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Chemical and biological data are the cornerstone of modern drug discovery
programs. Finding qualitative yet better quantitative relationships between
chemical structures and biological activity has been long pursued in medicinal
chemistry and drug discovery. With the rapid increase and deployment of the
predictive machine and deep learning methods, as well as the renewed interest in
the de novo design of compound libraries to enlarge the medicinally relevant
chemical space, the balance between quantity and quality of data are becoming a
central point in the discussion of the type of data sets needed. Although there is a
general notion that the more data, the better, it is also true that its quality is crucial
despite the size of the data itself. Furthermore, the active versus inactive
compounds ratio balance is also a major consideration. This review discusses
the most common public data sets currently used as benchmarks to develop
predictive and classificationmodels used in de novo design.We point out the need
to continue disclosing inactive compounds and negative data in peer-reviewed
publications and public repositories and promote the balance between the
positive (Yang) and negative (Yin) bioactivity data. We emphasize the
importance of reconsidering drug discovery initiatives regarding both the
utilization and classification of data.
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1 Introduction

Data and the increasing role of predictive models, including
machine and deep learning (Mouchlis et al., 2021; Bajorath et al.,
2022), are the cornerstone of modern drug discovery programs
(Zhang et al., 2022). The increasing use of computational methods
that recently included deep learning is reducing the time and
financial costs of finding drug candidates (Zhang et al., 2022).
For instance, computer-aided drug design (CADD) has led to the
discovery of more than seventy approved drugs (Sabe et al., 2021)
including remdesivir as an emergency treatment against SARS-CoV-
2 in 2021 (Dos Santos Nascimento et al., 2021).

CADD methods are typically divided into two main categories,
structure-based drug design (SBDD) and ligand-based drug design
(LBDD) that rely on the three-dimensional (3D) structure data
available for one or more molecular targets, or the structure-activity
data of ligands, respectively. Examples of deep learning applications
in SBDD include AlphaFold to assist in homology modeling, and
DiffDock in molecular docking. AlphaFold predicts 3D protein
structures according to their amino acid sequences (Jumper et al.,
2021), and DiffDock predicts the binding mode between the ligand
and specific protein target (Corso et al., 2022). One of the most
notable approaches in LBDD are quantitative structure-activity
relationships (QSAR) (Dos Santos Nascimento et al., 2021).
Current QSAR methods use machine learning and deep learning
(Soares et al., 2022) that can be divided into linear methods and
nonlinear methods (Patel et al., 2014; Greener et al., 2022). Linear
methods include linear regression, multiple linear regression, partial
least squares, and principal component analysis (Patel et al., 2014).
Nonlinear methods include artificial neural networks, k-nearest
neighbors, and Bayesian neural nets, to name a few examples
(Patel et al., 2014; Greener et al., 2022).

Advances in deep learning models have a significant progress
in molecule generation, representing a big step forward in bridging
the gap between chemical entities and drug-like properties
(Krishnan et al., 2021). Deep learning algorithms are currently
used in the renewed interest in the de novo design of chemical
libraries. In 2020, the successful application of deep learning in
drug discovery, that included the de novo design using deep
learning, was selected by the Massachusetts Institute of
Technology Technology Review as one of the top ten
breakthrough technologies (Juskalian et al., 2023).

De novo design is aimed at generating new chemical entities
(NCE) with desired properties (Palazzesi and Pozzan, 2022). De
novo design based on deep learning algorithms (Palazzesi and
Pozzan, 2022) requires a large number of compounds that may
demand significant computational resources. However, bioactivity
data for a biological endpoint is not always sufficient. The lack of
data has led to the development of new methods for compound
selection and applications for deep learning algorithms are being
developed (Guo M et al., 2021).

Knowledge-based drug design frequently involves quality data
(Perron et al., 2022b) to develop models with useful predictions
(Schneider et al., 2020). To this end, rethinking the methodologies
used for drug discovery and development campaigns is crucial. The
quality of data sets, decoy data sets and inactive compounds used in
predictive models, and de novo design models need to be reviewed
and discussed.

The main purpose of this manuscript is discussing the
importance of quality data, decoy data sets, and the balance
needed between inactive (i.e., “Yin”) and active (“Yang”)
compounds currently employed in de novo design and
developing predictive models of biological activity to generate
NCE. Following up on previous studies (Schneider et al., 2020;
Bajorath et al., 2022; Cherkasov, 2023), we comment on the need to
rethink the way to drug design and develop campaigns. The
manuscript is organized into four main sections. After this
Introduction, Section 2 presents an overview of de novo design.
Section 3 discusses the main public data sources used to develop
predictive models. Section 4 discusses criteria to generate quality
data sets. The last section presents a summary of conclusions and
perspectives.

2 De novo design overview

De novo design aims to generate new chemical structures from
scratch with desired predicted properties, e.g., absorption,
distribution, metabolism, excretion, toxicity (ADMET), other
drug-likeness properties, and biological activities (Palazzesi and
Pozzan, 2022). The two main strategies for de novo design can be
classified into SBDD and LBDD (vide supra) (Zhang et al., 2022). A
recent example of a structured-based de novo design is the
RELATION model that learns from the desired geometric
features of protein-ligand complexes to generate new molecules
(Wang et al., 2022). The generation process applies a fragment-
based strategy given an initial chemical scaffold embedded in the
binding site of the target protein. The pre-trained model generates
molecules iteratively by sequentially adding, deleting, inserting, or
replacing and linking fragments (Zhang et al., 2022).

In contrast, ligand-oriented de novo design focuses on the
ligands themselves, thereby generating compounds with new
chemical structures with novel scaffolds from active compounds
while optimizing the desired properties (Xie et al., 2022). A general
workflow is schematically summarized in Figure 1 which has seven
main steps (Krishnan et al., 2021; Zhang et al., 2022): 1) Selecting
compound data sets from public or in-house sources (further
discussed in Section 3); 2) Filtering molecular data sets with
desired properties such as drug-likeness. In the example of
Figure 1 a data set with three subsets of compounds is
represented with a star, triangle, and circle, respectively. The
compounds represented with a star have drug-like properties
(Lipinski et al., 2001; Veber et al., 2002); those represented with
triangles comply with some of the drug-likeness properties, and
those represented with circles are not compliant. Other approaches
to select compounds from the data sets use molecular fingerprints
(Kadurin et al., 2017) or filter compounds directly via similarity-
based virtual screening instead of designing NCE from scratch
(Tong et al., 2021). 3) Selecting the molecular representation as a
basis to learn and represent the structures and properties of
molecules, e.g., SMILES (Weininger, 1988), SELFIES (Krenn
et al., 2020) or molecular graphs (Simonovsky and Komodakis,
2018). 4) Developing and validating the model for molecule
generation using metrics such as the operating characteristic
curve. 5) Optimizing the model by combining reinforcement
learning and property prediction (Olivecrona et al., 2017). 6)
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Generating molecules de novo, 7) Assessing the biological activity of
the compounds designed in relevant in vitro or in vivo models.

Deep learning, currently used in ligand-based de novo design,
learns the probability distribution of molecular data and generates
continuous or discrete latent representations for molecules with
property optimization (Gómez-Bombarelli et al., 2018). The

algorithms map the learned probability distribution and molecule
representation into novel molecules while optimizing molecular
properties (Bilodeau et al., 2022) through the tuning of
hyperparameters (Perron et al., 2022a; Bender et al., 2022).
Advances in deep learning are significantly advancing molecule
generation, representing a big step forward in bridging the gap

FIGURE 1
Overview of ligand-based de novo design. 1) Selecting data sets. 2) Filteringmolecular data sets with desired properties such as drug-likeness. In this
example, compounds represented with stars comply with drug-likeness properties (Lipinski et al., 2001; Veber et al., 2002). 3) Choosing a molecular
representation. 4) Selecting a de novo designmodel. 5) Developing, validating and optimizing themodel. 6) Generatingmolecules de novo. 7) Testing the
compounds in a relevant biological experiment.
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between chemical entities and drug-like properties (Krishnan et al.,
2021).

Ligand´s properties can be optimized in two steps: 1)
property-based generation, wherein models would learn the
chemical space of molecules with desirable properties; and 2)
novel molecules are generated within a desired property space
(Bilodeau et al., 2022). Examples of ligand-based de novo design
are deep neural networks (DNN), recurrent neural networks
(RNNs) (Olivecrona et al., 2017), and variational autoencoders
(VAE) (Gómez-Bombarelli et al., 2018). Olivercroma et al.
(Olivecrona et al., 2017) proposed the REIVENT model that
uses RNN for de novo design. They introduced a reinforcement
learning method to fine-tune the pre-trained RNN so the model
could generate structures with desirable properties. Recently,
Blaschke et al. released REINVENT 2.0 (Blaschke et al., 2020)
making the code freely accessible in Github.

Ligand-based de novo design using DNN (Palazzesi and
Pozzan, 2022) requires a large number of compounds that
demand more computational resources. The DNN
architecture is prone to problems because of fitting numerous
parameters. For this reason, a large training data set is needed to
reduce the risk of overfitting. However, sufficient bioactivity
data for a biological endpoint is not always available (Wu et al.,
2018). The lack of sufficient data has led to using methods for
compound selection or the development of new methods for
compound selection. Altae-Tran et al. (Altae-Tran et al., 2017)
demonstrated how the one-shot learning paradigm can be used
to address the overfitting problem; they used DNN to transform
small molecules into embedding vectors in a continuous feature
space whose similarity measures are then iteratively learned.
They showed that this DNN architecture offers convincing
performance in many activity prediction tasks given limited
amounts of training. On the other hand, computer scientists
advise using algorithms that can detect meaningful patterns in
small data sets, which is a typical case in the early stage of drug
discovery (Schneider and Clark, 2019). For instance, an initial
approach to de novo design is to start from small data sets of
compounds with diverse structures and diverse properties of
pharmaceutical relevance (Chávez-Hernández and Medina-
Franco, 2023).

The availability of gold standard datasets as well as
independently generated data sets are valuable in generating
well-performing models (Vamathevan et al., 2019).
Dissimilarity-based compound selection could be improved if
one focused the selection on a structural diverse dataset (for
instance derived from natural products). Some approaches
proposed suggest using quality data sets using a dissimilarity-
based compound selection method such as the MaxMin or
MaxSum algorithms (Leach and Gilleteds, 2007). Recently, we
reported the use of the MaxMin algorithm for the selection of
natural product subsets (Chávez-Hernández and Medina-Franco,
2023) using the Universal Natural Product Database (UNPD) (Gu
et al., 2013). In that study, the natural product subsets generated
had the most diverse chemical structures with physicochemical
properties of pharmaceutical interest similar to the original data
set. Chemical structures in the natural product subsets were
represented with SMILES encoding chirality, an important
feature of natural products.

3 Main sources of data sets used to
develop generative and predictive
models

3.1 Current status of reference and
benchmark datasets

The first step in de novo design is to select, from the vast
chemical space, the appropriate subset of all possible molecules
for a desired biological activity (Schneider et al., 2000). To have an
idea, the size of the chemical space has been estimated at around 1060

small molecules and between 1020–1024 for all molecules up to
30 atoms that comply with Lipinski’s rule-of-five (Reymond,
2015). According to Yang et al. compound data sets can be
classified into on-demand databases, collections containing
bioactivity data, compounds databases commercially available,
and natural products databases (Yang et al., 2019). Herein, we
include benchmark, decoy and inactive compounds data sets as
others categories as illustrated in Figure 2. In this figure, on-demand
databases are further divided into commercially available (e.g.,
Enamine-REAL, CHEMriya and Freedom Space) (Chemspace,
2023) and in-house (e.g., Pfizer and AstraZeneca). The figure
shows examples of compound databases in other categories
which are discussed in the remainder of this section.

Among the different types of chemical databases, de novo design
employs libraries from different categories outlined in Figure 2.
Specific examples are ChEMBL (Davies et al., 2015; Mendez et al.,
2019), PubChem (Kim et al., 2023), DrugBank (Wishart et al., 2006;
Wishart et al., 2008; Wishart et al., 2018), Enamine´s REadily
AccessibLe (REAL) (Enamine, 2023), CHEMriya (CHEMriya,
2023), Freedom Space (Chemspace, 2023), ZINC-22 (Tingle

FIGURE 2
Classification of compound databases and representative
examples of each one. For the discussion of this manuscript,
databases are split into six main categories: on-demand, commercial
availability, bioactivity, natural products, benchmark and decoys.
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et al., 2023), and MoleculeNet (Wu et al., 2018) which more details
for each one are provided in Table 1 and further commented in the
next sections.

3.2 On-demand databases

Early approaches to ligand-based de novo design involved fragment
compounds into unique building blocks which could be recombined to
make new molecules. A number of commercial suppliers of chemical
samples offer large make-on-demand collections that can be reliably
synthesized because the building blocks are available as well as the
synthetic routes and methods (Warr et al., 2022; Korn et al., 2023).
There are also large collections of fragments or building blocks
commercially available. Examples of on-demand compound
databases and suppliers are REAL (Enamine) (Enamine, 2023),
CHEMriya (OTAVA) (CHEMriya, 2023), and Freedom Space
(Chemspace) (Chemspace, 2023) (Table 1). REAL database
(Enamine, 2023) comprises over 6 billion molecules that comply
with the traditional drug-likeness criteria. CHEMriya (CHEMriya,
2023) contains 12 billion novel and synthetically feasible small
molecules whose molecules are not explicitly listed in the public
domain. Freedom Space (Chemspace, 2023) contains 201 million
molecules and 73% of its compounds are drug-like (as assessed with
the “rule of five”). Examples of on-demand in-house databases from the
pharmaceutical industry are 1015 compounds of AZ Space
(AstraZeneca) (Grebner, 2022), 1019 compounds of JFS (Johnson &
Johnson) (Warr, 2021), 1018 compounds of PGVL (Pfizer) (Hu et al.,
2012), 1017 compounds BICLAIM (Boehringer Ingelheim) (Korn et al.,
2023), and 1020 compoundsMASSIV (Merck/EMD) (Korn et al., 2023).

3.3 Commercially available databases

One of the largest and long-standing compendiums of
commercially available compounds in ZINC. The most

recent version, ZINC-22 (Tingle et al., 2023) contains over
37 billion enumerated, searchable, commercially available
compounds in 2D. Over 4.5 billion have been built in
biologically relevant ready-to-dock 3D formats (Tingle et al.,
2023). Some examples of de novo design using ZINC include the
design of inhibitors of DDR1 (discoidin domain receptor 1, a
kinase target implicated in fibrosis and other diseases)
(Zhavoronkov et al., 2019) and compounds with activity
towards the dopamine receptor D2 (Liu et al., 2019;
Maziarka et al., 2020).

3.4 Bioactivity databases

De novo design based on deep learning algorithms frequently
use PubChem, ChEMBL, and DrugBank to select subsets of
compounds focused on a biological target or biological
endpoint as the design of ligands (Li et al., 2018; Li et al., 2022;
Liu et al., 2019). PubChem (Kim et al., 2023) is a freely accessible
database from the US National Institutes of Health (NIH) with
over 115 million compounds. At the time of writing, the most
recent version release of ChEMBL is 32 (Davies et al., 2015;
Mendez et al., 2019) and contains 2,354,965 compounds
bioactive drug-like small molecules with 2D structures and
calculated properties. DrugBank (Wishart et al., 2006; Wishart
et al., 2008; Wishart et al., 2018) version 5.1.10 (released 2023-01-
04) contains 15,448 drug entries including 2,740 approved small
molecule drugs, 1,577 approved biologics (proteins, peptides,
vaccines, and allergens), 134 nutraceuticals and over
6,717 experimental (discovery-phase) drugs. Some applications
include the de novo design of SARS-CoV-2 Mpro inhibitors (Li
et al., 2022), the design of ligands against the adenosine receptor
(A2AR) (Liu et al., 2019), and the generation of compounds analogs
to celecoxib (used to manage symptoms of various types of arthritis
pain and reduce precancerous polyps in the colon) (Li et al., 2018;
DRUGBANK, 2023).

TABLE 1 Main sources of public molecular data sets used in de novo design.

Data sets Category Description Ref.

ChEMBL Bioactivity Database with 2,354,965 bioactive drug-like small molecules with 2D structures and calculated
properties.

Davies et al. (2015), Mendez
et al. (2019)

PubChem Bioactivity Database at the US National Institutes of Health with 115 million compounds. It includes names,
molecular formulas, structures, physical properties, and biological activities.

Kim et al. (2023)

DrugBank Bioactivity Version 5.1.10 contains 15,448 drug entries including 2,740 approved small molecule drugs. Wishart et al. (2006)

ZINC-22 Commercial Database with over 37 billion enumerated, searchable, commercially available compounds in 2D. Tingle et al. (2023)

CHEMriya On-demand Database with 12 billion novel and synthetically feasible small molecules. CHEMriya (2023)

Freedom Space
(Chemspace)

On-demand Database with 201 million molecules; 73% of its compounds comply with drug-likeness
properties.

Chemspace (2023)

Enamine-REAL On-demand Database with 6 billion synthetic compounds that comply with drug-likeness properties. Enamine (2023)

MoleculeNet Benchmark Compilation of 17 datasets with over 700,000 compounds in total used for comparison of
different machine learning algorithms.

Wu et al. (2018)

MOSES Benchmark Dataset with 1,936,962 molecules from ZINC Clean Lead suitable for hit identification and
ADMET optimization. It does have metrics to detect common issues in generative models such as
overfitting or if the model does not limit to producing only a few typical molecules.

Polykovskiy et al. (2020)
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3.5 Natural product databases

Natural product databases (Gómez-García and Medina-Franco,
2022; Saldívar-González et al., 2022) are important in drug
discovery. From drugs approved by 2020 about 23% are natural
products or derivatives (Newman and Cragg, 2020). Natural
products have a diversity of privileged scaffolds (Atanasov et al.,
2021; Grigalunas et al., 2022) and molecular fragments (Chávez-
Hernández et al., 2020a; Chávez-Hernández et al., 2020b) that
depend on the particular source (Medina-Franco et al., 2022b); a
diversity of chiral centers; and a larger fraction of sp3 carbon atoms
and functional groups (Atanasov et al., 2021; Grigalunas et al., 2022).

Privileged structures were defined by Evans et al. (Evans et al.,
1988) as chemical structures capable of providing useful ligands for
more than one receptor judicious modification of such structures
could be a viable alternative in the search for new receptor agonists
and antagonists. Schneider and Schneider (2017) define a privileged
structure as a chemical structure that may be considered to possess
geometries suitable for decoration with side chains, such that the
resulting products bind to different target proteins or a ligand that

potently interacts with one (selective binder) or many target
receptors (promiscuous binder). To this end, natural products are
used in the development of pseudo-natural products, compounds
that are generated through a de novo combination of natural product
fragments, allowing the exploration of uncharted areas of
biologically relevant chemical space that are different from the
chemical space covered by the compounds from which they are
derived (Grigalunas et al., 2022).

Representative natural product datasets that can be used in de
novo design are Collection of Open NatUral ProdUcTs
(COCONUT) (Sorokina et al., 2021), SuperNatural 3.0 (Gallo
et al., 2023), UNPD (Gu et al., 2013), NuBBEDB (Pilon et al.,
2017; Saldívar-González et al., 2019), SistematX (Scotti et al.,
2018; Costa et al., 2021), CIFPMA (Olmedo et al., 2017; Olmedo
and Medina-Franco, 2020), PeruNPDB (Barazorda-Ccahuana et al.,
2023), BIOFACQUIM (Pilón-Jiménez et al., 2019; Sánchez-Cruz
et al., 2019), UNIIQUIM(UNIIQUIM, 2015), and are summarized
in Table 2.

SuperNatural 3.0, COCONUT and UNPD are the most
extensive natural product databases. SuperNatural 3.0 (Gallo

TABLE 2 Examples of natural product databases in the public domain.

Data sets Description Ref.

COCONUT Extensive database with 406,076 unique structures. Sorokina et al. (2021)

SuperNatural 3.0 A database with 449 058 natural compounds and derivatives. It
includes chemical structure, physicochemical information,
information on pathways, mechanism of action, toxicity, vendor
information if available, drug-like chemical space prediction for
several diseases such as antiviral, antibacterial, antimalarial,
anticancer, and target-specific cells.

Gallo et al. (2023)

UNPD Second-largest database with around 229,000 natural products that
contain chirality information.

Gu et al. (2013)

TCM Database@Taiwan Database with more than 20,000 pure compounds isolated from
453 TCM ingredients.

Chen (2011)

IMPPAT Database of 9,596 phytochemicals from 1,742 Indian medicinal
plants.

Mohanraj et al. (2018)

AfroDB Compound collection with more than 1,000 compounds from
African medicinal plants.

Ntie-Kang et al. (2013)

NuBBEDB Brazilian database with 2,223 natural products encoding as
SMILES, InChI, and InChIKey strings, Ro5 and Veber descriptors,
source, therapeutic effect, and reference.

Valli et al. (2013), Pilon et al. (2017), Saldívar-González et al.
(2019)

SistematX Brazilian database with 9,514 unique secondary metabolites
encoding as SMILES, InChI, and InChIKey strings, and include
physicochemical drug-like descriptors, predicted biological
activities, and reference.

Scotti et al. (2018), Costa et al. (2021)

CIFPMA Database developed at the University of Panama. It contains
natural products that have been tested in over 25 in vitro and in
vivo bioassays, for different therapeutic targets.

Olmedo et al. (2017), Olmedo and Medina-Franco (2020)

PeruNPDB Peru database developed at the Catholic University of Santa Maria.
The current version has 280 natural products from animals and
plants.

Barazorda-Ccahuana et al. (2023)

BIOFACQUIM Mexican database with structures of 531 natural products isolated
and characterized at UNAM and other Mexican institutions.

Pilón-Jiménez et al. (2019), Sánchez-Cruz et al. (2019)

UNIIQUIM Mexican database with 1,112 plant natural products mostly
isolated and characterized at the Institute of Chemistry of the
UNAM.

UNIIQUIM (2015)

Other libraries of natural products with an emphasis on commercial availability are listed on the NIH website (NIH, 2023).
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et al., 2023) is arguably the most extensive natural product database
with 449,058 natural compounds and derivatives; followed by
COCONUT (Sorokina et al., 2021) with 406,076 unique
structures (no encoding stereochemistry) and UNPD (Gu et al.,
2013) with 197,201 natural products that contain chirality
information.

Several public natural products databases compile the
compounds isolated and characterized from a geographical
region or the country of origin as China, India and Africa. For
instance, Chinese Traditional Medicine (TCM) Database@Taiwan
(Chen, 2011) is a non-commercial TCM database with more than
20,000 pure compounds isolated from 453 TCM ingredients; A
curated database of Indian Medicinal Plants, Phytochemistry And
Therapeutics (IMPPAT) (Mohanraj et al., 2018) is a manually
curated database of 9,596 phytochemicals from 1,742 Indian
medicinal plants; and AfroDB (Ntie-Kang et al., 2013) with more
than 1,000 small and structural diversity compounds from African
medicinal plants.

Representative Latin American databases (Gómez-García and
Medina-Franco, 2022) are NuBBEDB (Pilon et al., 2017; Saldívar-
González et al., 2019), SistematX (Scotti et al., 2018; Costa et al.,
2021) from Brazil; CIFPMA (Olmedo et al., 2017; Olmedo and
Medina-Franco, 2020) from Panama; PeruNPDB (Barazorda-
Ccahuana et al., 2023) from Peru; BIOFACQUIM (Pilón-Jiménez
et al., 2019; Sánchez-Cruz et al., 2019) and UNIIQUIM
(UNIIQUIM, 2015) from Mexico. The current version of NuBBEDB
(Pilon et al., 2017; Saldívar-González et al., 2019) contains 2,223 natural
products encoding as linear notations as SMILES. SistematX (Scotti
et al., 2018; Costa et al., 2021) has 9,514 unique secondary metabolites
arising from 20,934 botanical occurrences across five families. Other
natural product collections from Latin America are CIFPMA, the
Natural Products Database from the University of Panama, Republic
of Panama (Olmedo et al., 2017; Olmedo and Medina-Franco, 2020)
with 354 compounds. CIFPMA molecules have the potential to show
target selectivity in biochemical assays and are useful molecules to
identify reference compounds for virtual screening campaigns (Olmedo
et al., 2017; Olmedo andMedina-Franco, 2020). The first version of the
Peruvian Natural Products Database (PeruNPDB) had 280 natural
products isolated fromplants and animal sources (Barazorda-Ccahuana
et al., 2023). BIOFACQUIM (Pilón-Jiménez et al., 2019; Sánchez-Cruz
et al., 2019) contains 531 natural products isolated and characterized at
the School of Chemistry of the National Autonomous University of
Mexico (UNAM) and other Mexican institutions. UNIIQUIM
(UNIIQUIM, 2015) with 1,112 plant natural products mostly
isolated and characterized at the Institute of Chemistry of the UNAM.

3.6 Benchmark databases

The development of reliable machine learning algorithms has
been limited due to the lack of standard benchmark datasets to
compare the efficacy of the methods proposed (Jain and Nicholls,
2008). Furthermore, machine learning in chemistry compared with
other areas such as computer speech and vision has a main
disadvantage, the data recovery (Wu et al., 2018; Guo et al.,
2022), because of measuring chemical properties often requires
specialized instruments; as a result, datasets with experimentally
determined results are small and often not sufficiently large to cover

the high-demanding needs of machine-learning tasks (Wu et al.,
2018). Another challenge is data splitting (the way in which datasets
are split into training data and testing data). Some are random
selection and rational selection. The former is randomly extracting a
compound’s fraction from the data set. In contrast to rational
selection, training and testing are selected from the same clusters
of compounds. Random selection is common in machine learning
but is often not correct for chemical data (Sheridan, 2013). In
response to these challenges, standard benchmark data sets are
being developed to evaluate de novo design protocols [(Wu et al.,
2018; Brown et al., 2019; Polykovskiy et al., 2020). One example is
MoleculeNet (Wu et al., 2018), a large-scale data set built upon
multiple public databases. MoleculeNet is organized into regression
and classification datasets and has over 700,000 compounds tested
on a range of different properties subdivided into four categories
(quantum mechanics, physical chemistry, biophysics, and
physiology). Another example is the Molecular Sets (MOSES)
(Polykovskiy et al., 2020) that contains 1,936,962 molecules (split
into training, testing and scaffold datasets) and a set of metrics to
evaluate the quality and diversity of generated structures. Metrics
detect common issues in generative models such as overfitting or if
the de novo design model just generates fairly common (not novel)
structures (Brown et al., 2019; Polykovskiy et al., 2020). The
developers of MOSES implemented and compared several
molecular generation models and suggested using the results as
reference points for further advancements in generative chemistry
research.

3.7 Current decoy data sets and inactive
compounds

Accuracy of predictive models depends on data quality and
quantity. Also, the balance between active and inactive compounds
is important, which remains an issue to resolve. Historically, the
publication of active compounds in a given assay or with a particular
endpoint has been prioritized over inactive molecules. For example,
a recent comprehensive analysis of published screening bioactivity
data shows that in ChEMBL V.29 (release in 2022) there is a large
number of active compounds (ca. 71%) with respect to the inactive
ones (ca. 31%); contrary to what it would be expected (López-López
et al., 2022). These results highlight the relevance of changing the
mindset about the importance and utility of inactive or negative data
(keeping in mind that the definition of “inactive” is subjective as it
depends on the particular biological assay and the predefined
threshold to deem a compound inactive).

Decoy data sets have been developed in an attempt to reduce the
gap between inactive (or negative) and active compounds. Decoy
molecules are assumed non-active but have high physicochemical
property similarity (but not topologically) to reference compounds
(Réau et al., 2018). Decoys are useful to evaluate benchmark models
that were assembled in the absence of inactive compounds
experimentally measured (Irwin, 2008) and can be used to enrich
de novo design models. Table 3 summarizes examples of large
databases of experimentally tested active or inactive compounds,
decoy datasets, and tools to generate decoys for specific projects.

Decoy compounds have been used to describe, explore, and
expand the knowledge of active molecules. For example,
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rationalizing the physicochemical, chemical, biological, and clinical
data of active compounds (López-López et al., 2021a). Recently,
decoys can be employed in several de novo protocols based on ligand
or structure as summarized in Table 4.

4 Criteria to generate compound
datasets with high quality

The quality of a data set is multifaceted. Commonly, it is
associated with the experimental reproducibility of each data

point and the experimental similarities between the protocols
used to derive such data. Another important aspect of data
quality is the balance between active and inactive compound.
The latter is specially a challenge in public data sets due to the
overall lack of published negative data. Finding qualitative yet better
quantitative relationships between chemical structures and
biological activity has been long pursued in medicinal chemistry
and drug discovery. With the rapid increase and deployment of the
predictive machine and deep learning methods, as well as the
increased interest in the de novo design of chemical libraries
(Mouchlis et al., 2021), the quantity and quality of data are

TABLE 3 Examples of potential inactive and decoy resources for enriching de novo design models.

Datasets with active and inactive compounds Criteria to select inactive data Ref.

ChEMBL Reported activity data. Davies et al. (2015), Mendez et al. (2019)

PubChem Kim et al. (2023)

Binding DB Reported ligand-receptor affinity. Chen et al. (2002)

Decoy datasets Common decoy selection criteria

ZINC Compounds that share drug-like properties with the reference
(active) compounds.

Tingle et al. (2023)

DUD-E Mysinger et al. (2012)

DUD Database with 2950 annotated ligands and 95,316 property-
matched decoys for 40 targets.

Irwin (2008)

MUV Compounds that share structural similarity with active
reported compounds.

Rohrer and Baumann (2009)

DEKOIS 2.0 Compounds that share drug-like properties and structural
similarity with the reference (active) compounds.

Bauer et al. (2013)

Decoy tools Common decoy compound selection criteria

DecoyFinder Allows the automatic creation of datasets of compounds with
physicochemical similarity and without structural similarity
respect to the reference (active) compounds.

Cereto-Massagué et al. (2012)

RADER Allows the automatic generation of datasets of compounds
with physicochemical and structural similarity with respect to
the reference (active) compounds.

Wang et al. (2017)

ZINC pharmer Enables the automatic identification of compounds with
pharmacophore similarity with respect to the reference (active
and inactive) compounds.

Koes and Camacho (2012)

Decoy Developer Allows the automatic generation of peptides decoys. Shipman et al. (2019)

TABLE 4 Examples of applications of decoys in de novo design.

Approach Purpose of using decoy sets Ref.

Ligand-based

• Validation of new protocols and scoring functions based on similarity
metrics and 3D shape.

(Arús-Pous et al. (2020); Awale and Reymond. (2015); Cao et al. (2020);
Medina-Franco et al. (2019); Norinder et al. (2019); Papadopoulos et al.

(2021); Skalic et al. (2019b); Skalic et al. (2019a); Ullanat (2020)
• Improvement of the accuracy of AI-based models.

• Improvement of the accuracy of QSAR models.

• Enrichment of inactive “dark regions” in chemical space.

Structure-
based

• Validation of new protocols and scoring functions based in docking,
molecular dynamics, and pharmacophore modeling.

Balius et al. (2013); Beato et al. (2013); Guo J et al. (2021); Ma et al. (2021);
Niitsu and Sugita (2023)

• Peptide and protein design.
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becoming a central point in the discussion of the type of data sets
needed (Schneider et al., 2020). While the more data (Cherkasov,
2023), the better, it is also true that the quality of the data available
(that might not be quite large) is also crucial. Furthermore, the
balance between active and inactive compounds is also a major
consideration (López-López et al., 2022). Table 5 summarizes
criteria for generating quality data sets. The list is not exhaustive
but covers what the authors consider key points based on experience
and what has been discussed extensively in the literature. Each point
is supported by the references indicated in the table and further
commented in the next subsections.

4.1 Balance

As discussed previously, several current data sets in the public
domain are unbalanced due to the infrequent practice of reporting
inactive compounds and negative data in general. Historically, the
negative and inactive data of preclinical compounds has been ignored
by most journals that favor the publication of most active compounds
and positive results (Medina-Franco and López-López, 2022).
However, inactive and negative data are essential in drug design
and development. For example, the analysis of high-quality inactive
and negative data improves clinical success rate, reduces costs
associated with drug development, and reduces the side effects
rates (Hayes and Hunter, 2012; López-López and Medina-Franco,
2023). Moreover, data mining and AI approaches are largely
benefitted from inactive compounds (Yu, 2021; López-López et al.,
2022). The use of inactive and negative data allows real data
augmentation to develop AI models, improve their accuracy, and
reduce the rate of false-positive cases (Korkmaz, 2020; IBM, 2022).
Also, the inactive and negative data facilitates the generation of QSPRs
models that allows the rationalization of basically any property
(Kramer and Lewis, 2012; Norinder et al., 2019).

4.2 Confidence of the activity data

An unwritten rule on AI and computational projects in general
is "garbage in, garbage out". This perspective has direct implications
in drug design (Bajorath et al., 2022). Recent studies have
demonstrated that the use of quality data allows generating of AI
models with higher accuracy than the AI models generated from
larger datasets but with low-quality.

4.3 Chemical and structural diversity

In general, a compound dataset with a large or broad
applicability domain, as captured by the diversity of the contents,
can give rise to predictive models with a large coverage. This is,
molecules from diverse chemical structures could be conveniently
interpolated in those models. As a comparison in an experimental
setting, high-throughput screening of chemical diverse libraries
increases the chances to find hit compounds for targets for which
no hit compounds have been previously identified.

Due to the rapid expansion of the chemical universe, recently
called the ‘Big Bang’ of the chemical universe (Cherkasov, 2023) it is
relatively easy to have access to large and diverse regions of the
chemical space. However, a practical challenge is to manage such
large compound data sets computationally while developing and
testing new models. A similar practical problem emerged when
combinatorial chemistry was at its peak: it was challenging to design
rationally novel large and diverse combinatorial libraries. To tackle
this problem numerous diversity selection algorithms have been
developed (Leach and Gillet, 2007). We recently applied a
dissimilarity-based compound selection method to obtain three
diverse subsets of natural products (with 14,994, 7,497, and
4,998 compounds, respectively) from the UNP. The subsets, that
are freely available, can be readily used for the novo design

TABLE 5 Overview of suggested general criteria to generate quality datasets useful in de novo design.

Criteria Brief description Ref.

Balance • Quality and quantity data allow the exploration of substantial regions of
chemical space.

Scannell et al. (2022); Yang et al. (2023)

Quality
(confidence) data

• The reliability of the activity data (active or inactive) is crucial to develop
predictive models. This is the activity data reproducibility.

Kumar et al. (2022)

Diversity • Datasets with a high chemical and structural diversity improve the generation
of novel molecules.

Saldívar-González and Medina-Franco (2022)

Preparation or
curation

• Dataset curation must be focused on one or multiple drug targets. Therefore,
molecular descriptors and the cut-off threshold used for the curated must be
properly selected.

• Dataset should be oriented to resolve specific outcomes and avoid Pan-Assay
Interference Compounds (PAINS) structures or chemical structures related to
side effects.

• In small datasets it is very important to have as much accurate data as possible.
The maximum observable accuracy of classification models also depends on
the experimental uncertainty and the distribution of the measured values. For
instance, datasets with large noise are not recommended for the comparison of
different models.

Fourches et al. (2016); Kramer and Lewis (2012)

Complete
information

• According to the main objective of each project, the dataset used must contain
reliable data related to the project’s objective. For example, structure
containing chemical and physicochemical information, bioactivity data for the
related biological endpoint, or outcomes from clinical trials, etc.

López-López et al. (2021b); López-López and Medina-Franco.
(2023); Wu et al. (2023a); Wu et al. (2023b)
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applications and as benchmarks for similarity/diversity analysis
(Chávez-Hernández and Medina-Franco, 2023).

4.4 Preparation or curation

A general curation protocol used on drug discovery datasets is to
eliminate duplicate structures, canonize their SMILES
representation, eliminate salts, and metals. However, according to
the main goal of the de novo design model, additional steps to
prepare a dataset could be taking into account, for example: 1)
eliminating compounds with structural PAINS to reduce the rate of
false-positive compounds prediction; 2) deleting compounds
reported with side effects and/or ADMET deficiencies, to
prioritize the generation of safe and optimization compounds.; or
3) making sure to keep in the dataset compounds with high activity
confidence to improve the quality of predicted outputs. This list
must be adapted according to the main goal of the de novo design
model. It is also noted the need to develop robust and consistent
protocols that take into scout metal-containing compounds as they
have a major role in medicinal inorganic chemistry (Medina-Franco
et al., 2022a).

4.5 Completeness

Chemical structures should contain the required or relevant
information for the goals of the study. For instance, compounds
should be annotated with stereochemistry information if the 3D
structure and conformation is critical; electronic density and
quantum chemical data if the reactivity is key point to predict;
the type of the biological activity data such as biochemical, cell-based
or functional assays; drug-drug interaction data,
pharmacogenomics, or post-marketing annotations; should be
aligned with the type of outcome to be predicted and later
validated experimentally.

5 Perspectives of de novo design

One of the major perspectives of the de novo design is using
balanced data sets (as much as experimental data is available) to
build reliable models. Similar to QSAR predictive models, it is
also crucial the validation of de novo protocols using standard
and well-curated benchmark datasets (discussed in Section 3.6).
With the increasing data availability to generate and train new
models, it is becoming increasingly easy to explore regions of
chemical space previously uncharted and continue contributing
to the so-called “big bang” expansion of the chemical space. A
major perspective in this direction is to explore biologically
relevant compounds but outside the traditional small molecule
chemical space (Medina-Franco et al., 2014). For instance,
exploring metallodrugs (Medina-Franco et al., 2022a),
macrocycles (Liang et al., 2022), peptides, or the combination
of commonly explored chemical spaces, e.g., pseudo-natural
products (discussed in Section 3.5).

6 Conclusion

Among the main types of datasets used in the novo design are
on-demand collections, compounds annotated with biological
activity, commercially available libraries, and natural products.
More recently, a large benchmark data set was developed for
machine learning applications. Although there is a general
agreement in machine learning that the more data, the better,
it is becoming more and more evident to consider the reliability
and the quality of the data sets as critical features of the data.
Part of the quality is associated with the balance between
inactive and active compounds (in a rough analogy with the
Yin-Yang concept), tasks that are not always feasible due to the
general scarcity of negative (inactive compounds). The later
point further emphasizes the continued need to publish and
disclose negative results. Due to the fact that the experimental
data of inactive compounds are not common, the community is
using decoy data sets that by themselves are subject to design
and refining using rational approaches. Decoy data sets try to fill
the void of experimentally determined inactive molecules.
Major criteria to take into account to generate compound
data sets with high quality include balanced data sets in
terms of active and inactive compounds (when the
experimental information is available), structural and
chemical diversity, curation or preparation according to the
goals of the project, and complete information. All these
together contribute to the perspectives of de novo design that
foresees a continued and rapid expansion of molecules with the
potential to become drugs.
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