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Malaria caused by Plasmodium falciparum, remains one of the most fatal parasitic
diseases that has affected nearly a third of the world’s population. The major
impediment to the treatment of malaria is the emergence of resistance of the P.
falciparum parasite to current anti-malaria therapeutics such as Artemisinin (ART)-
based combination therapy (ACT). This has resulted in countless efforts to develop
novel therapeutics that will counter this resistance with the aim to control and
eradicate the disease. The application of in silico modelling techniques has gained a
lot of recognition in antimalarial research in recent times through the identification of
biological components of the parasite for rational drug design. In this study we
employed various in silico techniques such as the Virtual screening, molecular
docking and molecular dynamic simulations to identify potential new inhibitors of
biotin acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier reductase, two
enzyme targets that play a crucial role in fatty acid synthesis in the Plasmodium
parasite. Initially, nine hit compounds were identified for each of the two enzymes
from the ZINCPharmer database. Subsequently, all hit compounds bind favourably to
the active sites of the two enzymes as well as show excellent pharmacokinetic
properties. Three 3) of the hits for the biotin acetyl-coenzyme A (CoA) carboxylase
and six 6) of the enoyl-acyl carrier reductase showed good toxicity properties. The
compounds were further evaluated based on the Molecular Dynamics simulation
that confirmed the binding stability of the compounds to the targeted proteins.
Overall, the lead compounds ZINC38980461, ZINC05378039, and ZINC15772056,
were identified for acetyl-coenzyme A (CoA) carboxylase whiles ZINC94085628,
ZINC93656835, ZINC94080670, ZINC1774609, ZINC94821232 and
ZINC94919772 were identified as lead compounds for enoyl-acyl carrier
reductase. The identified compounds can be developed as a treatment option for
the malaria disease although, experimental validation is suggested for further
evaluation of the work.
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Background

One of the most human deadly parasitic disease is malaria which
affects more than a third of the global population with annual report of
roughly 200 million cases in the past decade (World Health
Organization, 2021a). In this regard, malaria has affected the
livelihoods of large populations world-wide more than any other
infectious disease. Another available data suggest an approximately
half a billion individuals are infected with Plasmodium spp. Globally,
with annual mortality ranging from 1.5 to 2.7 million, with children
seriously affected (Garcia, 2010). Recently, an estimated 241 million
malaria cases have been reported world-wide in 2020, wherein,
roughly 627, 000, up to 69,000 have been estimated to have died
from the disease within previous year under review (World Health
Organization, 2021a). In view of the aforementioned alarming
situation of the disease, there is urgent need to discover potent
therapeutic targets for the development of new antimalarial drugs.
This is because resistance to mainstream antimalarial drugs of
Plasmodium falciparum impede the fight against malaria, which
hamper the control and eradication strategies currently in place.
Thus, the goal of eradicating the spread of malaria relies on finding
therapeutic strategies against P. Falciparum.

The currently available antimalarial therapeutics as recommended
by the World Health Organization include the Artemisinin (ART)-
based combination therapy (ACT), antifolates, antimicrobials,
Quinolines, etc (Tse et al., 2019), (World Health Organization,
2021b). ACT is a combination of two or more drugs that work
against the malaria parasite in different ways and used as a first
line treatment. Also, a combination therapy of artesunate (AS) and
amodiaquine (AQ) is another antimalarial therapy that has been in use
for several years (White, 2004). Despite the high potency and rapid
action of these therapies in halting the spread of malaria, P. falciparum
continues to find ways to resist being completely eradicated by
acquiring resistance to the various available treatments (Dondorp
et al., 2009). Also, there is a reported high rate of recrudescence
specifically associated with ART monotherapy or ACT (Meshnick
et al., 1996). The possible causes of recrudescence to these therapies is
attributed to ART-induced ring-stage dormancy and recovery;
although, little is known about the characteristics of dormant
parasites. As such efforts are directed at finding new techniques to
tackle the dormant state of the parasite to overcome this resistance
(Kumar et al., 2018).

To date, most research works are geared towards understanding
the biology of the parasite including studying its genome with the aim
of identifying crucial drug targets to develop novel therapeutics
(Vaughan et al., 2008), (Gunther et al., 2009). In spite of the
numerous efforts made, only a few number of targets have been
confirmed through in vivo investigations and thus provide reliable
leads for malaria therapy. An experiment by Chen et al., reported that
most metabolic pathways are downregulated in dihydroartemisinin
(DHA)-induced dormant parasites. However, the fatty acid and
pyruvate metabolic pathways remain the only active mechanisms in
the dormant parasites (Chen et al., 2014). Thus the fatty acid synthetic
pathway has been explored to be a crucial mechanism in the malaria
parasite, hence possess a great potential for anti-malaria drug targets
(Chen et al., 2014). The biotin acetyl-coenzyme A (CoA) carboxylase
and enoyl-acyl carrier reductase are two enzyme targets that play a

crucial role in fatty acid synthesis in the Plasmodium parasite as
reported by Chen et al. (2014). Particularly, these targets have been
understood to interrupt recovery of the malaria parasites from ART-
induced dormancy and reduces the rate of recrudescence after ART
treatment (Chen et al., 2014). However, despite their potentials in
inducing the recovery of P. falciparum parasites’ from dormancy, the
available literature suggests inconsistent results. Also, the current
known IC50 of inhibitors that causes recovery of dormant parasites
is deemed too high for their use as medicines. Thus the surge for
potential new inhibitors is on the rise.

The use of molecular modelling methods is widely employed in
antimalarial research through the identification of biological
components of the parasite that can be targeted to develop novel
therapeutics (Biamonte et al., 2013). The discovery of these crucial
enzyme targets (biotin acetyl-coenzyme A (CoA) carboxylase and
enoyl-acyl carrier reductase) in the fatty acid synthetic pathway
therefore provides a means for the identification of potential new
inhibitors with improved efficacy than existing inhibitors of these
targets using in silico modelling techniques (Gornicki, 2003). Herein,
we employed in silico techniques including the in-house Per
ResidueEnergy Decomposition (PRED)-based pharmacophore
modelling (Kumalo and Soliman, 2016), molecular docking, virtual
screening and Molecular dynamic simulation to discover inhibitors of
acyl-carrier protein and acyl-CoA carboxylase in P. falciparum.
Additionally, the pharmacokinetic properties of all identified hit
compounds were assessed which was followed by prediction of
toxicity. We envision that findings from this study will form
important basis for further experimental work to be carried out on
these lead compounds to develop them into antimalarial agents.

Computational methodology

Retrieval and preparation of protein and
ligands.

The 3D crystal structure of the biotin acetyl-coenzyme A (CoA)
carboxylase and enoyl-acyl carrier reductase were retrieved from the
RCSB Protein Data Bank (Burley et al., 2019) with respective PDB IDs:
1W96 (Shen et al., 2004) and 3F4B (Yu et al., 2008). The two structures
were experimentally solved through the X-ray diffraction method with
a resolution value of 1.80 Å and 2.49 Å for 1W96 and 3F4B
respectively. The 1w96 structure was retrieved in complex with
soraphen A, a known inhibitor of acetyl-coenzyme A carboxylase,
hence this was used as a reference compound in the study. Similarly,
the structure of 3F4B was retrieved in complex with Triclosan which is
a validated inhibitor of enoyl-acyl carrier reductase enzyme. As such
this was also employed as reference compound in identifying potential
inhibitors of enoyl-acyl carrier reductase. The retrieved structures and
the reference inhibitors were prepared for a 20 ns Molecular dynamic
simulation to generate a Pharmacophore model at their stable states.
Preparation for MD simulations was carried out on the graphical user
interface of USCF chimera where all non-standard residues that are
not relevant to the study were removed such as water, ions and other
co-factors. In all, two systems were setup for a 20 ns MD simulation
comprising acetyl-coenzyme A in complex with Soraphen A (1W96)
and enoyl-acyl carrier reductase in complex with Triclosan (3F4B).
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Pharmacophore model generation using per
residue energy decomposition (PRED) based
approach and virtual screening.

The main goal in the Identification of small molecule antagonists
of biotin acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier
reductase is to model novel compounds that could also act in a similar
or more potent inhibitory capacity towards the target protein as the
identified reference inhibitors. Unlike other traditional
pharmacophore modeling techniques, the validated in-house PRED
method was used to outline the pharmacophoric features of the ligand-
receptor in order to retrieve a more tailored potential hit/s (Cele et al.,
2016)– (Issahaku et al., 2022). This pharmacophore model analyzes
both the structural and chemical properties of proteins and ligands
(Cele et al., 2016). To generate a PRED-based pharmacophore model,
PRED decomposition was estimated via the MM/PBSA method for
energy estimations after a 20ns MD simulations of the prepared
complex systems. Pharmacophoric features based on the receptor-
ligand interaction obtained from this short run MD simulation was
selected. Residues Ile69, Lys73, Arg76, Ser77, Asn398, Val397, Gly396,
Met393, Glu392 and Pro389 were found to be the highest energy
contributing residues in the biotin acetyl-coenzyme A (CoA)
carboxylase structure that interact with the ligand (Figure 1).
Similarly, residues Ile333, Ala304, Ala305, Ile308, Val207, Gly204,
Asn203, Ala202 and Tyr262 were identified as the highest energy

contributing residues in the acyl carrier reductase complex (Figure 1).
These identified moieties on each of the ligands that interacted with
these residues were subsequently set as a query to generate a PRED-
based pharmacophore models in ZINCPharma for the two targets of
the fatty acid synthases pathways (Koes and Camacho, 2012).
Subsequently, the zinc database was then screened for novel hits
with similar features as the generated PRED-based pharmacophore
models (Figure 1) (Huang et al., 2006). For hit screening, the filter was
configured to query ZINC purchasable compounds with a molecular
weight ≤ 500, with rotatable bonds set at ≤ 10. The “rule of five”
proposed by Lipinski was also used as a cut-off (Pollastri, 2010). A
total of 21,777,093 library of Compounds were generated from the zinc
database for the generated pharmacophores. Nine hit compounds
were selected for each of the queried models on the ZINCPharmer
database further analysis (Koes and Camacho, 2012). The identified
hits were downloaded in sdf file formats for further assessment.

Molecular docking of hit compounds

We conducted a molecular docking study on the identified hits to
estimate the binding scores and also reveal the ligand-receptor best
binding orientation between the hits and the acetyl-coenzyme A
(CoA) carboxylase and enoyl-acyl carrier reductase. Molecular
docking is also necessary to rank the hits in order of strongest

FIGURE 1
A 2D schematic diagram of the workflow.
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binding affinity to the targets as this will screen out the most active hit
compounds and yield a stable complex. Prior to molecular docking the
hits compounds were taken through energy minimization using
Avogadro 1.2.0 software (Hanwell et al., 2012). The Avogadro
software is incorporated with a UFF force field which optimizes the
molecular geometries of the compounds and uses a steepest descent
algorithm for structural minimization. The active site for each of the
enzyme targets were determined using the grid positions of the native
inhibitors (i.e., Soraphen A and Triclosan). The binding site based on
the grid coordinates for acetyl-coenzyme A (CoA) carboxylase had the
following coordinates; Centre (X = 12.93, Y = 26.86, Z = 117.21) and
Dimensions (X = 25.99, Y = 20.32, Z = 21.16). The coordinates for the
enoyl-acyl carrier reductase is as follow: Centre (X = −0.49, Y = −20.77,
Z = −0.89) and Dimension (X = 21.68, Y = 20.32, Z = 15.22).
Subsequently, molecular docking was carried out using AutoDock
vina incorporated in PyRx for all hit compounds (Dallakyan and
Olson, 2015), (Antón Vázquez et al., 2017). Output of docking was
viewed on UCSF Chimera using the integrated ViewDock module
after which the docking scores of the best pose for each complex were
tabulated as illustrated in Table 1 saved for further analysis.

Assessment of pharmacokinetics properties
of hits

In the computational drug design and development process, the
early-stage assessment of pharmacokinetic parameters aids in the
optimization of a molecular candidate to become an effective drug
(Chaturvedi et al., 2001). As such the resulting compounds obtained
was evaluated and analyzed based on their physicochemical properties
such as absorption, distribution, metabolism and excretion (ADME).
Using the online platform SwissADME (http://www.swissadme.ch/
index.php) (Daina et al., 2017), which helps to predict and analyse
pharmacokinetic and pharmacodynamics properties of selected
compounds. This was necessary to evaluate the prospects of the
identified hits to be developed for human use. Furthermore, In
silico ADME studies are expected to reduce the risk of late-stage
attrition of drug development and to optimize screening and testing by

looking at only the promising compounds (Yamashita and Hashida,
2004). ADME properties were predicted based on the Lipinski’s rule of
five (LRo5). LRo5 is a general standard for estimating the biological
activity, good oral bioavailability coupled with the tendency of a drug
molecule to penetrate various aqueous and lipophilic (membrane)
barriers (Pollastri, 2010), (Owens and Lipinski, 2003). As all the
identified hits were assessed for their drug-likeliness according the
rule of five as shown in Table 2 and Table 3.

Prediction of toxicity

The prediction of chemical toxicity is a crucial step in the drug
development process (Li et al., 2019). Not only are computational
toxicity estimates faster in determining harmful levels in animals, but
they can also assist to minimize the number of animal tests. Also,
prioritizing compounds with a reduced risk of toxicity early in the
drug development process should assist to reduce the high attrition
rate in pharmaceutical R and D (Li et al., 2019). Chemists can be
alerted if their suggested compounds are more likely to cause toxicity
utilizing expert knowledge-based toxicity prediction. Toxicity
prediction for the hit compounds was carried through ProTox-II
(https://tox-new.charite.de/protox_II/) server (Banerjee et al., 2018).
Toxicity endpoints such as mutagenicity, carcinogenicity, and other
characteristics can be quantified both quantitatively and qualitatively
to determine a chemical compound’s toxicity using this server (Segall
and Barber, 2014).

Conformational stability analysis of top hits
via molecular dynamic simulation

Molecular dynamic simulation was carried out for the top hits
with good binding score, formed active interactions with targets,
excellent pharmacokinetic properties and reduced toxicity effect.
This is necessary to further analyse the impact of the selected hits
on the stability and flexibility of the target enzymes. Receptor-Ligand
structural assessment is crucial to the function of the receptor as any

TABLE 1 Binding Score of Hits via Molecular docking analysis.

Acetyl coenzyme A carboxylase hits Enoyl-acyl carrier Reuctase hits

Index Hit ID Docking Score RMSD Score(Å) Index Hit ID Docking score RMSD Score(Å)

1 ZINC05378039 −7.3 1.51 1 ZINC93658429 −8.7 1.41

2 ZINC38980461 −8.1 1.73 2 ZINC94085628 −9.2 1.93

3 ZINC38974815 −8.3 1.81 3 ZINC93656835 −8.7 1.87

4 ZINC38971181 −8 1.99 4 ZINC93098000 −9.1 1.54

5 ZINC38984088 −8 1.33 5 ZINC94919772 −8.8 1.69

6 ZINC38974798 −7.4 1.89 6 ZINC94080670 −9.1 1.13

7 ZINC38976811 −8.2 1.51 7 ZINC17074609 −8.9 1.82

8 ZINC15772056 −9.8 1.23 8 ZINC87263643 −7.7 1.08

9 ZINC38903582 −7.9 1.67 9 ZINC94821232 −8.8 1.79

10 Soraphen A −12.1 1.77 10 Triclosan −7.5 1.88
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TABLE 2 ADME properties of Acetyl CoA Carboxylase Hits.

Physicochemical
properties

Acetyl CoA carboxylase hit compounds

ZINC05378039 ZINC38980461 ZINC38974815 ZINC38971181 ZINC38984088 ZINC38974798 ZINC38976811 ZINC15772056 ZINC38903582

Chemical formula C16H14N4O4 C15H11FN4O2S C18H17N3O3S C17H14FN3O3S C17H14ClN3O2S C18H17N3O4S C17H14ClN3O3S C29H21N2O2+ C17H14IN3O2S

Molecular weight (g/mol) 326.12 330.344 355.419 359.382 359.838 371.418 375.837 429.499 451.289

Number of heavy atoms 24 23 25 25 24 26 25 33 24

Number of rotatable bonds 6 5 6 6 5 7 6 6 5

Number of H-bond acceptors 21 18 24 21 20 25 21 24 20

Number of H-bond donors 1 0 0 0 0 0 0 0 0

TPSA (Å2) 117.96 90.29 97.91 97.91 88.68 107.14 97.91 43.07 88.68

Molar Refractivity 84.27 101.57 104.01 99.16 102.53 105.7 104.21 130.18 110.4

LogPO/W 2.028 3.38 4.24 3.994 4.888 3.863 4.508 5.91 3.63

GI absorption High High High High High High High High High

Linpinski Rule Yes Yes Yes Yes Yes Yes Yes Yes Yes

Synthetic accessibility 3.20 3.82 4.53 4.16 4.29 4.24 4.15 3.52 4.18

CYP No Yes Yes Yes Yes Yes Yes No Yes

PgP No No No No No No No Yes No
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TABLE 3 ADME properties of Acyl Carrier Protein Hits.

Physiochemical
properties

Acyl carrier protein hit compounds

ZINC93658429 ZINC94085628 ZINC93656835 ZINC93098000 ZINC94919772 ZINC94080670 ZINC17074609 ZINC87263643 ZINC94821232

Chemical formula C16H13BrOS C15H11F5O C18H17ClO2 C16H17Cl2N3O2 C15H14ClFO2 C15H13F3O C17H18N2O3S2 C11H7Cl2FOS C13H8Cl2F2O

Molecular weight (g/mol) 333.25 302.242 300.785 354.237 280.726 266.262 362.476 277.147 289.108

Number of heavy atoms 19 21 21 23 19 19 24 16 18

Number of rotatable bonds 2 3 2 3 3 2 6 2 2

Number of H-bond acceptors 14 12 18 21 16 14 24 8 9

Number of H-bond donors 1 1 1 1 1 1 3 1 1

TPSA (Å2) 48.47 20.23 33.37 58.36 29.46 20.23 130.92 48.47 20.23

Molar Refractivity 83.11 66.94 86.74 90.38 73.48 66.86 101.14 64.91 66.99

LogPO/W 5.05 4.374 5.093 3.582 3.878 3.802 3.846 4.276 4.353

GI absorption High High High High High High High High High

Linpinski Rule Yes Yes Yes Yes Yes Yes Yes Yes Yes

Synthetic accessibility 3.11 2.94 3.58 3.17 2.69 2.64 3.49 3.17 2.76

CYP Yes No Yes Yes Yes No Yes Yes Yes

PgP Yes No Yes No No No No No No
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perturbation on the structural architecture of the protein/enzymes will
ultimately alter its biological effect. All selected systems for MD
simulation were prepared on UCSF Chimera comprising docked
complexes of all nine 9) hits for each of the two targets, an
unbound apo system for each of the targets and a reference system
of soraphen A in complex with Acetyl CoA and triclosan in complex
with Acyl carrier protein.

All molecular dynamics (MD) simulations were carried out using
the graphic processing unit (GPU) version of the Particle Mesh Ewald
Molecular Dynamics (PMEMD) of AMBER 18 software package
(Case et al., 2018). Atomic partial charges for the hit compounds
were generated by the ANTECHAMBER module by using the
Restrained Electrostatic Potential (RESP) and the General Amber
Force Field (GAFF) protocol (Sprenger et al., 2015). The receptors
were parametized by the FF14SB (Maier et al., 2015) force field
integrated in the Amber 18 suit. The Link Edit and parm (LEAP)
module (Nikitin, 2014) of Amber 18 was then used to add hydrogens
that are missing from the systems during preparation. Also, this
module neutralizes the system by adding counter ions such as Na+
and Cl-after which the systems are solvated by suspending them in
Transferable Intermolecular Potential with three Point (TIP3P) water
box of size 8Å. A complexed coordinates and topology files of the
receptor-ligand binding are generated for subsequent processing. The
systems were minimized for 2000 energy steps. Initial minimization of
1,000 steps with steep descent were performed for all the systems with
a restrain potential and then followed by another 1,000 steps
minimization by conjugate gradient algorithm without restrain.
The systems were then gradually heated from 0K to 300 K with a
5 kcal/mol. A harmonic restraint potential in NTP ensemble using
Langevin thermostat of collision frequency of 1/ps. All the systems
were then equilibrated at 300 K for 500 ps without restraint with a
constant pressure at 1 bar using Berendsen barostat. SHAKE
algorithm was used to restrain all hydrogen bonds (Gonnet and
SHAKE, 2007). MD production of 100ns was then performed
without restrain on the systems with target coupling of 2 ps and
constant pressure at 1 bar. Analysing the trajectories and coordinates
generated from the MD run was carried through the CPPTRAJ and
PTRAJ modules (Roe and Cheatham, 2013) incorporated in Amber
18. The Root Mean Square Deviation (RMSD), and Root Mean Square
Fluctuation (RMSF) were calculated for all the systems. Discovery
Studio version v19.10.18289 (BIOVIA, 2017) and UCSF chimera were
used to visualize the trajectories while Origin data version 6.0 tool
(Seifert, 2014) was used to plot all graphs.

Binding free energy analysis via MM/GBSA
method

The Molecular Mechanics/Generalized Born Surface Area (MM/
GBSA) (Kollman et al., 2000; Massova and Kollman, 2000; Onufriev
et al., 2000; Miller et al., 2012) method was employed in estimating the
binding free energy for each of the inhibitor-bound systems. The binding
free energy (ΔGbind) was calculated from the following equation:

ΔGbind � Gcomplex − Greceptor − Gligand (1)
ΔGbind � Egas + ΔGsol − TS (2)

Where ΔGbind is considered to be the summation of the gas phase and
solvation energy terms less the entropy (TS) term

Egas � Eint + Evdw + Eelec (3)

Egas is the sum of the AMBER force field internal energy terms Eint
(bond, angle and torsion), the covalent van der Waals (Evdw) and the
non-bonded electrostatic energy component (Eelec). The solvation
energy is calculated from the following equation:

Gsol � GGB + Gnon−polar (4)
Gnon polar � SASA + b (5)

Where ΔGbind is taken to be the sum of the gas phase and solvation
energy terms less the entropy (TΔS) term., Gcomplex represents energy
of the receptor ligand complex. Whiles Greceptor and Gligand represents
energies of receptor and ligand respectively. Egas denotes gas-phase
energy; Eint signifies internal energy; and Eele and Evdw indicate the
electrostatic and Van der Waals contributions, respectively. Egas is the
gas phase, elevated directly from the FF14SB force terms. Gsol denotes
solvation free energy, can be decomposed into polar and non-polar
contribution states. The polar solvation contribution, GGB, is
determined by solving the GB equation, whereas, GSA, the non-
polar solvation contribution is estimated from the solvent
accessible surface area (SASA) determined using a water probe
radius of 1.4 Å. T and S correspond to temperature and total solute
entropy, respectively. γ Is a constant (Sitkoff et al., 1994). Per-residue
decomposition analyses were also carried out to estimate individual
energy contribution of residues of the substrate pocket towards the
affinity and stabilization of each target.

Results

Identification of hit compounds

A pharmacophore structure defines how the key molecular
properties of a ligand-receptor interaction are organized. As shown
in Figure 2, the top amino acids interacting with each of the targets are
highlighted and subsequently, the pharmacophore model generated.
The ZINCPharmer database, a subsidiary of the zinc database was
utilized to identify potential hit compounds based on the modelled
pharmacophore. From our findings nine hit compounds were
identified for each of acetyl-coenzyme A (CoA) carboxylase and
enoyl-acyl carrier reductase from the ZINCPharmer query search
(Figure 3). The hits were subjected to a molecular docking to assess
their binding affinity to the target proteins.

Analysis of binding score of hits using
molecular docking

Molecular docking was utilized extensively to predict the binding
affinity and orientation of all screened hit compounds from the
ZINCpharmer when they bind to their biological targets. Our
findings illustrated in Table 1 show the respective binding scores of
the hit compounds. Also, included are the assessment binding affinity
scores for the reference compounds soraphen A and Triclosan used in
the study. These reference native ligands Soraphen A and Triclosan
were redocked into the active sites of their respective targets to ensure
the chosen docking program was reliable. For most binding score
analysis, the most negative value is usually indicative of a stronger
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binding and vice versa. In assessing the hits that target Acetyl
Coenzyme A Carboxylase, the threshold of binding affinities was
observed to be in the range −7.3 kcal/mol and −9.8 kcal/mol. Also,
all hits bound to the active site with a low RMSD score below < 2 which
indicates stability. Which is indicative of favorable binding of all hits to
the active site of Acetyl Coenzyme A Carboxylase. However,
ZINC15772056 had the highest binding score of −9.8 kcal/mol
whiles ZINC05378039 had the lowest binding score among all the
hits. The reference Soraphen compound showed to have the strongest
binding score of −12.8 kcal/mol as predicted from the molecular
docking analysis. Similarly, all hit compounds of Enoyl-acyl carrier
reductase bound favourably to the active site of their target which is
evidenced by the binding score threshold in the range −7.7 kcal/mol
and −9.2 kcal/mol for all hit compounds. This finding shows that all
screened hits bind favourably to Enoyl-acyl carrier reductase based on
the molecular docking prediction as shown in Figure 4. However,
ZINC94085628 had the highest binding score of −9.2 kcal/mol whiles
ZINC87263643 had the lowest dock score of −7.7 kcal/mol. Overall, all
hit compounds showed to have bound strongly in contrast to the

reference Triclocan compound with low RMSD score correlating to a
stable complex.

Assessment of ADME properties of hit
compounds

Beyond the experimental models, determining drug-likeness
reveals pharmacokinetic and pharmacodynamics aspects that
unavoidably impact metabolism, distribution, absorption, and
excretion in human systems. In predicting the drug-likeliness of
a chemical compound, the Lipinski’s rule of five (LRo5) is
considered. LRo5 is a universal benchmark for determining a
drug’s biological activity, excellent oral bioavailability, and
ability to permeate different aqueous and lipophilic (membrane)
barriers (Pollastri, 2010), (Lipinski et al., 2012). SwissADME
(Daina et al., 2017) was used to predict physiochemical and
pharmacokinetic properties of the screened compounds by
following LRo5 thereby assessing their druggability. The

FIGURE 2
Ligand-residue interaction plot of (A) Soraphen A at the binding site of acetyl-coenzyme A (CoA) carboxylase enzyme and (C) Triclosan at the binding site
of enoyl-acyl carrier reductase. (B–D) Generated pharmacophores showing aromatic (green) and hydrophobic moieties (Purple) and hydrogen donors
(yellow).
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descriptors, according to the LRo5 include molecular weight (MW)
[≤ 500 Da], octanol-water partition coefficient [log p ≤ 5],
Hydrogen bond donors (HBD) [≤ 5] and Hydrogen bond
acceptors (HBA) [≤ 10]. As estimated from our findings in

Table 2; Table 3 all hits across both targets have molecular
weights below 500 Da threshold. A low molecular weight
compound is mostly attributed to less toxicity and also an
indication of a high tendency to be favoured for cellular uptake

FIGURE 3
Showing 2D structures of identified hits. (A–I) comprising hits for Acetyl Coenzyme A (CoA) carboxylase and (i)-(ix) comprising hits for Enoyl-acyl carrier
reductase.

FIGURE 4
A surface view of the binding position of hits at the active sites of (A) Acetyl Coenzyme A Carboxylase and (B) Enoyl-acyl carrier reductase.
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with little or no obstruction to its transport and distribution to
target sites as opposed to compounds with larger MW. All other
standards according to the LRo5 were matched by all identified hit
compounds and hence passed the Linpinski’s assessment of
druggability. Additionally, the synthetic accessibility of all
identified hits was assessed on SwissADME as shown in Table 2.
Generally, a score from one 1), indicates easy synthetic
accessibility, to ten (10) indicating very difficult synthetic
accessibility. All hits across both targets have a synthetic
accessibility score below five 5), which indicates that they could
be easily experimentally synthesized, according to the results
predicted by SwissADME.

Also, the Cytochrome P450 (CYP) and P-glycoprotein (PgP)
substrate was predicted as well. CYP is a complex and important
component of drug metabolism. It is the root of many drug
interactions due to inhibition, induction, and competition for
common enzymatic pathways by different drugs. Table 2; Table 3
show the predicted CYP outcomes of all hits across the two enzymes.
PgP activity of a compound determines the effectiveness of the drug in
transporting a wide variety of substrates across extra- and intracellular
membranes. The predicted PgP outcomes for all hits showed a
variations in their effectiveness in transporting substrate across
membranes as shown in Table 2 and Table 3.

Toxicity assessment

The study of a compound’s toxicity is an important part of the
drug development process. As such the toxicity characteristics of a
potential drug candidate must be identified before it may enter
clinical trials. Toxicities are usually explored through expensive,
time-consuming and life-threatening animal studies, thus in silico
toxicity estimates are a good option. Compounds are divided into
toxicity classes based on the severity of their effects. Also, through a
single or short-term exposure, toxicity can disrupt the synthesis of
important enzymes in an organism, leading to the failure of a key
organ. Sometimes the chemicals developed as medication
candidates are toxin-like and damaging to other organs, causing
organ toxicity, immunotoxicity, mutagenicity, and cytotoxicity in
humans and animals. The toxicity of the compounds was predicted
using ProTox-II, an online chemical toxicity prediction platform
that incorporates molecular similarity, fragment propensities, and
machine learning to predict toxicities (Lipinski et al., 2012). The
proTox-II server determines the toxic properties of compounds
through the predicted median lethal dose (LD50) in mg/kg weight.
Therefore, the toxicity of all identified hits were assessed in this
study. Three 3) out of the nine 9) hits namely; ZINC05378039,
ZINC38980461 and ZINC15772056 were identified to be in toxicity
class IV for the acetyl coenzyme A carboxylase enzyme, indicative
of non-toxicity and non-irritating. This finding highlights these
three hits to be more favourable in terms of toxicity in contrast to
the other hits.

Similarly, ZINC94085628, ZINC93656835, ZINC94080670,
ZINC17074609, ZINC87263643, and ZINC94821232 for the
enoyl—acyl carrier reductase enzyme, were in class IV,
indicative of the excellent toxicity properties characterized by
non-toxic and non-irritating properties. However,
ZINC94919772 showed to be the most favourable in terms of
toxicity and was identified to be in toxicity class V. Indicative ofTA
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non-toxic, non-irritating, non-harmful when swallowed among
others.

Hepatotoxicity induced by drugs is the most common cause of
acute liver failure. It may be a result of direct toxicity from the
administered drug or its metabolites. Complications of
hepatotoxicity include: fever, diarrhoea, weight loss, headaches,
nausea and most commonly hyperbilirubinemia and jaundice. In
this experiment, all nine HIT compounds of acetyl co-enzyme A
carboxylase enzyme shows activity for hepatotoxicity whiles eight of
the hits for enoyl—acyl carrier reductase enzyme showed inactivity
with only one 1) active hit for hepatotoxicity this implies that all
compounds that show hepatotoxicity activity have the potential to
cause damage to the liver, in contrast to the hits with an ‘inactive’
outcome.

The propensity of a substance to develop tumors is known as
carcinogenicity. It is a multi-stage process that begins with the
transformation of normal cells into tumor cells and involves
numerous phases and intricate biological interactions that are
influenced by elements like genetics, age, food, environment, and
hormones. In the study, two of the nine compounds show activity for
carcinogenicity in the acetyl co-enzyme A carboxylase hit
compounds, this is indicative of an increased risk of the incidence
of tumours. All hits of the enoyl—acyl carrier reductase enzyme were
inactive towards carcinogenicity as shown Table 4. Immunogenicity
is the potential of a compound to elicit an unwanted immune
response against the compound. This experiment focused on
chemical drugs, most of the hit compounds show inactivity for
immunogenicity across both enzymes as shown in Figures 4, 5.
Hence, the risk of an immune response and antibodies forming
against the respective compounds is decreased. Mutagenicity is the
potential of a compound to form mutations in proteins and cell
structures in-vivo, hence altering the function of them. Cytotoxicity
is the degree to which a substance can cause damage to a cell. This
experiment scored well in cytotoxicity as all of the HIT compounds
had predicted results of inactivity.

Analysis of conformational dynamics of
protein-ligand stability via MD simulation

An assessment of the conformational dynamics was carried out
for the two fatty acid targets in complex with their respective hits
to unveil insights into structural alterations via MD simulation.
The MD simulation was also carried out to validate the findings
from molecular docking and to elucidate the energetic
contributions of binding free energy. We employed post-MD
analyses protocols, including; Root-mean-square deviation
(RMSD), and Root-mean-square fluctuation (RMSF), analysis to
provide insights on the structural impact of the hit compounds on
acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier
reductase. These post-MD protocols measure stability, and
flexibility of the c-α atoms in the backbone of acetyl-coenzyme
A (CoA) carboxylase and enoyl-acyl carrier reductase during the
100ns simulation.

Structural stability

A 100-ns long MD trajectory was established to analyze the
structural dynamics in the conformations of all systems. The
overall protein convergence and stability of MD trajectories were
determined based on RMSD, as shown in Figure 5. In the Acetyl-
coenzyme A systems, convergence was attained early in the simulation
after about 5 ns This was followed by steady atomic motions in all
systems till the end of the simulation as shown in Figure 5A. None of
the systems appeared to be unstable as shown by the plateau shape of
atomic motions. Overall, the RMSD averages estimated for all the
Acetyl CoA bound and unbound systems were 2.56Å, 2.09Å, 2.69Å,
2.42Å, 2.60Å, 1.88Å, 2.40Å, 1.77Å, 2.82Å, 1.85Å, and 2.43Å for apo,
ZINC05378039, ZINC38980461, ZINC38974815, ZINC38971181,
ZINC38984088, ZINC38974798, ZINC38976811, ZINC15772056,
ZINC38903582, Soraphen A respectively.

FIGURE 5
Comparative C-α RMSD plots showing the degree of stability and convergence of the hit compounds for (A) Acetyl coenzyme A carboxylase (B) Enoyl-
acyl carrier reductase enzyme over the 100 ns MD simulation time.
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Similarly, all systems in the Acyl-carrier protein setup reached a
convergence early in the simulation and maintained steady atomic
motions of c-α atoms to the 100 ns mark as shown in Figure 5B. All hit
compounds including the unbound acyl carrier protein and the
reference drug Triclosan appeared to be stable during the
simulation. The estimated RMSD averages for all systems were
2.98Å, 2.28Å, 2.78Å, 2.10Å, 2.27Å, 1.95Å, 2.75Å, 2.23Å, 2.30Å,
2.08Å, and 2.45Å for Apo, ZINC93658429, ZINC94085628,
ZINC93656835, ZINC93098000, ZINC94919772, ZINC94080670,
ZINC17074609, ZINC87263643, ZINC94821232 and Triclosan
respectively. These findings on structural stability of all systems
highlight the reliability of our findings for further structural
assessment.

Structural flexibility

We employed RMSF analysis to determine the change in motion
of each residue as a measure of the flexibility of certain regions of the
acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier
reductase structural architecture as shown in Figure 6. A greater
RMSF value typically indicates a more flexible structure, while a
lower average RMSF value generally indicates a less flexible or rigid
conformation. The average RMSF values estimated for all the Acetyl
CoA bound and unbound systems were 1.23Å, 1.06Å, 1.20Å, 1.10Å,
1.02Å, 1.06Å, 1.05Å, 1.03Å, 0.98Å, 1.04Å and 1.37Å for the apo,
ZINC05378039, ZINC38980461, ZINC38974815, ZINC38971181,
ZINC38984088, ZINC38974798, ZINC38976811, ZINC15772056,

ZINC38903582, Soraphen A respectively (Figure 6A). The average
RMSF estimated for the Acyl-carrier protein systems were 1.50Å,
1.18Å, 1.42Å, 1.03Å, 1.01Å, 1.06Å, 1.21Å, 1.05Å, 1.10Å, 1.18Å and
1.13Å for Apo, ZINC93658429, ZINC94085628, ZINC93656835,
ZINC93098000, ZINC94919772, ZINC94080670, ZINC17074609,
ZINC87263643, ZINC94821232 and Triclosan respectively
(Figure 6B). The effect of the hits on both fatty acid targets was
evident as shown from the difference in structural fluctuations in the
initial complexed structures and the structures after MD simulation as
shown in Figure 6A, B. Also shown in Figure 6, all the simulated
systems including the unbound and an inhibitor bound complexes
show a peak area of the protein at Met250, Pro450 and Ser482 for
Acetyl coA and Asn78, Arg125 and Val278 for Acyl reductase, residual
positions that fluctuate the most during the simulation. We can
observe that during the simulation time, the amino acid residues of
unbound targets have similar structural behaviour as that of the
inhibitor bound systems of the fatty acid targets.

Binding free energy assessment

The mechanics/generalized-born surface area (MM/GBSA)
method was employed to estimate the binding free energetics of
the bound complexes of the all hits including the two reference
compounds Soraphen A and Triclosan. The molecular mechanics
generalized Born surface area (MM/GBSA) is very popular method for
binding energy prediction and is known to bemore accurate thanmost
scoring functions in molecular docking and are computationally less

FIGURE 6
A plot of residual fluctuations in the unbound and bound (A) Acetyl co-enzyme A and (B) Acyl-carrier reductase enzyme. (i) Highlights the initial
superimposed structures of all systems, and (ii) shows the various fluctuations that occurred at the end of the simulation.
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demanding than alchemical free energy methods (Maier et al., 2015).
The computed binding free energies of the acetyl-coenzyme A (CoA)
carboxylase complexes ranged from −15.78 to −36.36 kcal/mol whiles
that of the enoyl-acyl carrier reductase complexes ranged
from −32.89 to −41.42 kcal/mol. Table 5 shows the energy terms
that contribute to the binding free energy, the most favourable
components being the Δ????, Δ???? and Δ?gas, while ΔGsol was
unfavourable. The energies presented by these compounds suggests
the spontaneity, permeation and a measure of the reaction kinetics
that characterize their complexing with the target proteins.

Discussion

Malaria still remains one of the mostly deadly parasitical
disease in humans. A huge obstacle to the global efforts to
control and eradicate malaria is the resistance of Plasmodium
falciparum to conventional antimalarial therapies. As such
several research studies have been geared towards identifying
crucial therapeutics that will overcome this resistance. Advances
in targeted therapy in antimalarial studies identified two crucial
targets in the fatty acid synthetic pathway of the parasite. These
new targets have been extensively investigated to interrupt recovery
of parasites from ART-induced dormancy and to reduce the rate of
recrudescence following ART treatment. The identification of these
important targets have paved way for in-depth exploration into
antimalarial therapy including the application in silico techniques
in designing novel therapeutics that can pose an inhibitory effect to
these targets.

In this study, we identified potential drug candidates against the
acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier
reductase of the fatty acid synthesis pathways using in silico
techniques. Soraphen A and Triclosan, known inhibitors of these
targets, were used as reference compounds in screening for potential
drugs from the ZINCPharmer database using the PRED
Pharmacophore based virtual screening. This in silico technique
allows the identification of moieties on the reference structures that
form high affinity interactions with crucial amino acids residues on the
target enzymes which form the basis for the generation of a
pharmacophore. Subsequently, molecular docking was used to
screen all hit compounds that were identified for each of the
acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier
reductase targets. All the nine hit compounds of CoA showed
favourable binding at the active site with good docking score and
RMSD values < 2Å. Similarly, all the hit compounds in the acyl
showed favourable binding as well with good binding score and lower
RMSD score accounting for a stable binding. In most molecular
docking studies an RMSD threshold <2Å is normally considered a
good docking solution (Ramírez and Caballero, 2018). All our
identified hits had RMSD less than the 2Å threshold.

Additionally, the pharmacokinetics was assessed by evaluating the
ADME properties based on the Lipinski’s rule of five (RO5). The
RO5 is used to demonstrate the drug-like properties of all selected
compounds and serves as a justification for molecules that agrees with
the rule. All the nine selected hits for both targets show good
pharmacokinetic properties as well as passing the Linpinski’s test of
“druggability”. Subsequently, the toxicity of all hit compounds was
evaluated to unravel any harmful effects of the selected compounds on
humans or animals. Three of the potential drug candidates for theTA
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Acetyl-coenzyme A target comprising ZINC05378039,
ZINC38980461 and ZINC15772056 show the best toxicity
properties characterized by being identified in the toxicity class iv
indicative of no or less toxicity. They also show to be inactive towards
Carcinogenicity, Immunotoxicity, Mutagenicity and Cytotoxicity
effects. In the enoyl-acyl carrier reductase hit compounds, five 5)
of the hits (ZINC94085628, ZINC93656835, ZINC94080670,
ZINC1774609 AND ZINC94821232) were in class iv, indicating no
or less toxic, however ZINC94919772 had the best overall toxicity
properties which includes being in a toxicity class V correlating to no
toxicity effects as well inactive towards Carcinogenicity,
Immunotoxicity, Mutagenicity and Cytotoxicity.

Furthermore, molecular dynamic simulations was used to unveil
the stability and flexibility of the selected ligands against the two fatty
acid targets (Salifu et al., 2022). The cα atoms of the protein-ligand
complexes were used to calculate the RMSD of the system that confirm
low deviation of the system (Salifu et al., 2022), (Abdullahi et al., 2018).
Generally, the acceptable threshold for an average change in RMSD of
the protein-ligand complex 1-3Å (Ramírez and Caballero, 2018). As
such any RMSD value larger than the 1-3Å threshold indicates a vast
conformational change in the protein structure hence unacceptable
(Ramírez and Caballero, 2018). The RMSD averages for all the selected
hit compounds in this study was within the 1–3 Å threshold which is
indicative of good stability. The stability of the simulated systems
highlights the reliability of our findings and further show the impact of
the hit compounds on the targets. The fluctuation of the protein
targets was also determined based on the RMSF value that also confirm
averagely low fluctuations in all the inhibitor bound systems
correlating to a less flexible protein structure.

In several drug design studies, the Molecular Mechanics
Generalized Born Surface Area (MM-GBSA) approach has been
used to accurately predict binding free energies (Genheden et al.,
2012), (Genheden and Ryde, 2015). The estimated binding free
energies of the Acetyl-coenzyme A in complex with all hit
compounds ranged from −15.78 to −36.36 kcal/mol. Table 6
shows the energy terms that contributes to the total binding free
energy, the findings show the major driving/favorable components
to be Δ?????, Δ???? and Δ?gas, while Δ?sol was unfavourable.
Similarly, in the enoyl-acyl carrier reductase complexes, the
binding free energies were in the range −32.89 to −41.42 kcal/
mol. These energies were similarly driven by the Δ?????, Δ???? and
Δ?gas energy components whiles the Δ?sol term remain
unfavourable. ZINC38980461 had the most favourable binding
energy (−36.36 kcal/mol) among the acetyl-coenzyme A hits
whiles ZINC93098000 had the highest binding free energy
(−41.42 kcal/mol) in the enoyl-acyl reductase hit compounds.
Overall, all hit compounds for both targets displayed favourable
binding free energies towards the respective target which highlights
their potential as inhibitors of these target proteins.

Conclusively, based on our analysis of all hit compounds screened
via the PRED-pharmacophore method for the acetyl-coenzyme A
(CoA) carboxylase and enoyl-acyl carrier reductase of the fatty acid
synthesis pathways, we identified ZINC38980461, ZINC05378039,
and ZINC15772056 as the lead compounds that can be developed
further into potential drug candidates of acetyl-coenzyme A, whiles
ZINC94085628, ZINC93656835, ZINC94080670, ZINC1774609,
ZINC94821232 and ZINC94919772 were identified as the
compounds with best properties against the enoyl-acyl reductase
enzyme. The evaluations of the selected lead compounds wereTA
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based on consistency in showing favourable results across different
parameters including good docking score, excellent pharmacokinetic
properties, no toxicity tendencies, ability to stabilize target enzyme
with minimal fluctuations and a favourable binding free energy. Also,
leads were identified to be ZINC purchasable and also possess the
potential of being easily synthesized via experimental assays. The
common vendors where these leads can be purchased as listed in the
ZINC database include: Enamine BBmake-on-demand (BBV-
43139487), Molport make-on-demand (MolPort-026–268-957),
Chemspace BB premium (CSC001515773), Chemspace Building
Blocks (CSC001515773) and Selena Building Blocks
(SEL11975463). These lead compounds can therefore be developed
further into drug candidates for inhibiting acetyl-coenzyme A (CoA)
carboxylase and enoyl-acyl carrier reductase of the fatty acid synthesis
pathways in malaria therapy.

Conclusion

The discovery of inhibitory molecules for a specific target
protein is increasingly gaining attention in drug design due to
the efficiency and speed that comes with the process. Using a
computer-aided drug design methodology, we show in this study
how novel acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl
carrier reductase inhibitors were quickly and effectively identified
(CADD). Three lead compounds ZINC38980461, ZINC05378039,
and ZINC15772056, were identified for acetyl-coenzyme A (CoA)
carboxylase whiles ZINC94085628, ZINC93656835,
ZINC94080670, ZINC1774609, ZINC94821232 and
ZINC94919772 were identified as lead compounds for enoyl-acyl
carrier reductase, through the use of PRED based Pharmacophore
method, virtual screening, molecular docking, ADMET, Toxicity
assessment and MD simulation techniques in the CADD. These
compounds may be able to inhibit the respective activities of acetyl-
coenzyme A (CoA) carboxylase and enoyl-acyl carrier reductase
and thereby interrupt the recovery of the falciparum parasite in
host cell.
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