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The in silico prediction of T cell epitopes within any peptide or biologic drug

candidate serves as an important first step for assessing immunogenicity. T cell

epitopes bind human leukocyte antigen (HLA) by a well-characterized

interaction of amino acid side chains and pockets in the HLA molecule

binding groove. Immunoinformatics tools, such as the EpiMatrix algorithm,

have been developed to screen natural amino acid sequences for peptides that

will bind HLA. In addition to commonly occurring in synthetic peptide

impurities, unnatural amino acids (UAA) are also often incorporated into

novel peptide therapeutics to improve properties of the drug product. To

date, the HLA binding properties of peptides containing UAA are not

accurately estimated by most algorithms. Both scenarios warrant the need

for enhanced predictive tools. The authors developed an in silico method for

modeling the impact of a given UAA on a peptide’s likelihood of binding to HLA

and, by extension, its immunogenic potential. In silico assessment of

immunogenic potential allows for risk-based selection of best candidate

peptides in further confirmatory in vitro, ex vivo, and in vivo assays, thereby

reducing the overall cost of immunogenicity evaluation. Examples

demonstrating in silico immunogenicity prediction for product impurities

that are commonly found in formulations of the generic peptides

teriparatide and semaglutide are provided. Next, this article discusses how

HLA binding studies can be used to estimate the binding potentials of

commonly encountered UAA and “correct” in silico estimates of binding

based on their naturally occurring counterparts. As demonstrated here,

these in vitro binding studies are usually performed with known ligands

which have been modified to contain UAA in HLA anchor positions. An

example using D-amino acids in relative binding position 1 (P1) of the

PADRE peptide is presented. As more HLA binding data become available,
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new predictive models allowing for the direct estimation of HLA binding for

peptides containing UAA can be established.
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1 Introduction

1.1 Peptide drug products and T cell
dependent immunogenicity

Ensuring drug safety and efficacy is of utmost importance

for bringing novel and generic peptide drug products to

market. Assessing the immunogenic potential of a given

peptide drug product is a key element to safety and efficacy

evaluations. Many factors can contribute to immunogenicity

including the following: product origin (human vs. foreign);

product-specific attributes (sequence, propensity for

aggregation, purity, stability, mechanism of action, etc.);

patient-specific factors (genetics, disease state, co-

administered medications); administration factors (route of

delivery, dose, and frequency); and immunomodulatory

properties of the product (Singh, 2010; Ratanji et al., 2014).

The focus of this paper is on the peptide sequence as it may

determine immunogenic potential. A number of promising

drug products have failed in clinical trials due to

immunogenicity. One telling example is taspoglutide, a

GLP-1 receptor agonist that was being developed for the

treatment of diabetes. In 2010, the development of

taspoglutide was halted during its phase three trial due to

injection site and systemic allergic reactions as well as

unacceptable levels of nausea and vomiting. Anti-

taspoglutide antibodies were detected in 49% of patients in

the study (Rosenstock et al., 2013). In general, T cell

dependent immune responses can be attributed to T cell

epitopes found within either the active pharmaceutical

FIGURE 1
Peptide therapeutics and their impuritiesmay contain T effector (green) or Treg (blue) epitopes. The peptides are taken up by antigen presenting
cells where they are processed and any epitopes within the sequences are presented on the surface by human leukocyte antigen (HLA). The peptide-
HLA complex can then engage either T effector or T regulatory cells. The activation of T effector cells (green) after engagement and recognition of T
effector epitopes assists B cell maturation ultimately resulting in unwanted anti-drug antibody (ADA) development along with other immune
reactions to the peptide drug product. In the absence of T effector epitopes or in the predominant engagement of T regulatory cells (blue) there is
unlikely to be immune reactivity and generation of ADA. In silico immunogenicity prediction algorithms predict the likelihood for a peptide sequence
to bind HLA, a first-step in immunological response.
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ingredient (API) or related impurities present in the final drug

product. The latter is cause of the immunogenicity observed in

the taspoglutide study. As outlined in the FDA’s abbreviated

new drug application (ANDA) guidance to industry, peptide

APIs and any peptide-related impurity sequences with relative

abundance above 0.1% of the drug substance should be

assessed for their potential to elicit an immune response.

New impurities present at greater than 0.5% of the drug

substance preclude submission of the product as an ANDA

as it may require clinical studies for further evaluation (FDA -

CDER, 2021). For those impurities that are present at

acceptable levels, an in silico risk assessment can identify

immunogenic risk at an early stage in the development

process, enabling the removal of higher risk impurities

while also indicating additional in vitro assays (HLA

binding and T cell assay) that would be most useful in

further evaluating immunogenicity.

Upon administration and circulation, biologic products and

their impurities are taken up by antigen presenting cells, such as

dendritic cells. As illustrated in Figure 1, proteolytic cleavage

occurs upon processing inside the cell. Peptide fragments can

then interact with the binding groove of human leukocyte

antigens (HLA). Peptide-HLA complexes can then be

trafficked to and presented on the cell surface. Once bound to

HLA and presented on the surface, peptide epitopes are available

for interaction with T cells. Naïve and memory T cells

recognizing peptide-HLA complexes become activated and

collaborate with antibody producing B cells thereby generating

anti-drug antibodies potentially leading to safety and efficacy

issues.

HLA is one of the most polymorphic genes in the human

genome. Each HLA has a unique structure and each one can

accommodate a particular set of peptide epitopes. Class II HLA is

associated with CD4+ T cell responses and drives anti-drug-

antibody formation. The activation of CD4+ “helper” T cells is

necessary for the initiation of significant and robust anti-

therapeutic immune responses, including CD8+ T cell-

mediated cytotoxic responses and B cell-mediated antibody

responses. The binding grooves of Class II HLA are open-

ended allowing for the presentation of longer peptide epitopes

(15–25 amino acids in length), but the core binding region is just

nine amino acids in length. The amino acids on either end of the

binding 9-mer serve as flanking residues stabilizing the peptide in

place. As illustrated in Figure 1, the side chains on amino acids in

positions 1, 4, 6, and 9 are assumed to face downward where they

can contact binding pockets located in the floor of the binding

groove, locking the peptide into the HLA molecule (Stern et al.,

1994). Amino acids in positions 2, 3, 5, 7, and 8 face outward,

contacting the TCR of compatible T cells (Rudolph et al., 2006).

Class II HLA alleles can be subdivided into HLA-DR, HLA-

DP, and HLA-DQ alleles. Most in silico algorithms focus on

HLA-DR for the following reasons: these are the most prevalent

Class II MHC molecules on the surface of antigen presenting

cells; they contain polymorphisms only in the beta chain, leaving

the alpha chain invariable; and they have been most strongly

associated with ADA responses to therapeutic proteins (Hyun

et al., 2021). In contrast, in both HLA-DP and HLA-DQ alleles,

the alpha and beta chains of the heterodimer molecules are

variable, making these alleles particularly challenging to model

(Amatruda et al., 1987; Lecchi et al., 1989). Therefore, the

immunogenic potential of a given therapeutic protein can be

estimated based on the number and quality of the HLA Class II

DR-restricted T cell epitopes it contains. Although there are over

4,000 known HLA-DR alleles (Robinson et al., 2020), several

HLA-DR types that are common in humans share binding

pocket preferences and thus can be grouped into a relatively

small number of allele “supertypes.” A working set of nine Class

II supertype alleles allows for the prediction of HLA binding

covering the genetic backgrounds of over 95% of the human

population worldwide (Southwood et al., 1998; Lund et al., 2004).

To date, over 1.4 million peptidic epitopes have been catalogued

by the Immune Epitope Database, a public resource of curated

publications relating to T and B cell epitopes (Vita et al., 2018).

These training data along with knowledge of the structure of

HLA binding pockets allows for the creation of algorithms, such

as EpiMatrix, to predict peptide binding to HLA.

1.2 In Silico tools for identifying putative
T cell epitopes

In silico immunogenicity prediction is an important step in

the development of novel or generic peptide drugs. There are

many commercially or publicly available tools that are commonly

utilized in the biopharma industry to assess the likelihood of an

amino acid sequence to induce a T cell dependent immune

response, such as EpiMatrix, NetMHC, Tepitope, SYFPEITHI,

and others. These in silico tools use computer algorithms to assess

the potential for an amino acid sequence to bind to HLA, a

prerequisite for immunogenicity. As shown in Figure 2, the

EpiMatrix algorithm is developed based on a careful curation

of public data including ligand elution, HLA binding and T cell

assay data. From these data, HLA and position specific

coefficients are deduced for each of the 20 naturally occurring

amino acids. Candidate peptides can be mapped against these

coefficients to produce an immunogenicity score. High scoring

peptides are more likely to bind HLA and activate T cells

resulting in the induction of anti-drug immune responses.

The authors have developed a predictive algorithm and

associated coefficient set called EpiMatrix. EpiMatrix can be

used to assess HLA binding likelihood to individual HLA-DR

supertype alleles and therefore to generate predictions broadly

applicable to a global population. For a global population

analysis, EpiMatrix focuses the in silico Class II HLA binding

predictions on nine HLA-DR representatives, one from each of

the supertypes (Terry et al., 2015).
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1.3 Immunogenic risk assessment for
unnatural amino acid-containing peptides

Due to the availability of in vitro data supporting the

modeling and training of in silico algorithms, EpiMatrix and

other in silico immunogenicity prediction tools are limited to

amino acid sequences composed of the 20 naturally occurring

amino acids. In general, peptides composed purely of unmodified

natural amino acids do not have optimal drug properties

primarily due to their high rate of proteolytic cleavage and

consequently short half-life (Di, 2015; Fosgerau and

Hoffmann, 2015; Lee et al., 2019). Peptide drug developers

often make use of unnatural amino acids (UAA) to achieve

more optimal drug-like properties, such as increased half-life due

to proteolytic resistance by incorporating D-amino acids (Di,

2015). For instance, when researchers discovered the benefits of

GLP-1 in diabetes and developed a therapeutic analog, they

found that the native human GLP-1 (7–37) half-life was too

short to have the desired therapeutic effect (Deacon et al., 1995).

Lipidation of the peptide provided an extended half-life and thus

brought liraglutide to clinical utility (Knudsen et al., 2000; Tan

et al., 2021; Victoza, 2022). Modification of the naturally

occurring alanine in position 8 of hGLP-1 (7–37) to the UAA

aminoisobutyric acid (Aib) prevented degradation by dipeptidyl

peptidase IV (DPP-IV) and further increased the half-life

(Deacon et al., 1995), bringing semaglutide to the market

(Ozempic, 2022; Rybelsus, 2022).

Historically, in order to assess the immunogenic risk of

sequences containing UAA, costly in vitro assays such as HLA

binding assays or T cell activation assays have been required. In

the future, as more HLA binding and ligand elution data become

available for sequences containing UAA, in silico

immunogenicity prediction tools will be able to handle

sequences containing the most common UAA. However,

peptide drug developers have an immediate need for assessing

immunogenic risk of a given peptide drug substance and related

impurities that may contain UAA. In this article, we present a

new method using currently available in silico tools to estimate

the immunogenic potential of peptides containing UAA. This

allows for a rapid and inexpensive process to assess immunogenic

risk as a first step and potentially eliminate the need for

additional, more costly and time-consuming in vitro assays.

As will be discussed in detail below, the authors have

established a three-step process for evaluating UAA using

existing allele- and position-specific matrices plus two special

coefficients, one describing a neutral binding profile and a second

describing an unfavorable binding profile. In the first step, the

UAA is replaced with a neutral placeholder. Here, the goal is to

establish the binding potential of the other amino acids present in

the candidate 9-mer. Next, the UAA is iteratively replaced with

each of the 20 naturally occurring amino acids. Here, the goal is

to characterize the sensitivity of the candidate peptide to changes

in the position occupied by the UAA. Finally, the physical

properties of the UAA is compared to each of the 20

naturally occurring amino acids in order to select a “best

proxy.” While this method allows for the rapid in silico

analysis of UAA-bearing peptides it is limited to cases where

a reasonable best proxy can be identified.

The next step will involve compiling a set of “correction

factors” that can be applied to in silico predictions for common

UAA. Correction factors will evolve over the course of three steps

including expert review, validation in vitro, and validation ex

vivo. The first involves a review of the UAA side chain structure

compared to the closest matching natural amino acid and the

FIGURE 2
In silico immunogenicity scores are generated by prediction algorithms trained on in vitro data. Upon careful curation of in vitro data, a
frequency analysis is applied in order to train the in silico algorithm. A 20 × 9 binding coefficient matrix is generated for each HLA-allele. These
coefficients are used to generate a normalized 9-mer-by-allele binding assessment, or Z-score. The aggregation of significant Z-scores for a given
peptide sequence provides a measure of immunogenic potential.
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application of deductions (i.e., minimal, moderate, significant

impact). Next, HLA binding confirmation studies are performed

in support of the development of “correction factors” which can

be applied to the in silico risk prediction of sequences containing

the most common unnatural amino acids, such as D-amino

acids. The “correction factors” are then further refined by data

from ex vivo T cell assays evaluating the impact of the selected

UAA on T cell recognition and immune response.

With the generation of more in vitro and ex vivo “training”

data, predictive coefficients for common UAA will be directly

incorporated into the structure of immunogenicity risk

assessment tools, such as EpiMatrix (Figure 3).

2 Methods and materials

The 3-step method to assess immunogenic potential in

sequences containing UAA presented in this article uses

EpiMatrix, a tool initially developed by Bill Jesdale and

improved and further developed by Bill Martin (De Groot

et al., 2003), but it is important to note that it can be applied

to other publicly available in silico immunogenicity prediction

tools as well.

2.1 EpiMatrix

EpiMatrix is a proprietary matrix-based prediction algorithm

in which a given amino acid input sequence is assigned an

immunogenicity score based on its putative T cell epitope

content. As shown in Figure 2, the EpiMatrix algorithm is

developed based on a careful curation of public data including

ligand elution, HLA binding and T cell assay data. After review

and qualification, observed ligands are separated by allele and

their sequences are aligned. Position-specific frequency

distributions are then compared to statistical expectations and

coefficients of binding affinity are established for each of the

20 naturally occurring amino acids across each of the nine

positions in the HLA binding groove. The resulting allele-

specific 20 × 9 coefficient matrix can be used to estimate the

HLA binding potential of any 9-mer peptide. The matrix

coefficients have been updated periodically since 1998 (De

Groot et al., 2003).

In order to estimate the immunogenic potential of a candidate

therapeutic peptide or protein, EpiMatrix will parse the input

sequence into overlapping 9-mer frames and assess each frame

for binding potential with respect to nine common HLA alleles

including: DRB1*0101, DRB1*0301, DRB1*0401, DRB1*0701,

DRB1*0801, DRB1*0901, DRB1*1101, DRB1*1301, and

DRB1*1501. Taken collectively, these alleles offer coverage of

approximately 95% of the global population (Southwood et al.,

1998). Individual scores are then aggregated and normalized to

produce a standardized score. Scores above zero indicate that the

input protein contains more predicted T cell epitopes than expected

for a peptide/protein of its length and demonstrate an increased

potential for immunogenicity. Scores below zero indicate that the

input protein contains fewer predicted T cell epitopes than expected

for a peptide/protein of its length and demonstrate a decreased

potential for immunogenicity. EpiMatrix immunogenicity scores are

correlated with clinical immunogenicity (De Groot and Martin,

2009). An example of an EpiMatrix Detail report is shown in

Figure 4.

2.2 NOW—3-step method

The EpiMatrix algorithm can be used to score any amino acid

sequence composed of naturally occurring amino acids. The

binding potential of UAA cannot be directly estimated by the

EpiMatrix system. The method outlined here describes a 3-step

process used to assess the impact UAA can have on the HLA

binding potential of a peptide and to ultimately select naturally

occurring proxies for commonly encountered UAA. This method

is applicable to amino acid sequences containing no more than

one UAA within a 9-mer span. The method described here uses

the well-known promiscuous HLA-DR binding peptide, known

as PAN-HLA-DR-epitope or PADRE (AKFVAAWTLKAAA)

(Alexander et al., 1994), modified with a 1-napthylalanine

residue in position 3 as an example (AK1NalVAAWTLKAAA).

Figure 4 provides the EpiMatrix Detail report of the PADRE

peptide. PADRE is characterized by high affinity binding across

HLA-DR alleles due to the presence of key amino acids in a single

frame of the peptide. Examples demonstrating this 3-Step in silico

method for immunogenicity prediction of product impurities

commonly found within formulations of the generic peptides

teriparatide and semaglutide are provided in the results section.

FIGURE 3
A tiered approach for expanding in silico immunogenicity
prediction tools (such as EpiMatrix) to handle sequences
containing UAA.
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In the first step, the UAA is replaced with a neutral placeholder,

the letter X, and uploaded into the EpiMatrix system. The neutral

placeholder X has a binding coefficient of 0 and therefore neither

promotes nor detracts from predicted HLA binding. With the

neutral placeholder X substituted for the UAA, one can see the

impact the other amino acids in each isolated 9-mer can have on

predicted HLA binding. Figure 5: Step 1 shows how 1-

napthylalanine is replaced with the neutral placeholder X.

In the second step, the potential impact the UAA can have on

HLA binding is studied by performing a replacement analysis. In

this step, the X is iteratively replaced with all 20 of the naturally

occurring amino acids for which prediction coefficients are

established. The range of scores generated is indicative of the

potential impact any side chain in this particular position can

have on HLA binding. A wide range of scores indicates that the

UAA-containing position can have a significant impact on the

HLA binding properties of the peptide. A narrow or negligible

range of scores indicates that the UAA-containing position will

have little to no impact on HLA binding properties. In the latter

case, this may be evidence enough to eliminate the need for

further immunogenicity studies. From this variation analysis,

patterns regarding the properties of the substituted amino acids

and the scores that are generated can be studied. For instance, in

the example provided in Figure 5: Step 2, varying the amino acid

substituted into position three reveals that hydrophobic amino

acids substituted into this position of the baseline PADRE

peptide generated higher scores relative to other amino acid

substitutions, indicating that, in general, hydrophobic side chains

promote HLA binding.

In the third step, a substitution is selected for further in silico

analysis. In this step, the chemical and structural properties of the

unnatural amino acid are assessed. If there is a well-matched

naturally occurring amino acid in terms of overall properties, then

that amino acid can be substituted for further in silico analysis

(structural proxy). In many cases, there will not be a well-matched

naturally occurring amino acid. In these instances, one can assign a

placeholder based on the findings from step 1 and step 2. In

EpiMatrix, aside from the 20 naturally occurring amino acids,

there are two placeholders that can be utilized. The first is the

neutral placeholder, which is defined in step one. The second is the

low-affinity placeholder. This placeholder imputes a low binding

coefficient and is reserved for instances where the neutral

placeholder will likely represent an overestimate in HLA

binding. The low-affinity placeholder may be used to represent

very large sidechains that are likely to cause steric hindrance and

disrupt potential HLA binding. Examples include PEGylated

sidechains and the fatty acid group fused to the lysine of

liraglutide. For this 1Nal3-PADRE example, the closest

matching natural amino acid in terms of overall structural and

chemical properties of the 1-napthylalanine side chain is

tryptophan (Figure 5: Step 3). Both 1-Nal and Trp contain

hydrophobic side chains with relatively bulky aromatic groups.

In this example, 1-Nal can be replaced with Trp for further in silico

analysis including epitope prediction with EpiMatrix.

2.3 Peptide synthesis

The semaglutide API and D-amino acid impurity peptides

used in these studies were synthesized by Vivitide (Gardner, MA,

United States). Molecular weight was verified by mass

spectrometry and all peptides were determined to be >90%
pure by HPLC. These peptides were manufactured with

trifluoroacetic acid salt and net peptide concentration was

confirmed with amino acid analysis. The modified PADRE

peptides in the preliminary D-amino acid correction factor

FIGURE 4
EpiMatrix Detail Report for a known promiscuous HLA-DR binding peptide, PAN-HLA-DR-epitope, or PADRE. The potential of a 9-mer frame to
bind to a given HLA allele is indicated by a Z-score (scores omitted for simplicity); the strength of the score is indicated by the blue shading. All scores
in the top 5% (Z-Score ≥ 1.64) are considered “Hits” (medium and dark blue shading). Scores in the top 10% are considered elevated, but not
significant (light blue shading). Frames containing four ormore alleles scoring above 1.64 are referred to as EpiBars and are highlighted in yellow.
These frames have an increased likelihood of binding to a range of HLA alleles.
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studies were synthesized by 21st Century Biochemicals

(Marlborough, MA, United States). Molecular weight was

verified by mass spectrometry and all peptides were

determined to be >90% pure by HPLC. These peptides were

manufactured with acetate salt.

2.4 In vitro human leukocyte antigen
binding assay

Class II HLA binding assays are used to validate in silico

binding predictions and measure the relative binding affinity of

potentially immunogenic peptides. This assay is also being utilized

to develop correction factors for common unnatural amino acids.

The competition-based assay used in this study has been adapted

from Steere et al. (2006). It yields an indirect measure of peptide-

HLA affinity. Binding is measured against seven HLA DRB1

“supertype” alleles: DRB1*0101, DRB1*0301, DRB1*0401,

DRB1*0701, DRB1*0901, DRB1*1101, and DRB1*1501. Based

on peptide titration with seven concentrations, non-linear

regression analysis is performed to produce a curve from which

an IC50 value is calculated and used to assess binding strength.

Briefly, unlabeled test peptides are incubated overnight to

equilibrium with a soluble HLA DR molecule (Benaroya

FIGURE 5
3-Step in silico immunogenicity risk assessment method for sequences containing UAA is illustrated in this example using PADRE-3(1Nal). In
step 1, the UAA (1Nal) is replaced with the neutral placeholder “X.” In step 2, a replacement analysis is performed by substituting X with all 20 naturally
occurring L-amino acids to determine a range of possible binding affinities. In step 3, the structural and chemical properties of the UAA residue is
evaluated and replaced with the closest matching natural L-amino acid, if available. In this case, tryptophan is selected as the best available
substitute for 1-Nal.
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Research Institute, Seattle, Washington) and a biotinylated, allele-

specific competitor peptide of known binding affinity. The binding

reaction is then neutralized, and peptide-HLA complexes are

transferred to a 96-well plate coated with the pan-HLA DR

antibody, clone L243 (Biolegend) and incubated overnight. The

following day, plates are resolved by the addition of Europium-

labeled streptavidin (Perkin-Elmer Waltham, MA). An indirect

measure of binding is determined by time-resolved fluorescence.

Each peptide is evaluated in triplicate over a range of seven

concentrations. The percent inhibition values for each

experimental peptide across a range of concentrations is used

to calculate an IC50, the concentration at which the test peptide

inhibits 50% of the labeled competitor peptide. Peptides are

categorized by the following HLA-DR binding affinity cutoffs:

Non-Binder (No dose dependent inhibition), Negligible Affinity

(100,000 nM < IC50 < 1,000,000 nM), Low Affinity (10,000 nM <
IC50 < 100,000 nM), Moderate Affinity (1,000 nM < IC50 <

10,000 nM), High Affinity (100 nM < IC50 < 1,000 nM), Very

High Affinity (IC50 < 100 nM).

3 Results

3.1 Illustrating the 3-step method with
teriparatide and semaglutide

This section provides an illustration of the 3-step method for

assessing immunogenic risk using two generic peptide APIs,

teriparatide and semaglutide, and some of their commonly

encountered impurities.

3.1.1 Example 1. Teriparatide oxidation impurities
The amino acid sequence of teriparatide is derived from the

N-terminal 34 amino acids of human parathyroid hormone

FIGURE 6
EpiMatrix Detail Report for teriparatide. The potential of a 9-mer frame to bind to a given HLA allele is indicated by a Z-score (scores omitted for
simplicity); the strength of the score is indicated by the blue shading. All scores in the top 5% (Z-Score ≥ 1.64) are considered “Hits” (medium and dark
blue shading). Scores in the top 10% are considered elevated, but not significant (light blue shading). Frames containing four or more alleles scoring
above 1.64 are referred to as EpiBars and are highlighted in yellow. These frames have an increased likelihood of binding to a range of HLA
alleles. The two methionine residues prone to oxidation are shown in red font.
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(hPTH). It is entirely composed of natural amino acids and

contains two methionine residues in positions 8 and 18.

Oxidation of the methionine residues within a peptide is a

common occurrence and is frequently identified in drug

product impurities analysis (Grassi and Cabrele, 2019;

D’Hondt et al., 2014). Traditional in silico immunogenicity

prediction algorithms cannot accommodate sequences

containing methionine sulfoxide (or sulfone) residues. For

the purposes of this analysis, methionine sulfoxide (MetO)

residues are considered unnatural amino acids (UAA). The

3-step in silico method described above can be utilized to

determine the potential impact this modification can have

on the HLA binding properties of the peptide. As shown in

the EpiMatrix Detail report in Figure 6, teriparatide contains a

promiscuous HLA binding motif (EpiBar) in frame five and

additional predicted HLA ligands in frames 4, 7, 8, 11, 21, and

23. The two methionine residues occur in predicted HLA

ligands present in frames 4, 5, 7, 8, and 11. The methionine

in position 8 occurs within the epitope dense N-terminal region

of the peptide and modification to this position impacts the

predicted HLA ligands present in frames 4, 5, 7, and 8. The

methionine in position 18 occurs within a more epitope sparse

region of the peptide and impacts the single predicted HLA

ligand present in frame 11.

As illustrated in Figure 7 (left side), in the first step, to enable

upload into the EpiMatrix system, the UAA in position 8 is

replaced with the neutral placeholder, X. By substituting X for M

in position 8 one can see that frame 5 has significant binding

potential even if the contribution of M8 is nullified. Next, in the

replacement analysis, the X is substituted with each of the

20 naturally occurring amino acids. From this step, one can

see that there is a significant range of predicted HLA ligands, or

EpiMatrix hits, generated (from nine to 20), indicating that

modification in this position can have a significant impact on

predicted HLA binding. Notably, however, relative to both the

baseline (M in position 8, 19 hits) and to the neutral placeholder

(X in position 8, 19 hits), most substitutions yield fewer predicted

HLA ligands. This indicates that modification in position 8 of the

teriparatide peptide has the potential to disrupt HLA binding

events. Only two natural amino acid substitutions marginally

increase the overall score relative to the baseline, indicating that

modification in position 8 of the teriparatide peptide only has a

slight potential to introduce additional HLA binding events

relative to the baseline.

When performing the same analysis for Met(O) in position

18 (Figure 7, right side), there is a much narrower range of

predicted HLA ligands generated (from 19 to 22), indicating a

more limited potential to impact the HLA binding properties of

FIGURE 7
Assessing the impact of methionine oxidation on predicted HLA binding in positions 8 and 18 of teriparatide using the 3-step method. In step 1,
the UAA (MetO) is replaced with the neutral placeholder “X.” In step 2, a replacement analysis is performed by substituting X with all 20 naturally
occurring L-amino acids to determine a range of possible binding affinities. In step 3, the structural and chemical properties of the UAA residue is
evaluated and replaced with the closest matching natural L-amino acid, if available. In this case, unmodified methionine is selected as the best
available substitute for Met(O). Modification to themethionine in position 8 (left side) is predicted to have a significant (likely reducing) impact on HLA
binding properties relative to the baseline. Modification to the methionine in position 18 (right side) is likely to have a minimal impact on HLA binding
properties relative to the baseline but does carry risk of introducing new T cell epitope content.
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the peptide compared to modification in position 8. However, as

evident by 11 of 20 natural amino acid substitutions generating a

higher EpiMatrix Score than the baseline peptide or neutral

placeholder peptide, modification to the methionine in

position 18 of teriparatide has the potential to result in the

creation of additional epitope content, relative to the baseline

API peptide.

Step 3 of the UAA substitution analysis is the same regardless

of the position of the UAA. In this step, when considering the

overall structural and chemical properties of Met(O), there is not

a well-matched natural amino acid for substitution. The closest-

matching natural amino acid is the unmodified methionine

residue. Given the limited impact observed when substituting

X for Met and the limited structural and chemical differences

between Met and Met(O), Met has been accepted as a reasonable

substitute for Met(O). The authors hypothesize that HLA

binding pockets have co-evolved with the naturally occurring

amino acids and that most unnatural amino acids will be less well

adapted to HLA binding than their naturally occurring proxies.

Therefore, the substitution of Met for Met(O) may lead to a slight

overestimate of HLA binding potentials. The predicted decrease

in HLA binding relative to the baseline can be confirmed with

in vitro HLA binding studies.

This analysis has established that the modification from Met

to Met(O) may result in a limited reduction in HLA binding.

However, the immunogenicity assessment must consider factors

in addition to HLA binding. In most cases, peptide epitopes

derived from human proteins are assumed to be tolerated by the

human immune system. T cells capable of recognizing these

human derived peptide/HLA complexes may be deleted or

rendered anergic in the thymus before being released to the

periphery. In some cases, these cognate T cells have a regulatory

phenotype. The presence of UAA that change the TCR-facing

contour of peptide/HLA complexes may alter T cell recognition

patterns allowing effector T cells to engage UAA-containing

peptide/HLA complexes that would normally be ignored by

the human immune system. In this case the UAA in position

8 occurs in TCR-facing positions in frames 4 and 7 while the

UAA in position 18 occurs in a TCR-facing position in frame 11.

In both cases, new T cell responses could be induced. Therefore,

the presence of UAA in positions 8 and 18 could result in

increased immunogenicity despite the predicted decrease in

HLA binding affinity. The immunological impact of the two

Met(O) for Met substitutions present in this impurity could be

studied in ex vivo T cell induction assays.

3.1.2 Example 2. Semaglutide active
pharmaceutical ingredient

Semaglutide is a GLP-1 receptor agonist with 94% sequence

homology to native hGLP-1. Semaglutide differs from hGLP-1

(7–37) by three distinct modifications. First, the lysine in position

26 has been modified with a C18 diacid connected to the lysine

side chain via a mini PEG spacer and γ-glutamic acid (OEG-

OEG-γGlu-C18 diacid). The fatty acid chain reversibly binds

human serum albumin in vivo while the mini PEG spacer

provides flexibility to allow for improved binding to the

receptor (Tan et al., 2021). Additionally, a modification from

lysine to arginine in position 34 was introduced to ensure direct

fatty acid conjugation to the lysine in position 26 (Knudsen et al.,

2000). Finally, the naturally occurring alanine in position 8 is

modified to α-aminoisobutyric acid to reduce degradation by

DPP-IV (Deacon et al., 1995). These modifications were designed

into the semaglutide API to extend the half-life relative to native

hGLP-1 (only 1–2 min) (Deacon et al., 1995) allowing for a once-

weekly injectable administration (Ozempic®) (Ozempic, 2022) or

a once-daily oral administration (Rybelsus®) (Rybelsus, 2022).
In order to assess the immunogenic potential of the

semaglutide API peptide in silico, the 3-step method can be

applied to select substitutions for both the Aib residue and the

Lys (OEG-OEG-γGlu-C18diacid) residue. These two UAA

positions occur in two different areas of the semaglutide

peptide and the 9-mers impacted by each unnatural residue

do not overlap. The 3-step method is applied to each UAA

separately and is demonstrated in Figure 8.

First, the 3-step method is applied to the Aib in position 8.

Using the neutral placeholder X at position 8, one can see that

there are 10 EpiMatrix hits within the semaglutide sequence.

None of the ligands predicted by EpiMatrix are found in a 9-mer

frame that contains X suggesting that the Aib containing region

of semaglutide does not contain significant HLA binding

potential. Not surprisingly, the replacement analysis suggests

that natural amino acid substitutions in position 8 have only a

minimal impact on potential HLA binding. Variation in position

8 has only a small potential to create new putative T cell epitope

content relative to the neutral placeholder, X. In addition to the

neutral placeholder, X, substitution with 16 of the 20 natural

amino acids also produces no predicted HLA ligands. The amino

acid substitution most conducive to binding in this position is

tryptophan, which only creates one new predicted HLA ligand

relative to the neutral placeholder. In the third step, the overall

structural and chemical properties of Aib are considered for the

selection of a substitute. As shown in Figure 8, bottom left, Aib

has two methyl groups making up its side chain. The closest

structural proxy is Ala. Like X, the substitution of alanine for Aib

creates no new predicted HLA ligands. Therefore, Ala has been

accepted as a reasonable substitute for Aib.

Next, the 3-step method is applied to select a substitute for

Lys (OEG-OEG-γGlu-C18 diacid) at position 26. Using the

neutral placeholder X at position 26, one can see that there

are 11 EpiMatrix hits within the semaglutide sequence. Only one

of the HLA ligands predicted by EpiMatrix is found in a 9-mer

frame that contains X. Again, the replacement analysis suggests

that natural amino acids substitutions in position 26 have only a

minimal impact on potential HLA binding. Variation in position

26 has only a small potential to create new putative T cell epitope

content, relative to the neutral placeholder, X. There are
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11 natural amino acid substitutions that produce no predicted

HLA ligands. The amino acid substitution most conducive to

binding is leucine, which creates one new predicted HLA ligand

relative to the neutral placeholder. Comparing Lys (OEG-OEG-

γGlu-C18 diacid) to the 20 naturally occurring amino acids, there

is not a well-matched naturally occuring proxy for this large

moiety. Assuming it remains intact during antigen processing,

the C18 diacid-γGlu-OEG-OEG group is likely to cause steric

hindrance that may reduce or disrupt HLA binding. Considering

this, it is expected that replacing the Lys (OEG-OEG-γGlu-
C18 diacid) moiety with the neutral placeholder X will yield

an overestimate of HLA binding potential. In cases where the

neutral placeholder results in an overestimate in HLA binding

potential, it is preferable to use the low-affinity placeholder “Z.”

In the EpiMatrix scoring system, for each allele and binding

position, amino acid Z imputes the value of the lowest affinity

natural amino acid. Z has been accepted as a reasonable

substitute for Lys (OEG-OEG-γGlu-C18 diacid).

In summary, to enable further in silico analysis, the

semaglutide API peptide sequence is modified to

HAEGTFTSDVSSYLEGQAAZEFIAWLVRGRG. Based on the 3-

step method to select the A and Z substitutions, modification in

either position is expected to have little impact on the HLA

binding properties of the semaglutide API peptide. This

observation is consistent with the semaglutide API EpiMatrix

Detail Report (Figure 9) which predicts promiscuous HLA

binding in frame 6 as well as additional HLA ligands at the

C-terminus. Both the Aib in position 8 and the large group in

position 26 occur in regions of the peptide that are devoid of any

significant predicted epitope content (see frame start 7–8 for Aib

and frame start 18–26 for C18 group).

3.1.3 Example 3. Semaglutide D-amino acid
impurities

Here, the 3-step method is applied to two D-amino acid

impurities occurring in semaglutide–D-His7 and D-Phe12. The

process is illustrated in Figure 10.

In the first of the two D-amino acid impurity examples, the

N-terminal histidine of the semaglutide peptide has been

enantiomerized to its D-isomer. In the first step, the sequence

is uploaded with the neutral placeholder X at the N-terminus

(position 7 relative to hGLP-1). The X is then iteratively replaced

with all 20 of the naturally occurring amino acids. This step

reveals that neither the neutral placeholder X nor any of the

20 naturally occurring amino acids produces any predicted HLA

ligands or has any effect on the resulting EpiMatrix Score relative

FIGURE 8
Selecting substitutes for the UAA in semaglutide API using the 3-stepmethod. In step 1, the UAA Aib and the UAA K(OEG-OEG-γGlu-C18 diacid)
are replaced with the neutral placeholder “X.” In step 2, a replacement analysis is performed by substituting X with all 20 naturally occurring L-amino
acids to determine a range of possible binding affinities. In step 3, the structural and chemical properties of the UAA residue is evaluated and replaced
with the closest matching natural L-amino acid, if available. In this case, alanine is selected as the best available substitute for Aib while the low
affinity placeholder “Z” is selected for the K(OEG-OEG-γGlu-C18 diacid) residue. A narrow range of scores are generated in the replacement analysis
for both residues indicating that both of these positions will have very little impact on theHLA binding potential of the semaglutide peptide in general.
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to the baseline peptide (Figure 10, left side). This implies that

modification at this position of the peptide is unlikely to impact

the HLA binding properties of the molecule and therefore is

predicted to have an insignificant impact on the risk profile of the

baseline sequence. In this case, L-His was accepted as a

reasonable substitute for D-His.

In the second D-amino acid impurity example, the

phenylalanine in position 12 of the semaglutide peptide has

been enantiomerized to its D-isomer. Contrary to the D-His7

example occurring in an area devoid of any putative T cell

epitope content, the phenylalanine occurs in relative position

one of a predicted promiscuous HLA binding motif (see frame

start 12 in Figure 9). As evidenced by the wide range of scores

generated in the replacement analysis (Figure 10, right side),

modification to this position can have a significant impact on the

HLA binding potential of the peptide. Natural amino acid

substitutions in this position all result in a lower EpiMatrix

Score and a reduction of predicted HLA ligands relative to the

baseline sequence and therefore this analysis indicates that

modification in this position of this peptide has a significant

potential to disrupt HLA binding but does not have significant

potential to create new HLA binding events relative to the

baseline peptide. From the available literature (Azam et al.,

2021) and extensive experience with evaluation of generic

peptides, it is clear that the presence of D-amino acids in

synthesized peptides significantly reduces binding affinity

relative to their L-amino acid counterparts. In this case, the

neutral placeholder X was selected to represent D-Phe12. This

substitution reduces four predicted HLA ligands compared to the

semaglutide baseline sequence (green boxes in Figure 11).

The predicted impact of the two D-amino acid impurities on

the HLA-binding properties of the semaglutide peptide is

supported by in vitro HLA binding studies performed and

shown below (Figure 12). In this study, the

D-HIS7_SEMAGLUTIDE (7–23) impurity peptide had a

similar binding profile compared to the baseline peptide

SEMAGLUTIDE (7–23), whereas the

D-PHE12_SEMAGLUTIDE (9–23) impurity peptide yielded a

FIGURE 9
EpiMatrix Detail Report for Semaglutide. The potential of a 9-mer frame to bind to a givenHLA allele is indicated by a Z-score (scores omitted for
simplicity); the strength of the score is indicated by the blue shading. All scores in the top 5% (Z-Score ≥ 1.64) are considered “Hits” (medium and dark
blue shading). Scores in the top 10% are considered elevated, but not significant (light blue shading). Frames containing four or more alleles scoring
above 1.64 are referred to as EpiBars and are highlighted in yellow. These frames have an increased likelihood of binding to a range of HLA
alleles. Selected placeholder substitutions to enable in silico analysis are shown in blue font. Z represents the low-affinity placeholder which imputes
the lowest natural amino acid coefficient for each frame-by-allele assessment.
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reduction in HLA binding relative to the SEMAGLUTIDE (9–23)

baseline peptide.

4 Discussion

The assessment of HLA binding potentials is an important

first step to understanding the immunogenic potential of any

given peptide or protein therapeutic. In silico immunogenicity

tools, such as EpiMatrix, predict whether or not a given amino

acid sequence is likely to bind HLA and therefore likely to be

presented on the surface of an antigen presenting cell where it can

be recognized by T cells. These in silico algorithms are trained

based on vast amounts of curated data including HLA ligand

elution, HLA binding, and T cell assay data. In general, they show

remarkable accuracy at estimating the potential of naturally

occurring amino acid sequences to bind to specific HLA

haplotypes.

Peptide drugs produced by synthetic means often include

UAA-containing impurities. In addition, UAA are now more

frequently incorporated into novel peptide and protein

therapeutics to improve properties such as half-life and

stability. There is an immediate and ever-growing need to

assess the immunogenic potential of peptide sequences that

contain UAA. However, there is only a very limited amount

of training data available for sequences containing UAA. As a

result, most, if not all, in silico immunogenicity prediction

algorithms are limited to sequences composed entirely of

natural amino acids.

4.1 Now–The 3-step in silico method for
unnatural amino acid-containing
sequences

This 3-step method provides a needed immediate solution,

enabling in silico immunogenicity risk assessment for sequences

containing UAA. The 3-step method leverages existing in silico

capabilities, information pertaining to the physical and chemical

properties of natural and unnatural amino acids and

immunoinformatic expertise to establish proxies for

commonly encountered UAA that can be used within existing

in silico immunogenicity prediction tools.

The 3-step in silico risk assessment method for sequences

containing UAA provides a fast and inexpensive way to

understand the potential impact that UAA occurring at a

specific position of a specific peptide can have on HLA

binding properties. In some cases, this step could eliminate

FIGURE 10
Assessing the impact of D-amino acids on predicted HLA binding in positions 7 and 12 of semaglutide using the 3-step method. In step 1, the
UAA is replaced with the neutral placeholder “X.” In step 2, a replacement analysis is performed by substituting X with all 20 naturally occurring
L-amino acids to determine a range of possible binding affinities. In step 3, the structural and chemical properties of the UAA residue is evaluated and
replaced with the closest matching natural L-amino acid, if available. In this case, the natural L-isomers is selected as the best available
substitute for D-His while the neutral placeholder X is selected as the substitute for D-Phe. Modification to the histidine in position 7 (left side) is
predicted to have no impact on HLA binding properties relative to the baseline. Modification to the phenylalanine in position 12 (right side) is likely to
have a significant (likely reducing) impact on HLA binding properties relative to the baseline.
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FIGURE 11
EpiMatrix Detail Report for D-Phe12 semaglutide impurity. The potential of a 9-mer frame to bind to a given HLA allele is indicated by a Z-score
(scores omitted for simplicity); the strength of the score is indicated by the blue shading. All scores in the top 5% (Z-Score ≥ 1.64) are considered “Hits”
(medium and dark blue shading). Scores in the top 10% are considered elevated, but not significant (light blue shading). Frames containing four or
more alleles scoring above 1.64 are referred to as EpiBars and are highlighted in yellow. These frames have an increased likelihood of binding to
a range of HLA alleles. Selected placeholder substitutions to enable in silico analysis are shown in blue font. Z represents the low-affinity placeholder
which imputes the lowest natural amino acid coefficient for each frame-by-allele assessment. The D-Phe residue is replaced with the neutral
placeholder X in red font. Green boxes indicate the loss of predicted HLA ligands found in the semaglutide API peptide.

FIGURE 12
In vitro HLA binding results for D-His7 and D-Phe12 impurities compared to their corresponding semaglutide API baseline sequence. Peptides
are categorized by the following HLA-DR binding affinity cutoffs: Non-Binder (No dose dependent inhibition), Negligible Affinity (100,000 nM <
IC50 < 1,000,000 nM), Low Affinity (10,000 nM < IC50 < 100,000 nM), Moderate Affinity (1,000 nM < IC50 < 10,000 nM), High Affinity (100 nM < IC50 <
1,000 nM), Very High Affinity (IC50 < 100 nM).

Frontiers in Drug Discovery frontiersin.org14

Mattei et al. 10.3389/fddsv.2022.952326

https://www.frontiersin.org/journals/drug-discovery
https://www.frontiersin.org
https://doi.org/10.3389/fddsv.2022.952326


the need for further, more time-consuming and costly in vitro

immunogenicity studies. In other cases, the in silico risk

assessment can inform and direct the proper in vitro

immunogenicity assay. For instance, the HLA binding assay is

a non-cellular assay using HLA monomers. Without cellular

processing of the peptides, it is important to design the test

articles to ensure that predicted epitopes or regions of interest are

properly centered and that the test article peptide length is within

an optimal range for HLA binding. Without in silico prediction

and therefore without guided test article design, the HLA binding

assay may not yield results that are indicative of the peptide’s true

in vivo HLA binding properties. In addition, in silico

immunogenicity assessments indicate whether the modified

amino acid occurs in an HLA-binding (1, 4, 6, and 9) or in a

TCR-facing (2, 3, 5, 7, and 8) residue of a predicted HLA ligand.

In immunogenicity risk assessments for peptide-related

impurities this is a particularly important distinction. HLA-

binding studies may be the in vitro assay of choice to assess

the impact of the modified residue in an HLA-binding position of

a predicted epitope occurring within the baseline API sequence.

Importantly, an ex vivo T cell assay would be more appropriate to

test the immunological impact of a modified residue occurring in

a TCR-facing position of a predicted epitope within the baseline

API sequence.

Although this 3-step method opens the door to enabling in

silico immunogenicity analysis for sequences containing UAA

with existing in silico prediction tools, there are some limitations.

Particularly, this method relies on the predicted impact that the

surrounding amino acids will have on HLA binding potential. In

other words, this method is applicable to sequences that contain

only one UAA within a 9-mer span. Peptide sequences

containing more than one UAA within a 9-mer span are not

eligible for confident in silico immunogenicity analyses using

current in silico prediction algorithms. In addition, this method

considers each amino acid within a sequence as a unique entity in

isolation. In other words, it assumes a static backbone and

evaluates the impact of modified side chains at a single

position. In reality, some UAA may have an impact on the

orientation of other amino acid side chains within the peptide.

For example, a peptide with a modification in an HLA-binding

position may cause steric changes that alter the amino acids that

are ‘seen’ by the T cell receptor, or vice versa. This is a possible

explanation for the reported decrease in HLA binding affinity for

peptides with a D-amino acid incorporated into a TCR-facing

position relative to the L-amino acid version (Azam et al., 2021).

4.2 Next–The development of correction
factors to apply to common unnatural
amino acids

Most common UAA are mutated versions of naturally

occurring amino acids. In the next phase of the program, the

authors plan to establish “correction factors” that can be used to

account for the presence of UAA in candidate peptides and

proteins. As discussed above, EpiMatrix relies on our in silico

predictive algorithms rely on allele-specific matrices of binding

affinity coefficients. For each HLA allele and naturally occurring

amino acid, a vector of 9 binding coefficients (one for each

possible binding position) has been established. By synthesizing

and testing known HLA ligands and experimental counterparts

containing a single UAA at one or more selected binding

positions, the authors will establish the magnitude of impact

that a given mutation can have on HLA binding. The resulting

“correction factor” can then be used to establish a first generation

of UAA-specific binding coefficients.

The development of correction factors for common

unnatural amino acids will provide a longer-term solution to

some of the limitations of the currently available in silico

immunogenicity prediction tools and methods. The first

iteration of correction factors for common UAA are based

upon a comparison of the UAA side chain structure to the

closest matching natural amino acid and the application of

minimal, moderate, or significant correction factor deductions.

These estimations will then be confirmed in vitro with carefully

designed HLA binding studies based on known ligands which

have beenmodified to contain UAA in HLA anchoring positions.

The binding affinity data can then be used to “correct” binding

affinity coefficients derived from the naturally-occurring

counterparts of UAA. Finally, the estimations will be further

confirmed ex vivo with T cell assays that assess the impact

selected UAA will have on T cell recognition and

immunogenic potentials.

The first phase of this effort focuses on generating

preliminary data to ultimately develop correction factors for

D-amino acids. D-amino acids are commonly encountered in

synthetic peptide impurities (D’Hondt et al., 2014) or by design

in novel peptide drug development to decrease the rate of

proteolytic cleavage and therefore increase the half-life of the

peptide drug candidate (Evans et al., 2020; Wang et al., 2022).

Reported studies have demonstrated that D-amino acids

incorporated into some positions in the core sequence of a

known promiscuous HLA-DR binding peptide, Flu-HA

(306–318), diminish HLA binding affinity compared to the

L-amino acid counterpart (Azam et al., 2021). This suggests

that substituting the L-isomer for in silico immunogenicity

analysis of D-amino acid containing sequences likely yields an

overestimate in HLA binding potential. In addition, steric

changes due to D-amino acids have been shown to change the

conformation of amino acid residues seen by the T cell receptor

(TCR), lowering the T cell response (Azam et al., 2021). Thus, in

addition to HLA binding, D-amino acids could modify

recognition of the peptide by a CD4+ T cell. More position-

and allele-specific precision is needed.

Here, a brief example of the ongoing in vitro confirmation

studies used to generate correction factors for D-amino acids is
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provided. Starting with a known promiscuous HLA-DR binding

peptide backbone, PADRE, modifications with a set of D-amino

acid vs L-amino acids substitutions at HLA-binding positions 1,

4, 6, and 9 were designed, produced, and are being tested in HLA

binding assays. Each HLA binding assay generates a direct

estimate of the impact of L-to D-modification on a specific

allele, binding pocket and backbone allowing us to model

impacts of D-amino acids on HLA binding relative to

L-isomers. Preliminary data are shared for binding pocket one

in Figure 13. The HLA binding results of this preliminary study

indicate that D-amino acids substituted in position one

significantly disrupt HLA binding. Compared to L-amino

acids, most D-amino acids in P1 are not compatible with

HLA-DR binding. Eighty percent of the peptides with

L-amino acids in position one bound, while only 18% of their

D-amino acids counterparts bound (Figure 13).

The impact of D-amino acids in the remaining HLA-binding

positions is currently being evaluated and the impact of D-amino

acids in TCR-facing positions will also be assessed in future

studies. Because the peptide backbone may also influence HLA

binding, the impact of D-amino acid modifications in different

baseline peptides, including generic peptides, should also be

evaluated. Finally, due to the potential that steric changes

caused by substitution with a D-amino acid can impact the

T cell response, future studies will also include the use of an

in vitro Immunization Protocol (IVIP) T cell assay, to further

assess the impact of D-amino acids on the T cell response. It is

possible that D-amino acids in other positions may exhibit

similar binding propensities as the L-version yet result in a

decrease or increase in the T cell responsiveness.

Collectively, these studies will allow us to develop correction

factors (e.g., a D-lysine substituted for L-lysine in pocket one

reduces HLA binding by 50% for HLA-DRB1*0101). These data

can then be used to adjust the predicted immunogenic risk of

peptides (API or impurities), containing D-amino acids, that are

found in peptide drug products. The correction factors will

enable currently available in silico prediction tools (EpiMatrix

and other public tools) to adjust for differences between the HLA

binding potential of peptides with natural L-amino acids and

those with D-amino acids. Once a set of correction factors has

been established for D-amino acids, the same approach can be

taken to develop correction factors for other common UAA.

4.3 Future–direct in silico immunogenicity
prediction for common unnatural amino
acids

In the future, more UAA-specific training data will become

available. With these data in hand, improved predictive

algorithms capable of directly estimating the HLA binding

affinity of UAA can be developed, allowing for the direct in

FIGURE 13
Comparison of HLA-DRB1 binding affinities in position one between L- and D-amino acids. Log10IC50 HLA binding affinity based on a
competition-based assay for L- (blue) and D- (orange) amino acids in position one; substitutions are shown on the X-axis.
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silico immunogenicity assessment of UAA-containing peptide

and protein therapeutics. However, given the vast amount of data

required to train the algorithms, this is likely only a realistic

vision for the most common UAA. Novel peptide drug discovery

involves the potential incorporation of hundreds to thousands of

different UAA into investigational lead candidates. With

common UAA directly incorporated into in silico

immunogenicity prediction algorithms, peptide sequences

containing the more obscure UAA can be assessed using the

3-step method and through the application of correction factors.

4.4 Other factors can influence
immunogenic risk

Finally, the authors recognize that although the method and

discussion in this paper focus solely on a peptide’s HLA binding

properties, there are many other factors contributing to

immunogenicity, including but not limited to whether the

product is human-derived or foreign, the product’s propensity

for aggregation, purity, stability, mechanism of action, the

patient’s HLA and disease state, the route of delivery, dose

and frequency, immunomodulatory properties of the

product, etc.

Another important attribute to in silico risk assessment is

the characterization of predicted epitope content as T effector

or T regulatory based on its level of cross-conservation with

epitopes in the human proteome. The immunological

response to seemingly similar peptides in terms of HLA-

binding properties can be vastly different depending on

whether the epitope is likely to engage effector T cells or

regulatory T cells. For instance, in addition to being derived

from a human protein, the putative promiscuous T cell

epitope found in teriparatide is highly cross-conserved with

epitopes found in other prevalent human proteins, indicating

that this promiscuous HLA binding region is likely to be

tolerated by the human immune system, if not actively

tolerogenic (Jawa et al., 2020). However, UAA-containing

impurities may engage an entirely different cohort of

T cells. It is especially important to consider the

immunogenic impact of peptide impurities or modifications

occurring within these highly human-like putative epitopes.

Another factor to consider when assessing the immunogenic

risk of a peptide containing UAA(s) is the impact the UAA is

having on peptide processing. For instance, many times UAA

are introduced to a natural peptide sequence to provide

resistance to proteolytic cleavage. If the inclusion of UAA

into the sequence changes the patterns in proteolytic cleavage

then one can anticipate that the peptide’s ability to be

processed and presented by the antigen presenting cells

could be altered leading to a potential difference in the

epitope presentation patterns relative to the natural sequence.

In addition, future studies should include exploration into

the impacts of unnatural amino acids on peptide binding to HLA

Class I molecules and potential for CD8+ T cell response.

In vivo studies would be helpful to prospectively validate the

immunogenicity findings described here. However, preclinical

models for immunogenicity research are limited by three factors

1) the native peptides that are the focus of drug development may

have slightly different sequences that could impact immune

responses to the API, 2) The MHC molecules that are

engaged in the immune responses may have different MHC-

binding motif preferences (different side chains bind to the

binding pockets), and 3) cross-conservation of the peptide

with other peptide epitopes in the genome of the in vivo

model system being used may be different enough to affect

the tolerogenicity profile of the drug. These types of issues

have been encountered with peptide drugs that do not contain

unnatural amino acids.

In conclusion, we offer a method to estimate

immunogenic risk for peptides containing UAA residues

using the existing infrastructure of in silico algorithms and

provide our vision for a tiered approach to the eventual

inclusion of common UAA into in silico immunogenicity

prediction algorithms.
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