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Understanding the target and mode of action of compounds identified by
phenotypic screening can greatly facilitate the process of drug discovery and
development. Here, we outline the tools currently available for target
identification against the neglected tropical diseases, human African
trypanosomiasis, visceral leishmaniasis and Chagas’ disease. We provide
examples how these tools can be used to identify and triage undesirable
mechanisms, to identify potential toxic liabilities in patients and to manage a
balanced portfolio of target-based campaigns. We review the primary targets of
drugs that are currently in clinical development that were initially identified via
phenotypic screening, and whose modes of action affect protein turnover, RNA
trans-splicing or signalling in these protozoan parasites.
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1 Introduction

The development of better and safer drugs to treat kinetoplastid diseases such as
Leishmaniasis and Chagas’ disease and many other infectious diseases has been
hampered by a severe lack of drug targets that have been robustly validated genetically
(for essentiality) and chemically (for druggability) (Frearson et al., 2007; Wyatt et al., 2011;
Field et al., 2017). This has left drug discovery programs heavily reliant upon whole cell
(phenotypic) screening to identify suitable chemical start points. Development and
optimisation of phenotypically active compounds is also hindered by lack of information
regarding the molecular target (s) and their mechanism (s) of action (Ziegler et al., 2013;
Vincent et al., 2022). Specifically, knowledge of the molecular target is often crucial in
developing strategies to overcome issues such as improving potency and selectivity against
the parasite of interest and reducing toxicity against the mammalian host (Wyatt et al., 2011).
Once the target of a phenotypically active compound series has been identified, target- and
structure-based drug discovery programmes can be initiated allowing optimisation of
potency and selectivity over human orthologues or the identification of novel chemical
starting points (Terstappen et al., 2007). Knowing the mode of action of a compound series
can also be used to abandon non-productive or undesirable drug discovery campaigns. Thus,
mode of action studies can effectively integrate these two, often disconnected, approaches to
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drug discovery. Furthermore, understanding the mode of action is
helpful in selecting appropriate partner drugs for future
combination therapies. Although not considered in any detail
here, some of the approaches used here could be used to identify
undesirable “off-target” causes of toxicity in the mammalian host
(Schenone et al., 2013).

2 Tools for target identification and
validation

Target identification and mode of action studies uses a wide
range of technologies that investigate different features of a
cell—ranging from gross morphological structure through to
changes in DNA, RNA, protein, and lipid and energy metabolism.

2.1 Genomic approaches

At the genomic level, there are three main unbiased approaches
employed in target identification: target knockdown, target
overexpression and whole genome sequencing of drug resistant
cell lines (Begolo et al., 2014; Burle-Caldas Gde et al., 2015;
Duncan et al., 2017). Target attenuation by knockdown of gene
expression using RNA interference (RNAi) can only be applied to
African trypanosomes since T. cruzi and Leishmania spp. (except L.
braziliensis) lack the necessary RNAi machinery (Collett et al.,
2019). Such genome-wide screens of inducible RNAi libraries
have been used to identify genes that are tangential to drug
action in T. brucei (Alsford et al., 2012), as well as essential
genes (Alsford et al., 2011). As shown in Figure 1, replicating
cells can only persist in the presence of a toxic compound if
knockdown confers a selective advantage, so this method
generally cannot identify the target per se (Fairlamb, 2012)

Nonetheless, pathways and processes tangential to the target’s
function can provide useful clues for subsequent investigations.
Moreover, if the compound of interest that is active against
Leishmania spp. or T. cruzi has similar potency against
bloodstream form T. brucei then it is possible to use this
approach as a first step in identification of the orthologous target
in these organisms (Collett et al., 2019).

Many drugs act by inhibiting essential enzymes, and thus
depletion of the target by RNAi should be lethal, even in the
absence of drug selection (Ullu et al., 2004). An exception to this
involves knock down of a primary target that is a drug metabolising
enzyme that converts a pro-drug into active drug metabolites, for
example, nitroreductases (Baker et al., 2011; Hall and Wilkinson,
2012) or aldehyde dehydrogenase (Zhang et al., 2018).

In most cases target overexpression confers resistance to a
compound’s toxic effect. This approach has been successfully
applied in T. brucei (Begolo et al., 2014; Wall et al., 2018b), L.
donovani (Ryan et al., 1993; Cotrim et al., 1999; Gazanion et al.,
2016; Corpas-Lopez et al., 2019; Potvin et al., 2019; Paradela et al.,
2021; Smith et al., 2022) and to a lesser extent in T. cruzi (Kelly et al.,
1994; Taylor et al., 2011). The methods typically employ either
episomal plasmid or cosmid expression vectors or use tetracycline-
inducible expression at the ribosomal DNA locus, followed by whole
genome sequencing and alignment to a reference genome (Figure 2).

Overexpression of certain drug targets can sometimes lead to
severe impairment of cell growth that can be restored by addition of
an inhibitor. For example, knock down of glycogen synthase kinase
3 beta (GSK3β) short form by RNAi is associated with growth
defects in T. brucei (Ojo et al., 2008; Alsford et al., 2011; Jones et al.,
2014), and repeated failure to knock out both copies of the GSK3β
gene, suggests essentiality (Grimaldi, 2014). In this case, it was
important to demonstrate on-target activity against GSK3β in a
cellular context, because medicinal chemistry was driven by cellular
potency (Urich et al., 2014; Rojo et al., 2015) that can lead to off-

FIGURE 1
Schematic of RNAi approach to identifying essential genes and drug resistant mechanisms. A plasmid library containing randomly sheared genomic
fragments was transfected into bloodstream form T. brucei. After culturing under non-inducing or inducing conditions, or in the presence or absence of
drug, genomic DNAwas isolated and adaptor-ligated libraries prepared. After amplification, size selection and sequencing, the RNAi target fragments are
mapped to the reference genome. The depth of sequence coverage of target fragments between induced and uninduced cultures reveals “cold
spots” (essential genes) and the depth of coverage of target fragments between induced drug treated and RNAi-induced controls reveals “hot spots”
(resistance genes). Where gene knock-down confers a selective advantage. Full details are available elsewhere (Alsford et al., 2011; Alsford et al., 2012).
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target activity, particularly with protein kinase inhibitors
(Woodland et al., 2013). Using a tightly regulated inducible
overexpression system, overexpression of GSK3β was found to be
toxic with decreased growth that could be “rescued” by increasing
concentrations of DDD85893 up to 3 μM (Figure 3, dashed line). At
concentrations above 3 μM, inhibition of growth is observed
resulting in an overall decreased in potency of 2.5-fold (Figure 3,
solid red line). Such findings provide strong evidence of on-target
engagement by an inhibitor in a cellular context.

Generation of resistant clonal lines starting from a sensitive
clonal line of parasites accompanied by whole genome sequencing is
another powerful tool in target identification. This has been widely
used in elucidating the targets and modes of action of drugs and
experimental compounds in African trypanosomes and leishmania
(Coelho et al., 2012; Jones et al., 2015; Wyllie et al., 2016a; Wyllie
et al., 2018; Yasur-Landau et al., 2018; Bhattacharya et al., 2020;
Hendrickx et al., 2021; Paradela et al., 2021; Rosa-Teijeiro et al.,
2021; Alpizar-Sosa et al., 2022; Hefnawy et al., 2022). This approach
involves stepwise exposure of wild-type kinetoplastid clonal lines to
increasing (sublethal) drug concentrations over a period of weeks to
months to obtain lines capable of proliferating normally in
concentrations (generally >10 × EC50) that would be lethal for
the original parental line (Jones et al., 2015; Wyllie et al., 2016a;
Wyllie et al., 2018). After isolating clones from resistant cultures, the
extent of resistance is determined, and stability of resistance assessed
by sub-culturing in the absence of drug. Comparative whole genome

FIGURE 2
Genome-wide target overexpression strategies. Panel (A). Episomal cosmid expression strategy for Leishmania. Promastigotes are transfected with
a shuttle cosmid vector pcosTL (Kelly et al., 1994) containing ~38 kb genomic DNA fragments under G418 selection (Hoyer et al., 2001). After the parasite
cosmid library has undergone drug selection, cosmids are sequenced and mapped onto the reference genome (Corpas-Lopez et al., 2019). A similar
approach is under development for T. cruzi at the University of Dundee. Panel (B). Expression from genes at the rRNA locus in T. brucei. Genomic
DNA fragments were cloned in pRPaOEX, transfected into bloodstream form T. brucei and inserted at the rDNA locus under the control of a tetracycline-
inducible ribosomal RNA (rRNA) promoter. Following drug selection, DNA was extracted from the surviving population and the overexpression inserts
amplified by long range PCR, sequenced and mapped onto the reference genome (Corpas-Lopez et al., 2019).

FIGURE 3
Rescued growth in a T. brucei cell line overexpressing GSK3β
short. In the absence of tetracycline induction, cell growth (black
symbols) follows a standard dose-response inhibition curve with an
EC50 of 2.8 μM and slope 2.7. After tetracycline induction (red
symbols) cell growth is stimulated up to maximum growth at 3 μM by
DDD85893 (compound 4 m (Urich et al., 2014)) and inhibited
thereafter with an EC50 of 9.1 μM and slope 3.6. Data redrawn from
(Grimaldi, 2014). The dashed (growth stimulation) and solid (growth
inhibition) lines are independent best non-linear fits to a dose-
response equation at concentrations above and below 2 µM.
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sequencing of wild-type and resistant offspring can identify single
nucleotide polymorphisms or copy number changes in specific
genes, or gross chromosomal alterations associated with
resistance. Genetic alterations observed in independent lines are
more likely to be the target than other alterations present in only one
clone. It should also be noted that identifying resistance-conferring
mutations in kinetoplastids can be complicated by the fact that these
are diploid organisms with heterozygous and homozygous
mutations capable of modulating drug sensitivity. This approach
also provides useful information on the speed with which, and the
level of, resistance that can be obtained as well as the mechanisms of
resistance such as uptake, efflux, metabolic inactivation and
alterations to the level or affinity to a target (Fairlamb et al.,
2016; Hefnawy et al., 2017). Recent studies by Bhattacharya and
others have sought to expedite the generation of resistant
Leishmania using a range of chemical mutagens (Bhattacharya
et al., 2019). By combining chemical mutagenesis with next-
generation sequencing, known as Mut-Seq, can lead to the rapid
identification of mutations associated with drug resistance.
However, it should be born in mind that not all resistance
mechanisms are likely to arise readily in clinical situations due to
drug pharmacodynamic behaviour in vivo, fitness costs and

transmission potential associated with a resistance phenotype
(Piel et al., 2018; Reis-Cunha et al., 2018; Van Bockstal et al., 2020).

2.2 Proteomics strategies

The potential of proteomics and chemo-proteomics approaches
for target identification, validation, and identification of safety
concerns in drug discovery has been the subject of some
comprehensive reviews (Schenone et al., 2013; Ziegler et al., 2013;
Boike et al., 2022; Meissner et al., 2022).

Chemical proteomics strategies can rightly be considered as the
gold standard for drug target identification. This is principally due to
the fact that, unlike many of the other approaches described in this
review, chemical proteomics can provide evidence of compounds
directly binding to their molecular target(s). In addition, these
approaches can enable the affinity of the drug binding to its
molecular target to be demonstrated. One such approach that is
increasingly employed in target identification for kinetoplastids is
chemical pulldown (Wyllie et al., 2018; Smith et al., 2022). Here,
compounds of interest are immobilised onto a suitable resin to
prepare “drug-beads” that are then used to pull down specifically

FIGURE 4
Schematic representation of proteomics approaches to drug target identification. Panel (A). Standard chemical pulldown workflow. Linkers
(commonly PEG) are attached to a permissable position on the compound of interest. Linker analogues are attached to resin to create a “drug-bead”.
Drug beads are incubated in parasite cell lysate that has been preincubated in the presence or absence of parent compound. Proteins binding to drug
beads in the presence or absence of competition from the parent compound are identified bymass spectrometry. Proteins whose binding has been
reduced in the presence of the parent compound are considered to be specifically binding to the linker compound and considered putative drug targets
(Smith et al., 2023). Panel (B). Functionalised linkers comprising a diazarine photoactivatable warhead and an alkyne handle to facilitate subsequent
pulldown are attached to a permissbale position on the compound of interest. These functionalised linker analogues are incubated with live cells.
Covalent attachment of the linker analogue to its molecular target is triggered by exposure to UV light. Interacting targets are enriched from the cell
lysates using the bio-orthogonal handle and identified by mass spectrometry. Panel (C). Standard thermal proteome profiling (TPP) workflow. Parasites
are preincubated in the presence of drug or vehicle (DMSO). Treated and control cell lysates are prepared, aliquoted and aliqots incubated at a range of
temperatures. Following incubation, soluble proteins are harvested, processed, labelled with TMTs, pooled and analysed by LC-MS/MS (Corpas-Lopez
and Wyllie, 2021).
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binding molecular targets from parasite whole cell lysates
(Figure 4A). Typically, immobilised ligands are linked through a
polyethylene glycol (PEG) chain to biotin, or a suitable handle for
covalent attachment to a resin (Ziegler et al., 2013). Biotin-labelled
ligands can then be “immobilised” on streptavidin-coated beads to
prepare an affinity resin. There are several alternative methods to
covalently attach a linker-containing ligand to a resin: commonly
the linker will have a terminal amine which will readily react with a
resin containing an activated ester to form an amide (Ziegler et al.,
2013). Note, the use of magnetic resins greatly simplifies the
subsequent pull-down procedure.

It is important to ensure that the point of linker attachment to
the ligand does not significantly reduce the phenotypic activity of the
compound of interest (Meissner et al., 2022). In the worst-case
scenario, a significant loss in potency can indicate that linker
attachment has driven the compound of interest off-target.
Therefore, it is essential to understand the structure-activity
relationship (SAR) of any given inhibitor series in order to select
suitable points for PEG linker attachment (Ziegler et al., 2013). The
linker-functionalised ligands (or an advanced synthetic intermediate
towards them) can be readily assayed to verify that they have
exclusively retained the expected phenotype and potency. It is
considered best practice to attach a linker to several different
positions on the compound: if subsequent chemical proteomics
experiments with two resins identify the same target proteins,
then confidence in the results is increased (Smith et al., 2023).

One of the key challenges of chemical pulldowns is the presence
of non-specific binding of proteins, particularly high abundance
proteins, that can complicate the interpretation of experiments and/
or prevent detection of proteins that bind specifically to the “drug
bead”. This problem can be minimised by carrying out competition
studies whereby parasite cell lysates are incubated with “drug beads”
in either the presence, or absence of soluble inhibitor (Terstappen
et al., 2007). Subsequent tryptic digestion of the resin-bound
proteins followed by Tandem Mass Tag (TMT) labelling and
mass spectrometry allows quantitative comparison between
experiments (Bantscheff et al., 2011). Proteins that demonstrate
reduced binding to drug beads in the presence of soluble inhibitor
are considered specific binders and implicated in the ligand’s
mechanism of action. Indeed, carrying out pulldowns in
competition with a range of inhibitor concentrations can allow
the affinity with which specific binders interact with the
compound of interest (Wyllie et al., 2018).

The use of photoactivatable linkers (PAL) to facilitate chemical
pulldowns, such as those pioneered by Cravatt and others (Hulce
et al., 2013), has yet to be applied to drug target identification studies
in kinetoplastids. PAL contain both a photo-affinity group (typically
a diazirine) and a handle for bio-orthogonal chemistry (typically an
alkyne) and are attached to compounds of interest at a permissible
position. Live cells are incubated with PAL analogues and irradiated
with UV light. UV exposure triggers the diazirine to form a covalent
adduct with the molecular target. Interacting targets are enriched
from the assay system using the bio-orthogonal handle and
identified by mass spectrometry (Figure 4B). The major
advantage of this approach, over standard chemical pulldown, is
the ability to incubate the probe with live parasites rather than cell
lysates thus enabling the probe to bind to its target in a
physiologically relevant environment rather than a cell lysate. It

is likely that PAL in their various iterations will be more deployed
more broadly applied to target identification in these parasites in
future.

The need to fully understand the SAR surrounding compounds
of interest is perhaps the principal draw-back of chemical pulldown
as an approach to support target identification, since this
information may not be readily available for early phenotypic
hits. An alternative, unbiased chemical proteomics strategy that
does not require derivatization of the ligand and does not require
knowledge of SAR is thermal proteome profiling (TPP) (Franken
et al., 2015; Corpas-Lopez andWyllie, 2021). This approach exploits
the biophysical principle that binding of a ligand induces thermal
stabilisation of target proteins. To monitor this phenomenon,
compound-treated and control cells or cell lysate are exposed to
a range of temperatures (Figure 4C). Soluble protein from each
sample aliquot is harvested, labelled with TMTs to enable
quantitation, and melting curves for each protein within the
lysate is established by mass spectrometry. Proteins that exhibit a
significant and reproducible shift in thermal stability in the presence
of the inhibitor are short listed as potential molecular targets. Thus,
TPP can be used as an effective and unbiased approach to
demonstrate compound-target engagement and has been
employed successfully in several studies with kinetoplastid
parasites (Corpas-Lopez et al., 2019; Corpas-Lopez and Wyllie,
2021; Paradela et al., 2021; Lima et al., 2022). However, it should
be noted that TPP is less amenable to the identification of protein
targets that form part of large, stable protein complexes, such as the
proteasome. The requirement for soluble cell lysate to support these
studies also means that membrane protein targets are less likely to be
identified.

Quantitative proteomics can also be used to directly compare
protein expression profiles in drug-sensitive and resistant parasite
cell lines. Differential labelling of wild-type and drug resistant
proteomes can be achieved through Stable Isotope Labelling by/
with Amino acids in Cell culture (SILAC) (Ong et al., 2002) or using
TMTs. Following labelling, these samples can be combined and
analysed via mass spectrometry. This approach was successfully
employed to identify the enzyme involved in activating bicyclic
nitroaromatic pro-drugs, including DNDI-VL-2098 (https://dndi.
org/research-development/portfolio/vl-2098/), a candidate for
visceral leishmaniasis, now abandoned due to testicular toxicity.
Comparative proteomics revealed that L. donovani promastigotes
resistant to DNDI-VL-2098 had lost a hypothetical NADH:FMN-
dependent oxidoreductase (NTR2) subsequently confirmed to be
responsible for pro-drug activation (Wyllie et al., 2016b).

2.3 Phenotype profiling

Observing the morphology of drug-treated parasites can
illustrate the consequences or collateral damage inflicted by drug
target inhibition; however, the jury is still out on the ability to use
this information to identify the molecular targets of drugs or active
compounds. For instance, L. donovani promastigotes exposed to an
established proteasome inhibitor demonstrated a significant
accumulation of intracellular vesicles, with the rationale that an
inability to recycle key proteins via the proteasome left these
parasites overcome by their own waste protein products (Wyllie
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et al., 2019). In addition, inhibition of the enzyme
N-myristoyltransferase has been associated with the “big-eye”
phenotype in African trypanosomes. This expansion of the
parasite’s flagellar pocket was observed when the clathrin heavy
chain (Rab5) (Allen et al., 2003; Hall et al., 2004) or Arf1 (Hall et al.,
2004) were knocked down in T. brucei and is assumed to be due to
the inhibition of endocytosis in these parasites. Soon, approaches
such as cell painting (Bray et al., 2016) which uses multiplexed
fluorescent dyes to profile morphological changes in drug-treated
cells may be used to efficiently recognise previously deconvolved
mechanisms of action. Similarly, cell cycle analysis by flow
cytometry or other analogous approaches can be useful in
profiling the broad mechanism of action of developmental
compounds. However, akin to cell painting, this approach cannot
be used to directly identify the molecular targets of phenotypic
actives. Indeed, L. donovani promastigotes exposed to the
proteasome inhibitor GSK3494245/DDD01305143 (Wyllie et al.,
2018) and DDD853651/GSK3186899 (Wyllie et al., 2019), an
inhibitor of the cyclin-dependent kinase CRK12, both arrest at
the G2/M stage of the cell cycle. Thus, extrapolating such data to
identify potential molecular targets of active compounds can be
challenging.

2.4 Informatics approaches to facilitate drug
target identification

Multiple in silico tools are now available to assist in predicting
the biological targets of active compounds (Jenkins et al., 2006;
Wang et al., 2013; Chen et al., 2016; Finan et al., 2017; Koscielny
et al., 2017; Tanwar et al., 2022; Yu et al., 2022). These tools use data
mining methods to exploit the wealth of data deposited in databases
such as PubChem (Wang et al., 2009) and ChEMBL (Gaulton et al.,
2012). Computational approaches such as chemical similarity
searching, data mining/machine learning, bio-activity spectra, and
panel docking can then be applied to link putative targets to
compounds. Since these algorithms essentially learn from existing
knowledge of compound—target pairs, at this stage they are far
more effective in predicting human molecular targets (Yu et al.,
2022). As discussed in this review, relatively few chemically validated
targets have been identified in the kinetoplastids so far. This,
combined with the evolutionary distance between these parasites
and humans, is likely to limit the success of in silico target
identification. It is hoped that concerted efforts to deconvolute
the molecular targets of anti-kinetoplastid compounds can be
used to improve the effectiveness of predictive tools.
Nevertheless, putative targets identified through in silico
approaches will always require direct validation within the
specific parasites.

2.5 Metabolomic strategies

Metabolomics, or more correctly comprehensive metabolic
profiling, in kinetoplastids has been the subject of recent reviews
(Creek and Barrett, 2014; Vincent and Barrett, 2015; Fall et al.,
2022). The general methodology involves extraction (with
derivatization for certain metabolites), separation by

ultraperformance liquid chromatography, liquid or gas
chromatography, and detection by mass spectrometry or nuclear
magnetic resonance. Metabolite identification remains a major
bottleneck, particularly due to the wide dynamic range and
chemical complexity of metabolic extracts. Nonetheless,
comparative, targeted metabolomics offers a dynamic and precise
picture of the drug-induced phenotype, providing insights into the
mode of action of miltefosine (Vincent et al., 2014; Armitage et al.,
2018a), antimonials (Berg et al., 2013; Rojo et al., 2015; Gutierrez
Guarnizo et al., 2021), benznidazole (Trochine et al., 2014), suramin
(Zoltner et al., 2020) and nifurtimox/eflornithine (Vincent et al.,
2012). Metabolomics coupled with principal component analysis
has been used to cluster hit compounds from the GSK Leishmania
box (Peña et al., 2015) as to their potential mode of action, offering a
novel screening approach for drug selection/prioritization
(Armitage et al., 2018b). Metabolic profiling can also reveal
unexpected secondary domino effects in mode of drug action.
For example, the antifolate trimethoprim leads to direct
inhibition not only of E.coli dihydrofolate reductase (its
molecular target), but also indirect inhibition of folylpoly-γ-
glutamate synthetase. Primary inhibition of dihydrofolate
reductase leads to the predicted precursor-product relationship,
where the increased dihydrofolate concentration directly inhibits
folylpoly-γ-glutamate synthetase (Kwon et al., 2008).

3 Identification of undesirable targets
and mechanisms of cell killing

The following examples are drawn from experience in the Drug
Discovery Unit in Dundee on undesirable mechanisms that are
unlikely to meet the desired therapeutic product profile for a
particular disease indication (Nwaka and Hudson, 2006; Wyatt
et al., 2011).

3.1 Generic chelators

A novel 7-substituted 8-hydroxy-1, 6-naphthyridine (8-HNT)
series (Thomas et al., 2020) with promising activity against T. brucei
and L. donovani emerged from screening a 1.8-million-compound
library against L. donovani as part of a collaboration between
GlaxoSmithKline (GSK) and the University of Dundee Drug
Discovery Unit (Peña et al., 2015). Medicinal chemistry efforts
struggled to markedly improve potency and selectivity,
prompting an investigation into the mode of action of this
compound series. Genome-wide knockdown (RNAi screens)
revealed genes encoding a putative Golgi-localised zinc
transporter decreased susceptibility, suggesting a role for divalent
metal ions in the mode of action of these compounds (Wall et al.,
2018a). Compounds from this series depleted intracellular Zn2+ and,
conversely, exogenously added Zn2+ reduced the potency of the 8-
HNT series. Spectrophotometric analysis demonstrated that these
compounds bind directly to form a 2: 1 stoichiometric complex with
either Zn2+, Cu2+ or Fe2+. Further work is required to establish if
chelation of the latter divalent cations also plays a role in
cytotoxicity. Given zinc’s broad role in enzyme catalysis
(Andreini et al., 2009), protein structural stability (Cassandri
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et al., 2017) and redox biology (Oteiza, 2012), the identification of
chelation as the main driver for cytotoxicity presents a significant
challenge for further development. Consequently, work on this
chemical series was abandoned in favour of more promising leads.

3.2 Cytochrome P450 lanosterol
demethylase (CYP51)

Sterol metabolism in kinetoplastids involves both acquisition of
cholesterol from the host and the de novo synthesis of ergosterol-
related sterols (Roberts et al., 2003). The balance between these two
options is driven by availability and ease of acquisition of preformed
cholesterol from serum or cellular components (Coppens and
Courtoy, 2000; Lepesheva et al., 2011; Lepesheva and Waterman,
2011; Nes et al., 2012). Despite strong chemical and genetic evidence
of the essentiality and druggability of CYP51 in T. cruzi in vitro and
in animal models, clinical trials with the antifungal posaconazole in
Chagas’ disease patients have proven to be unsuccessful (Molina
et al., 2014; Morillo et al., 2017). It appears that a minimum number
of replications are required for posaconazole, a potent inhibitor of
CYP51, to cause growth inhibition and that the resulting depletion
of ergosterol content is not cytocidal in all parasites (MacLean et al.,
2018). Consequently, the prevailing view is that CYP51 inhibitors
have a low priority for further drug discovery efforts. As a result, a
CYP51 assay has been introduced into our screening cascades to
triage such undesirable hits (Riley et al., 2015) and a wash-out
experimental design has been developed to distinguish cytocidal
compounds from those that are cytostatic (MacLean et al., 2018).

3.3 Cytochrome b inhibitors

Trypanosomes and leishmania possess a single
mitochondrion that is present either as a single tubule with
few cristae (in bloodstream African trypanosomes) or a more
complex reticulated network with plate-like cristae as in
procyclic forms of T. brucei and all life cycle stages of
Leishmania spp. and T. cruzi. A specialised region of the
mitochondrion localised at the base of the parasite’s flagellum
contains a large DNA structure—the kinetoplast (Shapiro and
Englund, 1995). This is comprised of several thousand catenated
small circular DNA (minicircles) and larger circular DNA
(20–50 maxicircles). The maxicircles encode some thirteen
proteins, including cytochrome b which is a key component of
complex III of the electron transport chain, namely, cytochrome
bc1 (quinol—cytochrome-c reductase, E.C. 7.1.1.8). The
kinetoplastid mitochondrion is involved in the mode of action
of a number of drugs and experimental compounds (Fidalgo and
Gille, 2011), including the nitro-drugs nifurtimox and
benznidazole (Wilkinson et al., 2008; Hall et al., 2011; Hall
and Wilkinson, 2012), the diamidines pentamidine and DB
analogues (Shapiro and Englund, 1990; Lanteri et al., 2008;
Motta, 2008; Yang et al., 2016), and the antibiotics
salicylhydroxamic acid (Clarkson and Brohn, 1976; Fairlamb
et al., 1977) and ascofuranone (Yabu et al., 2003), that inhibit
the cyanide-insensitive alternative oxidase present in
bloodstream form African trypanosomes.

In Leishmania, naphthoquinones such as the antimalarial
atovaquone and buparvaquone, used to treat cattle theileriosis,
act on the cytochrome bc1 complex blocking electron transport,
inhibiting ATP synthesis and amastigote growth (Croft et al.,
1992; Ortiz et al., 2016). A high throughput screen of
700,000 compounds at the Genomics Institute of the Novartis
Research Foundation identified GNF7686 as an active growth
inhibitor of L. donovani axenic amastigotes. GNF7686 was found
to show promising activity against T. cruzi as well. Whole
genome sequencing of drug-resistant and drug-sensitive clonal
lines of T. cruzi identified a mutation (L198F) in the maxicircle
gene encoding cytochrome b and biochemical studies confirmed
the QN (Qi) site as the target of GNF7686 (Khare et al., 2015). A
similar unbiased screen against T. cruzi and L. donovani by GSK
(Peña et al., 2015) and subsequent lead optimisation identified
three different chemotypes that were subsequently shown using a
similar strategy to act in a comparable fashion inhibiting
respiration by binding to complex III of the respiratory chain
at the Qi (QN) site (Wall et al., 2020). Cytochrome b appears to be
a promiscuous and readily druggable target with high potential
for resistance (Wall et al., 2020); thus a counter screen using a
cytochrome b resistant panel has been introduced into our drug
development pipelines to prevent over-representation of such
hits in our portfolio.

4 Targets of clinical candidate drugs

4.1 The proteasome

Interest in the kinetoplastid proteasome (Hua et al., 1995) arose
in the 1990 s as a result of the discovery and validation of ornithine
decarboxylase (ODC) as the drug target for eflornithine (D, L, α-
difluoromethylornithine) (Bacchi et al., 1980) for the treatment of
Human African Trypanosomiasis (Van Nieuwenhove et al., 1985).
Mammalian ODC is rapidly turned over in cells and degradation

FIGURE 5
Structures and primary targets of clinical candidates.
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requires interaction with the polyamine-inducible protein antizyme
and subsequent degradation by the proteasome (Li and Coffino,
1992; Murakami et al., 1992; Murakami et al., 1993). In contrast, T.
brucei ODC is relatively stable. T. brucei lacks antizyme and
differences between the trypanosomal and mammalian
proteasome were proposed to account for the differential stability
of T. brucei and mammalian ODC (Hua et al., 1995). Although
various studies indicated that the proteasome played several
essential roles in protein turnover and cell division in
trypanosomes (Li and Wang, 2002) and Leishmania (Robertson,
1999; Paugam et al., 2003) there were no indications that this multi-
subunit protease complex was selectively druggable until the
discovery of a phenotypic hit (GNF5343) from a 3 million
compound screen at Genomics Institute of the Novartis Research
Foundation (Khare et al., 2016). Subsequent optimisation led to
GNF6702 with efficacy in mouse models of visceral and cutaneous
leishmaniasis, Chagas’ disease and stage 2 African trypanosomiasis.
Prolonged exposure to compounds belonging to this series and
whole genome sequencing identified a mutation (F24L) in the
proteasome β4 subunit from T. cruzi. Subsequent biochemical
experiments revealed that chymotrypsin-like activity of the T.
cruzi proteasome was inhibited by GNF6702 (IC50 = 35 nM) and
on-target activity was demonstrated from a tight SAR between the
IC50 against the proteasome and EC50 against L. donovani axenic
amastigotes and T. brucei bloodstream form trypanosomes.
Optimisation of GNF6702 for improved solubility and favourable
pharmacokinetic properties led to LXE408 (Figure 5) (Nagle et al.,
2020) which is now in clinical development for the treatment of
visceral leishmaniasis. A Phase I multiple ascending dose study of
LXE408 was completed in September 2021 and the results of a Phase
II, multicentre, randomized, two-arm blinded study to assess the
efficacy and safety of LXE408 for treatment of visceral leishmaniasis
are expected in 2025 (Drugs for Neglected Diseases initiative and
Novartis Pharmaceuticals, 2022).

Phenotypic screening of a 15,659-compound diversity library
against T. cruzi led to an initial hit that was subsequently identified
in a second phenotypic screen as weakly active against amastigotes
of L. donovani in macrophages. Optimisation for potency,
selectivity, safety and other favourable pharmacological properties
resulted in GSK3494245/DDD1305143 (Figure 5) being developed
as a preclinical candidate for visceral leishmaniasis (Wyllie et al.,
2019). Target knock-down with a genome-wide RNAi (RITseq)
library in T. brucei identified 10 “hits” with functional domains
commonly associated with proteins of the ubiquitin–proteasome
recycling pathway. Highly resistant clones of L. donovani were
generated and targeted sequencing of the genes encoding the
β4 and β5 subunits of the proteasome revealed homozygous
mutations in three independently generated resistant clones. Of
these G197C of the β5 subunit was confirmed by genetic engineering
to confer resistance. Chymotrypsin activity, but not trypsin or
caspase activity, was inhibited by GSK3494245. Moreover, cell
extracts from drug resistant lines were less sensitive to inhibition
and cryo-electron microscopy of the related L. tarentolae
proteasome revealed the binding site for GSK3494245 to lie
between the β4 and β5 subunits (PDB 6QM7). Collectively, these
and additional data provide strong evidence that disruption of
proteasomal function is responsible for the cytocidal activity of
GSK3494245.

4.2 Protein kinases

The preclinical candidate for visceral leishmaniasis,
DDD853651/GSK3186899, has an interesting history. The
original diaminothiazole hit was identified in a target-based
screen against T. brucei GSKβ short form (Woodland et al.,
2013). During lead optimisation cell potency did not track with
target potency indicating that additional targets were drivers of
trypanocidal activity. Lead compounds in this series also showed
weak activity against axenic amastigotes of L. donovani.
Replacement of the diaminothiazole core with a
pyrazolopyrimindine core and multiple rounds of lead
optimization in the “design, make, test, learn cycle” (Plowright
et al., 2012) resulted in the pre-clinical candidate DDD853651/
GSK318689 (Figure 5) (Wyllie et al., 2018; Thomas et al., 2019).

Three independent chemical proteomics approaches were used
to identify the targets of this compound series (Wyllie et al., 2018).
Several pyrazolopyrimidine analogues were used to pull down
proteins in the presence or absence of a competitor compound
using SILAC or isobaric tandem mass tag (ITRAQ) methodologies
identifying 15 and 24 candidate targets, respectively. Common to
both methods were cell division control-related kinases (CRK3,
CRK6 and CRK12) and their cyclins (CYC3, CYC6 and CYC9).
Drug treatment of cell cultures induced cell-cycle at arrest at the G1/
S and G2/M phases consistent with a mode of action involving cell
division control-related kinases. Quantitative mass spectrometry
and Kinobead profiling of two pyrazolopyrimidine analogues in
dose-dependent competition studies determined binding affinity to
be in the rank order ~1 nM for CYC9/CRK12 and 25–100 nM for
CYC3/CRK6.

Whole genome sequencing of drug-resistant clones of L.
donovani identified many chromosomal and allelic changes.
Notable among these were extra copies of chromosome
9 containing the CRK12 gene in 4 out of 6 clones with 3 of these
4 clones also having extra copies of chromosome 32 containing the
likely partner cyclin CYC9. Co-overexpression of CRK12/
CYC9 resulted in decreased sensitivity to drug, whereas a single
knockout of CRK12 increased sensitivity. No mutations within, or
amplification of, the CRK3 and CRK6 genes were found.

Collectively, these data point to protein kinase CRK12 and its
partner cyclin CYC9 being the primary target for GSK3186899,
although an element of polypharmacology involving other protein
kinases cannot be discounted. Future studies include production of
active leishmania CRK12/CYC9 complex and its structural
determination, as well as elucidation of its functional role in
parasites, including identification of its physiological substrates.
Such information could guide second generation backups and
identify potential novel drug targets. GSK3186899 is currently in
Phase I clinical development by the Drugs for Neglected Diseases
initiative (DNDi).

Another promising protein kinase inhibitor series under
development by Novartis is based on the aminobenzimidazole
pharmacophore (Saldivia et al., 2020). This series has potent and
selective pan-kinetoplastid activity in vitro against the kinetochore
protein kinase CLK1. One compound in the series was effective in an
acute model of African trypanosomiasis but failed to achieve cure in
the CNS model. Screening of an inducible T. brucei library
expressing individual protein kinases identified CLK1, a
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kinetochore component essential for mitosis, as a possible target. A
unique feature of this series was the requirement of a Michael
acceptor for potency that reacted to form a covalent bond with
Cys215. Enzymatic, structural and cellular assays on mutants where
this cysteine was replaced with either an alanine or serine residue
demonstrated the importance of this amino acid for potency and
selectivity over the human orthologue which has a serine at this
position. Key challenges for the aminobenzimidazole series of
compounds to progress to the clinic are to improve kinase
selectivity and identify potent non-covalent inhibitors through
structure-guided design (Saldivia et al., 2020).

4.3 Cleavage and polyadenylation specificity
factor 3 (CPSF3)

The benzoxaborole class of compounds display wide anti-
cancer, anti-fungal, anti-protozoal, anti-viral and anti-bacterial
activity, as well as anti-inflammatory activity (Nocentini et al.,
2018). Depending on the pharmacophore, oxaboroles and
boronic acid drugs have modes of action involving: inhibition of
the proteasome (bortezomib covalently interacts with the threonine
catalytic residue in the chymotrypsin site (Groll et al., 2006));
carbonic anhydrases (coordination with the active-site zinc atom)
(Nerella et al., 2022); and leucyl tRNA synthetases (covalent
interaction with the cis diols of 3′-adenosine in tRNALeu)
(Seiradake et al., 2009; Hu et al., 2013; Sonoiki et al., 2016;
Manickam et al., 2018; Si et al., 2019).

The anti-trypanosomal activity of benzoxaboroles was first
discovered in a DNDi-sponsored phenotypic screen (Ding et al.,
2010). Subsequent biological screening, medicinal chemistry and
pharmacokinetic characterization identified SCYX-7158 (Figure 5)
as an optimized analogue for stage 2 human African
trypanosomiasis due to the drug’s favourable penetration of the
CNS (Jacobs et al., 2011). Acoziborole (SCYX-7158 or AN5568)
successfully completed Phase I human clinical trials in 2015
(NCT04270981) and recently completed Phase IIb/III for
treatment for HAT (NCT03087955) (Betu Kumeso et al., 2022).
In this open-label, non-comparative study, a single 960 mg oral dose
of acoziborole was efficacious in 159 of 167 (95·2%) patients with
late-stage gambiense HAT. The favourable safety profile and high
efficacy of acoziborole should enhance efforts to reach the WHO
goal of interrupting HAT transmission by 2030.

Understanding the trypanocidal targets of acoziborole would
greatly inform the safety profile of this drug. Chemical proteomic
profiling with an oxaborole-resin identified 13 enriched proteins
including enzymes of RNA processing and glycolysis in wild-type T.
brucei (Jones et al., 2015). Emergence of drug resistance against BSF T.
brucei proved slow to develop and only moderate resistance was
obtained by selection with a close structural analogue of acoziborole
(Jones et al., 2015). Whole genome sequencing of three independently
derived clonal lines revealed gross chromosomal copy number variants
and single nucleotide polymorphisms. One clone showed 2-fold
amplification of a short region of chromosome 4 that was also
triploid, resulting in a 3-fold amplification of genes encoding
CPSF3 and glyoxalase II. However, no single resistance determinant
was found common to all three clones and Jones et al concluded that a
degree of polypharmacology may be involved in the mode of action.

A second study using several benzoxaboroles observed
inhibition of trans splicing of polycistronic mRNA as early as
1 hour after exposure to drug suggesting that mRNA processing
could be a primary target of AN7973 (Begolo et al., 2018). Sensitivity
to AN7973 in T. brucei was decreased three-fold by over-expression
T. brucei CPSF3. AN7973 also caused metabolite changes indicative
of disturbed methylation, similar to those observed for acoziborole.
However, the lack of clear structure-function relationships for
benzoxaboroles on trypanosome metabolites, or on splicing led
Begolo et al to conclude that the modes of action of oxaboroles
that target trypanosome mRNA processing might extend beyond
CPSF3 inhibition.

In a third metabolomic study on the effects of acoziborole on T.
brucei, significant perturbations in parasite metabolites were
observed, particularly in S-adenosyl-L-methionine metabolism
(Steketee et al., 2018). However, these changes may be a
downstream consequence of inhibition of trans splicing since
parasites were exposed to drug for an extended period.

In a fourth study using a high coverage cosmid overexpression
library, Wall et al identified CPFS3 as the dominant “hit” accounting
for 72% of all reads in the population that survived exposure to
acoziborole and other benzoxaboroles (Wall et al., 2018b). These
authors confirmed that overexpression of CPSF3 led to 4-fold
decreased sensitivity to acoziborole. They also generated a
homology model for molecular docking studies in which it was
predicted that the oxaborole moiety would coordinate with the two
zinc atoms in the active site. Selectivity over the human orthologue
was attributed to steric hindrance at position 232 where the human
has a bulky tyrosine moiety in place of an asparagine in the parasite
enzyme. Attempts to edit an Asn232Tyr mutant was unsuccessful
suggesting this change is not tolerated. Whilst these structural
differences between trypanosome and host CPSF3 explain the
safety profile and selective activity of acoziborole, definitive proof
is lacking. Specifically, active recombinant protein and a suitable
assay are required demonstrating binding to CPFS3 and selective
inhibition of the parasite enzyme, ideally associated with structural
evidence of ligand binding in the active site.

5 Discussion

Target identification and corresponding insight into the
mode of action of a compound is of great value in accelerating
drug discovery. Not only does it open opportunities for the
development of target-based or pathway-based screens to
identify alternative chemotypes as new start points for
medicinal chemistry campaigns when an initial hit or lead
series is failing to make progress, but also it can be used to
initiate a structure-guided approach to improve potency and
selectivity. In some cases, it may be possible to demonstrate
engagement of an inhibitor with a molecular target in a whole cell
context providing further reassurance that the correct strategy is
in place. Knowledge of the target also alerts the drug discovery
team to possible anti-targets in the patient, so that specific areas
of host biology can be carefully monitored for possible
undesirable effects. Examples include mitochondrial toxicity
assays (cytochrome b inhibitors) or counterscreens against
human orthologues such as a panel of protein kinases for
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CRK12 inhibitors, or a human RNA splicing assay and protein
synthesis assay for benzoxaborole compounds. Such information
can also be used to identify possible desirable—or eliminate likely
undesirable—partner drugs for drug combination therapy. It can
also be used as a portfolio management tool to ensure that a
discovery programme is not overpopulated with compound
series acting on the same target. Likewise, knowledge of a
target or the mode of action of a compound series can
deprioritise projects due to undesirable mechanisms, thereby
diverting valuable resources of staff time and money to more
promising projects.

From the examples given above, it should be clear to the reader
that there is no single “one size fits all” approach to target
identification. Indeed, the deployment of multiple orthologous
approaches is the best strategy for target identification and
provides greater confidence that the target and/or mode of
action is driving the growth-inhibitory or cell death phenotype
(Schenone et al., 2013). The notion that a drug exerts its action
through modulation of a single target is not always the case,
particularly with many older reactive drugs such as metalloids,
polysulfonated or nitro-compounds and may also apply to reactive
benzoxaboroles. As discussed here, multidimensional small-
molecule profiling (Ortmayr et al., 2022) has accelerated the
discovery of previously unknown targets in these parasitic
organisms.
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