle. The role of long N-terminus in replication initiation
proteins (ORC proteins) still remains elusive. It raises the
question about its necessity as they do not require to be exported
out of the cell. Further, we analyzed sequences of the different
proteins involved in DNA replication of P. falciparum. The sequence
analysis of the essential chromatinmodifying enzyme, GCN5 known
to regulate parasite gene expression, was also performed. The
presence of long N-terminus and low complexity repeats were
screened using bioinformatics tools such as ScanProsite and
Delta Blast (Table 1). It was observed that apart from ORC
proteins described above (PfORC1, PfORC2 and PfORC5),
PfORC4 (putative), PfCdt1, RFC subunit1, PfRPA1, DNA
polymerase α, DNA ligase I and GCN5 possess long N-terminus
extensions. As mentioned earlier, PfORC1, PfORC2, PfORC5 and
GCN5 have already been reported to comprise unusual N-terminus
extensions, hence validate our findings using the bioinformatics
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TABLE 1 P. falciparum replication proteins and the essential histone acetyltransferase, GCN5 are listed. The presence of N-terminal extensions and the prevalence of the respective amino acids within these extensions are
mentioned. NLS was predicted using NLStradamus (Nguyen Ba et al., 2009).

S. No. Name PlasmoDB
ID

N-terminal
extensions

Extension lengtha

(approximate)
Asparagine
residues

Serine
residues

Lysine
residues

Glutamine
residues

Aspartic acid
residues

NLS

1 ORC1 PF3D7_1203000 + 774 + + + - - +

2 ORC2 PF3D7_0705300 + 517 + - + - + +

3 ORC5 PF3D7_0215800 + 277 + - - - + +

4 ORC4 PF3D7_1334100 + 505 + - - - - -

5 MCM2 PF3D7_1417800 + 218 - - - + + -

6 MCM3 PF3D7_0527000 + 121 - - - - - +

7 MCM4 PF3D7_1317100 + 160 + - - - - -

8 MCM5 PF3D7_1211700 - - - - - - - -

9 MCM6 PF3D7_1355100 + 180 - - - + + -

10 MCM7 PF3D7_0705400 - - - - - - - -

11 MCM8 PF3D7_1211300 + 656 + - + - - +

12 MCM9 PF3D7_0416300 + 565 + - + - + +

13 Cdt1 PF3D7_1343300 + 540b + - - - - +

14 RPA1 large subunit PF3D7_0409600 + 682 + - - - - -

15 RPA1 small
fragment

PF3D7_0904800 - - - - - - - -

16 RFC subunit1 PF3D7_0219600 + 217 + + + - + +

17 PCNA1 PF3D7_1361900 - - - - - - - -

18 PCNA2 PF3D7_1226600 - - - - - - - -

19 Primase PF3D7_1438700 - - - - - - - -

20 DNA polymerase α PF3D7_0411900 + 395 + - - + - +

21 DNA polymerase ε PF3D7_0630300 - - - - - - - +

22 DNA polymerase δ PF3D7_1017000 - - - - - - - -
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tools. Among these proteins, excluding the asparagine repeats,
ORC1 has serine residue repeats, ORC1 and ORC2 have lysine
repeats. Nuclear localization signal is present in ORC1, ORC2,
ORC5 and GCN5 (Table 1).

It is interesting to note that the replication proteins analyzed and
listed in Table 1, in the proteins with unusual N-terminal extensions,
asparagine repeats are highly prevalent within these extensions.
These unique extensions are an excellent candidate for further
detailed studies to reveal the need of these long terminus and
repeats in the parasite proteins within the cell. Similarly, longer
N-terminus extensions are also found in the apicoplast-targeted
proteins in both T. gondii and P. falciparum. Some of these larger
extensions are processed to expose the N-terminal apicoplast
translocation signals. Additionally, these extensions are thought
to be involved in regulating the gene expression via protein-
protein interactions and facilitating transport across membranes
(Seliverstov et al., 2015).

Furthermore, the presence of N-terminal extensions within
replication proteins in Plasmodium, but not in other eukaryotic
species, hints at parasite specific roles. It is possible that these longer
replication proteins undergo proteolytic processing, as has been
reported for PfOrc2, to produce smaller fragments in order to carry
out the conserved process of replication efficiently. The translocation
and formation of a larger complex comprising these longer proteins
might impede origin firing and prevent the completion of replication,
known to occur five times at remarkably rapid rates within the parasite.
Thus, the smaller fragments generated by means of proteolytic
processing would adhere to the exceptionally swift replication rates
and cell cycle dynamics in the parasite. Moreover, the long N terminal
extensions and further processing to create separate proteins would
keep the genome size minimal as two or more proteins can be made
without the need of separate 5′and 3′sequences for each protein thus,
curtailing cellular energy expenses.

Proteolytic processing events and proteases
as drug targets

As described above, proteins with unusual N-terminal
extensions are processed to yield multifunctional proteins.
Proteolytic processing of the proteins is catalyzed by proteases
that hydrolyze the peptide bond. Based on the catalytic
mechanism employed, these proteases are differentiated into
different classes that include serine, cysteine, threonine, aspartic
and metallo proteases (Figure 2). The pioneer work highlighting the
importance of these proteolytic events was the protein activation by
limited proteolysis, in blood coagulation mechanism. Following
which, several other processes of cellular regulation through
proteolytic processing were discovered including DNA
replication, cell-cycle progression, hemostasis, cell proliferation
and death, immune response, tissue remodeling and wound
healing (Turk, 2006). Several inhibitors targeting a proteolytic
event by specific class of protease have been developed for
treatment of acute lung injury, hepatitis C, cancer, AIDS,
diabetes and myocardial infarction. Angiotensin-converting
enzyme (ACE) inhibitors that target the zinc metalloproteinase
and inhibitors targeting aspartic protease Renin are used to treat
heart attack, heart failure and hypertension.TA
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In Plasmodium, few proteases have been characterized and
shown to be potential drug targets (Deu, 2017). However, the
total number of putative proteases identified via genomic
approaches and data mining studies range from 115–137 (Cai
et al., 2011). Apart from the widely studied and druggable
targets, aspartic and cysteine proteases plasmepsins and falcipains
respectively, several other proteases play important roles in parasite
processes and may serve as potent drug targets (Roy, 2017). A
putative PPPDE protease with papain-like fold, annotated as
PF3D7_0919200 can be an attractive target for antimalarial
development as papain-family proteases have roles in cell cycle
regulation and deubiquitination (Iyer et al., 2004). The malarial
calpain is critical for progression of parasite cell cycle and growth but
the exact biological role in the parasite remains unexplored. Its high
divergence from human calpains underscores it as a potential drug
target (Russo et al., 2009). Further, metacaspases, M1 alanyl
aminopeptidase, M17 leucine aminopeptidase, apicoplast-targeted
proteases including ClpP endopeptidase family can be studied
extensively for drug designing purposes (Wu et al., 2003; Le Chat
et al., 2007; Meslin et al., 2007; Kuang et al., 2009; El Bakkouri et al.,
2010; Rathore et al., 2010; Skinner-Adams et al., 2010). The
proteolytic cleavage of N-terminal domain of CSP is a critical
process for invasion in hepatocyte by sporozoites. This process is
mediated by cysteine class of protease and inhibition by specific
inhibitors prevented infection (Coppi et al., 2005; Espinosa et al.,
2015). Subtilisin-like protease 1 (SUB1) has multiple substrates
involved in egress and invasion. Cysteine protease dipeptidyl

aminopeptidase 3 (DPAP3) is involved in RBC invasion and
DPAP2 shows role in parasite egress. The action of Aspartyl
protease plasmepsin IX is linked with RBC invasion. Hemoglobin
degradation is carried by multiple proteases including plasmepsins
I-IV, falcipains 2 and 3 and metalloprotease falcilysin. Several
proteases are also involved in the trafficking of majority of
proteins either to host or to specific organelle in the parasite and
include PM-V, aspartyl SPP.

The proteolytic processing of PfGCN5 is essential for its nuclear
function, and a cysteine protease mediates this crucial processing.
The protease is a Falcipain and the processing event takes place in
the vicinity of food vacuole. These falcipains have role in
hemoglobin degradation in food vacuole, erythrocyte invasion
and rupture. Interestingly, they have role in activation of pro-
plasmepsins (Abugri et al., 2022). Thus, targeting the proteolytic
event of PfGCN5 by developing specific inhibitors against falcipain
would also hamper the above-mentioned processes and in turn will
kill the parasites. Indeed, the inhibitors of falcipain exhibit potent
antimalarial activity. NP1024, a nonpeptidic inhibitor and a natural
fluorescent probe of falcipain-2 demonstrates antimalarial activity
and can also be employed in diagnosis (Zhu et al., 2020). The
structure of Falcipain-2 in complex with an inhibitor belonging to
(E)-chalcone family of molecules opens up new strategy for anti-
malarial drug design by using this biologically appropriate molecule
as a scaffold (Machin et al., 2019). Several other potent molecules
targeting falcipain include both peptide and non-peptide inhibitors
and exhibit antimalarial activity or provide a structural basis to

FIGURE 2
Different classes of protease families present in Plasmodium. The residue involved in catalytic site arementioned on the protease structure shown as
Pac-man. Few of the identified proteases in each protease class are mentioned below the Pac-man. Figure created with BioRender.com.
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utilize them for antimalarial designing (Kerr et al., 2009; Ettari et al.,
2010; Bertoldo et al., 2015; Chen et al., 2017; Salas-Sarduy et al.,
2017; Hernandez-Gonzalez et al., 2018; Melo et al., 2018; Nizi et al.,
2018; Royo et al., 2018; Ettari et al., 2021). However, the structurally
homologous human cysteine-proteases of the cathepsin family, are
off-target to these inhibitors leading to their poor selectivity.
Additionally, the peptide inhibitors cannot be administered orally
and degrade rapidly in vivo thus limiting their potential as drug
candidates. Therefore, “structural signatures” of a particular
falcipain and development of biologically potent small molecule
inhibitors are required to develop remarkable antimalarials.

Similarly, the processing of Orc2 can be targeted by developing
small molecule inhibitors against the SPP-like protease (of the
aspartyl class) which is involved in the processing event.
Targeting this aspartyl class of protease will inhibit the
processing of this replication protein and thus affect the
replication process that occurs five times in these highly
proliferating parasites. The known aspartic protease inhibitor,
Pepstatin inhibits this class of proteases and blocks P. falciparum
development (Bailly et al., 1992). Interestingly, E-64 (cysteine
protease inhibitor) and pepstatin exhibited synergistic effects
when administered together.

FIGURE 3
Targeting proteases to impede the proteolytic processing of proteins with N-terminal extensions, a unique phenomenon in Plasmodium. The
processing of PfOrc2 (in ER) and PfGCN5 (in vicinity of digestive vacuole) is taken as a model here to show the novel targeting approach against aspartate
(yellow Pac-man) and cysteine class proteases (purple Pac-man) involved in the processing events respectively, for developing antimalarial therapeutics.
Following processing, PfGCN5 enters nucleus and PfOrc2 trafficks to nucleus either in Golgi-dependent or independent pathway. Vesicles are not
shown in the figure for clarity. Figure created with BioRender.com.
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Further, the proteases involved in the possible processing of
proteins with extensions as mentioned in Table 1 will first require
proper identification of the type of protease class involved followed
by screening and validation of potent small molecule inhibitors with
antimalarial activity. The processing of these proteins with unusual
N-terminal extensions occurs mostly in Food vacuole or ER where
the proteases generally reside in the parasites. Thus, targeting these
two organelles either alone or in combination will affect the
proteolytic processing of many of these proteins in turn affecting
the critical processes of this pathogen.

Therefore, identifying and targeting the specific class of protease
presents an attractive way of targeting this deadly parasite. These
proteases are responsible for protein quality control and processing
to yield multifunctional domains essential for proper parasite
development. Interestingly, Plasmodium proteases have unique
“structural signatures” that can be employed for developing
specific and effective anti-malarials (Mishra et al., 2019). The
ubiquitous nature of these proteases further accentuates proteases
as potential drug targets.

Pros and cons of proteases as drug targets

The ubiquitous and highly diverse mechanistic nature of proteases
makes them attractive drug targets. The different class of proteases
operate via distinct class specific mechanism structurally and
functionally. Moreover, these proteases have specific substrates that
can be exploited for therapeutic purposes by developing substrate
mimicking inhibitors. As discussed above, the proteases are involved
in proteolytic processing of multiple proteins and thus contribute to the
parasite development, progression, egress, nutrient uptake, protein
trafficking and homeostasis, organelle biogenesis and host invasion.
The involvement of proteases in these critical and a number of
processes underscores proteases as prime targets for antimalarial
therapy. Not just proteins with N-terminal extensions but a particular
protease can cleave other protein substrates that play important roles in
the parasite. Thus, affecting multiple processes and pathways further
adds to the potential of targeting proteases for antimalarial therapeutics.
Apart from the above-mentioned advantages of using proteases as drug
targets, a combination of inhibitors targeting one or more proteases will
be a potent approach. For example, E-64 (the cysteine protease inhibitor)
and pepstatin (the aspartic protease inhibitor) exhibited synergistic effect
together and blocked parasite development (Bailly et al., 1992). Novel
combinations of already existing antimalarial and protease inhibitors can
also be explored further which would also minimize the development of
emerging antimalarial resistance in the parasites. Interestingly, it has been
reported that inhibition of the essential Plasmodium PfUSP protease
increased the efficacy of artemisinin-based drugs (Arora et al., 2023).
Additionally, treatment with antiretroviral protease inhibitors enhanced
sensitivity to chloroquine in CQ-resistant malaria parasites both in vitro
and in vivo (He et al., 2009).

A thorough biological, biochemical and chemical validation of the
inhibitors is crucial for its development as antimalarial agent. These
validation approaches include investigating the inhibition of the specific
target, uptake by cells, bioavailability and negligible secondary effects.
Homology with host proteases can lead to off-targeting of the general
non-specific inhibitors designed to target proteases in the parasite. This
can impact the host and ultimately lead to detrimental effects on the

host. Therefore, a stringent bioinformatics and structural analysis of the
respective Plasmodium protease to develop specific inhibitor against the
protease of interest is extremely critical to avoid off targets. Additionally,
redundancy among host proteases and higher concentration of
proteases within host cells can be exploited to design and select
inhibitors in a way such that the host cells show less sensitivity as
compared to parasites at a particular concentration (Selzer et al., 1999).
Further, the high-resolution crystal structures of proteases and
“structural signatures” identified in Plasmodium proteases will pave
way for the development of parasite-specific inhibitors.

Discussion

Comparative genomic analyses and large-scale sequencing
datasets have paved the way for a better understanding of the
parasite biology, that is, critical for the pathogen eradication. The
abundance of unusual extensions in the N-terminal region of
proteins in the Plasmodium proteome is thought-provoking.
Interestingly, most of these extensions comprise of asparagine
repeats. These repeats, accounting for 25% of the Plasmodium
proteome, is known to have expanded evolutionary and
undergone positive selection pressure. Several hypotheses have
come up with the putative functions of these highly prevalent
repeats, but none seem likely to answer the ubiquitous nature of
these repeats (Muralidharan and Goldberg, 2013). Similarly, the
function of these unique N-terminal extensions, not observed in the
eukaryotic counterparts, remains elusive and is not yet characterized
fully. We reckon that these extensions, as observed in the replication
proteins, serve as substrates to different proteases in order to
generate shorter fragments to facilitate nuclear translocation,
multiple origin firing and carry out replication of the
Plasmodium mega-genome swiftly. Additionally, the generation
of multiple proteins upon processing minimizes the genome size
and energy expenditure by averting the need of separate 5′and
3′sequences for each protein. Intriguingly, the N-terminus of the
replication protein PfOrc1 comprising N-terminal extensions is
involved in var gene regulation whereas the C-terminus functions
in DNA replication highlighting multiple functions of a protein.

Therefore, despite the reduced gene content due to the deletion of
introns and unwanted genes in Plasmodium, the expansion and
prevalence of these N-terminal extensions throughout the parasite
genome is quite intriguing. The putative functions of these extensions
include specific information for protein localization, processing
events, serve as adapters for recruiting interacting partners, or
behave as a separate functional protein altogether upon possible
proteolytic processing (Figure 1C). How these extra set of residues
at the N-terminus of parasite proteins benefit the parasite and
influence its function and phenotype remains to be investigated
thoroughly to combat this deadly infection. The role of proteases
in processing of these proteins with N-terminal extension is crucial
and thus a strategy to develop specific inhibitors against these parasitic
proteases is exigent. Targeting the involved proteases that mostly
reside either in the digestive food vacuole and ER will impede
proteolytic processing of these N-terminal extension containing
proteins leading to obstruction of critical processes of this
pathogen (Figure 3). Additionally, the use of protease inhibitors in
the treatment of HIV and COVID-19 infections further encourages
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the development of protease inhibitors as antimalarial therapeutics.
Detailed structural analysis of the parasite protease will also reveal
parasite-specific sites that can be targeted for generation of parasite-
specific inhibitors. Moreover, targeting one or more proteases in
combinatorial mode would serve as a potential antimalarial
therapy to overcome the developing cases of resistance to currently
available antimalarial drugs.
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