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Blocking protein-protein interactions (PPIs) involved in the initiation of the cell attachment
and entry of viruses is an important antiviral mechanism of action including for neutralizing
antibodies. Doing it with small-molecule inhibitors (SMIs) is challenging, as it is for all other
PPIs, and might require the exploration of chemical space beyond that of typical drug-like
structures. However, it could lead to new antiviral agents suitable for oral administration
and acting on alternative targets, considerations that are essential for the development of
widely acceptable and broad-spectrum preventive or curative therapeutics. Fostemsavir,
an antiretroviral that acts via blocking of the gp120–CD4 PPI, supports the feasibility of the
concept. Here, a brief review of relevant drug design considerations is presented together
with a summary of the progress made toward the identification of SMIs targeting the PPI
between the SARS-CoV-2 spike protein and ACE2 that initiates the viral attachment and
cellular entry of this coronavirus causing the COVID-19 pandemic. SMIs identified in
various screening assays that were also confirmed to have antiviral activity in a live virus or
pseudovirus assay with an IC50 < 30 µM so far include several organic dyes (methylene
blue, Evans blue, Congo red, direct violet 1), verteporfin, DRI-C23041, and cannabigerolic
and cannabidiolic acids. While specificity and activity profiles still need improvement,
results so far already provide proof-of-principle evidence for the feasibility of SMIs targeting
the SARS-CoV-2-S–hACE2 PPI. Methylene blue, which is approved for clinical use, is
orally bioactive, and could act by multiple mechanisms of action, might have potential for
repurposing for COVID-19 prevention and treatment.
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INTRODUCTION

New drugs introduced during the past century, such as antibacterials (penicillin, 1943) anti-
inflammatories (cortisol, 1952), antipsychotics (chlorpromazine, 1953), contraceptives
(norethindrone, 1960), anxiolytics (diazepam, 1963), immunosuppressant (cyclosporin A, 1983),
antidepressants (fluoxetine, 1987), TNFα-inhibitors (infliximab, 1998), and PD-1–PD-L1 inhibitors
(pembrolizumab, nivolumab, 2014)—all shown with their first year of US market approval, are
responsible for most of the unprecedented medical progress that happened since then and have
completely altered the way life is conducted in industrialized nations. However, truly effective
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antivirals are still lacking, as the recent coronavirus-inflicted
COVID-19 pandemic made painfully clear. The search for
antivirals has its own particular challenges, as viruses hijack
the reproduction machinery of their host organisms, but
progress in drug discovery and development as a whole has
been frustratingly slow due to a variety of problems
(Proudfoot, 2002; Munos, 2009; Paul et al., 2010; Scannell
et al., 2012).

Despite enormous increases in research and development
(R&D) investments, the number of newly introduced drugs in
the United States remained stubbornly stagnant since the 1960s
staying around 20–30 per year (Figure 1) and ~85% of them
represented no or only modest improvements (Wolff, 1995)
demonstrating a pervasive need for innovation. This is
probably best illustrated by the fact that the number of new
drugs approved by the United States Food and Drug
Administration (FDA) that were developed per $1 billion of
R&D spending in the drug industry (inflation-adjusted) has
been decreasing exponentially since 1950, being steadily halved
about every 9 years (Scannell et al., 2012). This is mainly due to
the highly increased regulatory burden, the unrealistic public
expectation of no side effects, the need to outperform existing old
drugs, and the depletion of effective new targets for traditional
drug design approaches (Walters et al., 2011; Bodor and
Buchwald, 2012; Scannell et al., 2012). Regarding the last, it is
commonly estimated that there are only about 500 to 1,500
human protein targets that are both “druggable” and “disease

modifying”, i.e., only about 2–7% of the ~20,000 canonical
(nonmodified) human proteins encoded by individual genes
(Hopkins and Groom, 2002; Russ and Lampel, 2005). In
general agreement with this, a survey of small-molecule drug
targets counted ~550 human proteins (plus another ~180 non-
human ones) (Santos et al., 2017). Thus, we are probably
beginning to run out of traditional protein targets, at least
human ones, and quite likely most low-hanging fruits among
such targets that can provide therapeutic benefits have already
been picked.

SMALL-MOLECULE INHIBITORS OF
PROTEIN-PROTEIN INTERACTIONS

Protein-protein interactions (PPIs), the focus of the present
review, represent possible additional, alternate targets as
evidenced by the increasing number of clinically approved
biologics targeting them (Figure 1). For example, one of the
latest such successes was the development of cancer
immunotherapies targeting immune checkpoint PPIs such as
CD80–CTLA4 and PD-1–PD-L1, which has been named
Science Breakthrough of the Year in 2013 (Couzin-Frankel,
2013). Unfortunately, PPIs are difficult to modulate with small
molecules as the corresponding protein interfaces tend to lack
well-defined ligand-binding sites where sufficiently strong
interactions can take place to ensure the energy of interaction

FIGURE 1 | The number of all new drugs launched annually in the United States with FDA approval. The number of all new drugs are shown as blue columns with
that of new biologics (approved biologic license applications, BLAs) as superimposed green columns. Except for a few peaks in the 1950s, 1990s, and the last decade, it
has been quite steady in the 20–30 per year range. Graphic prepared based on data from (Reuben, 1996; Mullard, 2016a; 2020).
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needed for high affinity binding. Nevertheless, the sheer number
of such PPIs, estimated to be in the 300,000 (Zhang et al., 2012;
Cheng et al., 2018) to 650,000 (Stumpf et al., 2008) range for
humans, implies that a considerable number should still be
druggable. Drugs need to be quite potent to be able to
compete with naturally present ligands, to be sufficiently
specific for their intended target, and to not need unacceptably
high doses. Typically, they need to have affinities in the mid-
nanomolar range. For example, the median value for all approved
drugs has been estimated to be around 20 nM (Overington et al.,
2006), which corresponds to a free energy of binding of ΔG0 =
–RT·lnKD = –5.94·log10KD [kJ/mol] = 45.7 kJ/mol. To achieve
such high energy, small-molecule endogenous agonists and drugs
of classic targets such as G-protein coupled receptors (GPCRs)
typically bind at binding sites that are fully buried and allow

interactions along the entire ligand surface (Figure 2A)
(Buchwald, 2019). Since PPI interfaces tend to be relatively
large and flat surfaces that lack such well-defined deep
pockets, strong binding is difficult to achieve here with small
molecules, as interactions are limited to only parts of the total
ligand surface. This is illustrated in Figure 2, which compares the
3D structure of a typical fully buried small-molecule agonist at a
classic GPCR target (purinergic P2Y12 receptor) with that of a
surface-bound small-molecule inhibitor (SMI) of a PPI
(venetoclax bound to BCL-2).

Not surprisingly, binding pockets on protein-protein
interfaces that are suitable to accommodate small molecules
are indeed considerably smaller than those of traditional
protein-ligand interactions (Fuller et al., 2009). Typically,
existing drugs target a single binding pocket with an average

FIGURE 2 | Comparing the binding of small-molecule drugs at PPI interface to that at classic targets such as G-protein coupled receptors (GPCRs). (A) 3D
structure of the purinergic P2Y12 receptor (a type AδGPCR) with an agonist (2MeSADP). Protein structure (PDB ID# 4PXZ (Zhang et al., 2014)) is shown covered with a
semi-transparent gray surface; the ligand is shown as darker CPK structure. Two different perspectives are included with the one on the right being a 90° rotated and
somewhat enlarged view. Here, the receptor-bound ligand is faded as it fully buried inside the receptor and obscured by the covering surface. (B) 3D structure of
BCL-2 (a pro-survival protein targeted in cancer therapeutics) with an FDA-approved SMI of PPI (venetoclax). Structure (PDB ID# 6O0K (Birkinshaw et al., 2019)) is
shown as before; however, here the bound PPI inhibitor is barely buried leaving large parts of its surface exposed as indicated by the more vivid colors where directly
visible.
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volume of ~300 Å3, whereas SMIs of PPIs target multiple (3–5)
smaller pockets (~100 Å3) (Fuller et al., 2009). As the achievable
maximum energy is limited by the pocket size (Buchwald, 2008),
adequate binding affinity at protein interfaces can only be
achieved by molecules large enough to reach a sufficient
number of such smaller pockets (as illustrated in Figure 2B).
The need for larger size can also be seen from the perspective of
ligand efficiency, LE, defined as the binding energy per unit
size–typically the binding free energy per non-hydrogen atom
(Na), LE = ΔG0/Na (Hopkins et al., 2004). Typical ligand-receptor
protein interactions have LE of ~1.5 kJ/atom (Hopkins et al.,
2004; Hajduk, 2006; Reynolds et al., 2007; Buchwald, 2008),
which corresponds to an about two-fold increase in affinity
(decrease in KD or IC50) with the addition of each (non-
hydrogen) atom. Such high LE is almost impossible to achieve
at PPI interfaces where the bound SMI ligand can interact only
along part of its surface (Figure 2B). Thus, to achieve the free
energy needed for 20 nM binding (45.7 kJ/mol) with an LE of
1 kJ/atom, structures with more than 45 non-hydrogen atoms are
needed, which is already larger than desired for typical
“druggability”. SMIs of PPIs were indeed found to be larger
than classic drugs including receptor ligands, ion channel
modulators, and enzyme inhibitors (Neugebauer et al., 2007).

On the other hand, biologics, such as antibodies and fusion
proteins, can interact with proteins along a broader surface and
a variety of epitopes without having to rely solely on druggable
pockets to achieve adequate affinity and specificity. An
increasing number of biologics are being used clinically as
they can be highly specific (Figure 1); however, they cannot
cross cell membranes, thus cannot reach intracellular targets
(Verdine andWalensky, 2007; Hughes et al., 2011; Neklesa et al.,
2017), and their protein nature also causes solubility, stability,
route of administration (i.e., no oral bioavailability), and
biodistribution limitations. Further, since they are foreign
proteins, they can act as antigens and elicit strong immune
responses in some recipients (Suntharalingam et al., 2006;
Wadman, 2006; Leader et al., 2008). All these problems are
further exacerbated by their typically long elimination half-lives,
which makes it difficult to rapidly eliminate unwanted effects
when they occur (Huck et al., 2018). Not surprisingly, FDA-
approved biologics encountered more post-market safety issues
than did small-molecule drugs (Downing et al., 2017). SMIs of
PPIs may represent viable alternatives lacking these problems, if
the difficulties related to affinity/specificity can be overcome.
While such SMIs were not pursued until relatively recently
because they were considered unlikely to be successful due to the
aforementioned challenges, during the last 2 decades, it has
become clear that SMIs can be effective against at least some
PPIs. Most small-molecule PPI modulators are SMIs
(i.e., antagonists)—our sole focus here, as so far there are
only a limited number of identified small-molecule PPI
‘agonists’ (i.e., enhancers or stabilizers) (Thiel et al., 2012;
Milroy et al., 2014; Andrei et al., 2017). SMIs of PPIs, as
antagonists in general, can be orthosteric, directly interfering
with the interface and competing with the protein ligand, or
allosteric, binding away from the interface but causing sufficient
conformational change to block binding of the protein ligand.

Tens of PPI-targeting SMIs have reached preclinical
development (Arkin and Wells, 2004; Wells and McClendon,
2007; Wilson, 2009; Buchwald, 2010; Arkin et al., 2014; Milroy
et al., 2014; Song and Buchwald, 2015; Scott et al., 2016), and
three are approved by the FDA for clinical use: lifitegrast (Gadek
et al., 2002), venetoclax (Souers et al., 2013), and fostemsavir
(Meanwell et al., 2018) (Figure 3). Lifitegrast (SAR 1118) is a
LFA-1–ICAM-1 inhibitor developed first at Sunesis (Zhong et al.,
2012) from a series originating at Genentech (Gadek et al., 2002)
and then clinically by SARcode/Shire; it was approved by the FDA
for the treatment of dry eye in 2016 (Xiidra) (Scott et al., 2016).
Venetoclax (ABT-199) is part of a small-molecule series
developed by Abbott and later AbbVie and designed to target
PPIs in the B cell lymphoma 2 (BCL-2) family (Souers et al.,
2013). It received FDA approval in 2015 for treatment of chronic
lymphocytic leukemia (CLL), small lymphocytic lymphoma
(SLL), and later acute myeloid leukemia (AML) (Venclexta,
Venclyxto) (Mullard, 2016b). Fostemsavir (BMS-663068) is a
water soluble prodrug of temsavir developed by Bristol-Myers
Squibb that acts by blocking gp120 binding to CD4 to limit HIV
attachment and entry; it was approved by the FDA for clinical use
in the US in 2020 as an antiretroviral for adults living with HIV/
AIDS (Rukobia) (Meanwell et al., 2018). Finally, maraviroc
(Selzentry) is an antiretroviral that can be considered an
allosteric SMI of the gp120–CCR5 PPI as it targets CCR5 and
stabilizes a conformation no longer recognized by the HIV
envelope (Melby and Westby, 2009; Tan et al., 2013). These
successes, and particularly that of fostemsavir reemphasize the
feasibility of SMIs of PPIs as drug discovery strategy for antivirals.
Such SMIs could yield novel therapies that are not only more
patient friendly than antibodies (i.e., suitable for oral or inhaled
administration), but also less immunogenic, more controllable
(shorter half-life/better biodistribution), and possibly even less
strain- and mutation-sensitive.

TARGETING SARS-COV-2 SPIKE PPIS AS
ANTIVIRAL STRATEGY

SARS-CoV-2—Background
While human coronaviruses (CoVs), enveloped positive-
stranded RNA viruses mostly responsible for upper respiratory
and digestive tract infections, have been circulating for long,
SARS-CoV-2 (severe acute respiratory syndrome-coronavirus 2),
the most recent one to emerge, became particularly infamous by
being the most infectious agent in a century (Tiwari et al., 2020)
and the one responsible for the COVID-19 pandemic that caused
hundreds of millions of infections and millions of deaths
worldwide (Matheson and Lehner, 2020; Shang et al., 2021;
V’Kovski et al., 2021). SARS-CoV-2 is one of the seven CoVs
known to infect humans, four of which (HCoV 229E, OC43,
NL63, and HKU1) are responsible for about a third of the
common cold cases and three that are highly pathogenic and
caused recent epidemics associated with considerable mortality:
SARS-CoV(-1) (2002–2003, ~10% mortality), MERS-CoV (2012,
~35% mortality), and now SARS-CoV-2 (2019-), which is less
lethal but more transmissible (Guy et al., 2020; Rajgor et al.,
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2020). While estimates vary, about 3% of the individuals infected
with the original SARS-CoV-2 strain needed hospitalization, and
the average infection fatality ratio (IFR, percentage of those
infected that do not survive) was around 0.5% but in a
strongly age-dependent manner increasing exponentially from
0.001 to 0.002% in <20 years old to 10–20% in those >80–90 years
old (Salje et al., 2020; O’Driscoll et al., 2021; COVID-19
Forecasting Team, 2022). While difficult to estimate due to
changes in vaccination status and treatment options
(Bhattacharyya and Hanage, 2022), it has been considerably,
several-fold reduced with the more later emerged omicron
(B.1.1.529) variant, but likely remained higher than that of
influenza (IFR << 0.1%) (Liu et al., 2022; Matsuyama, 2022).

CoVs, which are classified into four genera (α-, ß-, γ-, and δ-
CoV), initiate infection with the binding of their spike (S) protein
to cell surface receptors followed by membrane fusion and virus
entry. For SARS-CoV(-1) and SARS-CoV-2 (as well as HCoV-
NL63), the receptor is angiotensin converting enzyme 2 (ACE2)
(Lan et al., 2020; Shang et al., 2020; Sivaraman et al., 2021; Zhang
et al., 2021). For MERS-CoV, it is dipeptidyl peptidase 4 (DPP4),
and for HCoV-229E, human aminopeptidase N (APN; CD13)
(V’Kovski et al., 2021). Some ß-coronaviruses (e.g., HCoV-OC43)
bind to sialic acid receptors (Tortorici et al., 2019). Thus,
blockade of the SARS-CoV-2-S–hACE2 PPI can disrupt
infection efficiency, and abrogation of this interaction is a
main goal in the development of vaccines and neutralizing
antibodies (nAbs) for the COVID-19 pandemic (Jiang et al.,
2020; Lv et al., 2020; Tai et al., 2020). In fact, the spike

protein is the principal target of nAbs generated following
infection by SARS-CoV-2, with the majority of those identified
so far recognizing epitopes within the receptor-binding domain
(RBD) that binds ACE2 (Sui et al., 2014; Lv et al., 2020; Wang
et al., 2020; Wu et al., 2020; Yuan et al., 2020). The spike protein
also is the SARS-CoV-2 component of mRNA and adenovirus-
based vaccines approved for use (Harvey et al., 2021).

The SARS-CoV-2 spike protein is a homotrimer with
monomer units of ~180 kDa; it is highly glycosylated and is
post-translationally cleaved into an S1 and S2 subunit. S1 consists
of the amino-terminal domain and the RBD and is responsible for
binding to ACE2; S2 includes the trimeric core and is responsible
for membrane fusion (Ou et al., 2020; Wang et al., 2020). The
RBD located within the S1 domain is known to switch between a
standing-up and a lying-down position for receptor binding and
immune evasion, respectively (Gil et al., 2020; Shang et al., 2020).
Notably, there is a multi-basic furin cleavage site at the S1-S2
boundary, which is unique within b-lineage betacoronaviruses
and sarbecoviruses, and is important for the increased infectivity
and virulence facilitating the conformational change required for
receptor binding (Coutard et al., 2020; Hoffmann et al., 2020;
Harvey et al., 2021). It is also an important part of the discussions
surrounding the controversies regarding the possible origins of
this CoV (Cohen, 2021; Ambati et al., 2022).

There are several possible targets for therapeutic interventions
in the CoV lifecycle: viral attachment and entry, uncoating, gRNA
replication, translation in ER and Golgi, assembly, and virion
release (Guy et al., 2020; V’Kovski et al., 2021; Zhao et al., 2022).

FIGURE 3 | SMIs of PPIs approved for clinical use by the FDA. In addition to lifitegrast (an LFA-1–ICAM-1 inhibitor) and venetoclax (a BCL-2–BIM/BAK inhibitor),
they include two anti (retro)virals: maraviroc, an allosteric CCR5 inhibitor, and fostemsavir, a prodrug of temsavir, a gp-120–CD4 PPI inhibitor.
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Viral attachment and entry are particularly promising among
them because they are the first steps in the replication cycle and
take place at relatively accessible extracellular sites (Melby and
Westby, 2009). They are also well suited for a PPI inhibition
focused approach, the subject of the present review. However,
targeting viral entry also has its own challenges, as the envelope
and fusion glycoproteins are usually the most variable of all virus-
encoded proteins. Indeed, the amino acid sequences can vary
both within and between individuals, making the spectrum of
antiviral activity for any entry inhibitor an important
consideration (Melby and Westby, 2009). RNA viruses are
known to accumulate mutations over time yielding antibody
resistance and requiring the use of antibody cocktails to avoid
mutational escape (Baum et al., 2020). Not surprisingly, several
SARS-CoV-2 mutants have already emerged some being variants
of concern (VOC) with increased transmissibility, higher disease
severity, and resistance to neutralizing antibodies, including those
elicited by current vaccines (Cai et al., 2021; Gobeil et al., 2021;
Harvey et al., 2021; Kupferschmidt, 2021; Wibmer et al., 2021).
Currently, as labeled by the WHO, these include alpha (B.1.1.7;
first identified in UK, Sep 2020), beta (B.1.351; South Africa, May
2020), gamma (P.1; Brazil, November 2020), delta (B.1.617.2;
India, October 2020), and omicron (B.1.1.529; multi/S. Africa,
November 2021). Emergence of escape variants is likely to
continue as the accumulation of RBD mutations is facilitated
by the structural plasticity at the RBD-ACE2 interface, further
eroding the activities of therapeutic antibodies and serums of
vaccine recipients (Nabel et al., 2022).

Therapeutic Need for Small-Molecule
Antivirals
Based on the above, it would be particularly important to have
broadly cross-reactive agents that can neutralize a wide range of
antigenically disparate viruses (Sui et al., 2014). SARS-CoV(-1)
and SARS-CoV-2 share close to 80% amino acid identity in their S
proteins, raising the possibility of conserved immunogenic
surfaces on these antigens, as supported by the identification
of some antibodies of possibly broader activity (Lv et al., 2020;
Wec et al., 2020; Starr et al., 2021; Martinez et al., 2022; Park et al.,
2022) such as the more recently identified RBD-specific antibody
DH1047 (Martinez et al., 2022) or the ACE2-mimicking S2K146
(Park et al., 2022). Nevertheless, most SARS-CoV antibodies are
not cross-reactive; for example, none of the 206 RBD-specific
monoclonal antibodies derived from single B cells of eight SARS-
CoV-2 infected individuals in one study cross-reacted with SARS-
CoV(-1) or MERS-CoV RBDs (Ju et al., 2020). As already
discussed, targeting such PPIs with SMIs is undoubtedly more
challenging, but if successful, it could lead to alternative antiviral
treatment options with possible benefits including less strain-
specific activity.

Despite the undeniable success of the COVID-19 vaccination
program, there remains a considerable need to develop new
antivirals and especially oral ones, as a significant portion of
the population is either unwilling to be vaccinated or unable to do
so due to pre-existing medical conditions. Effective oral
treatments could have significant impact on this pandemic as

they can be taken easily following the first symptoms. Remdesivir,
the first small-molecule COVID-19 drug approved by the FDA,
must be given intravenously. Considerable effort and financial
resources have been invested in the repurposing of approved
drugs as possible small-molecule antiviral agents for SARS-CoV-
2, but with only minimal success so far. For example, the large
WHO Solidarity trial found that repurposed antiviral drugs
including hydroxychloroquine, remdesivir, lopinavir, and
interferon-β1 had little or no effect on hospitalized COVID-19
patients, as indicated by overall mortality, initiation of
ventilation, and duration of hospital stay (WHO Solidarity
Trial Consortium et al., 2020). Further, a paper suggested that
most drugs identified in many of the screening assays as
possibility for being repurposed against SARS-CoV-2 are not
working because they inhibit in the in vitro assay by being
cationic amphiphilic drugs that cause phospholipidosis, which,
however, does not translate into in vivo activity (Tummino et al.,
2021). This observation has been questioned and should be
treated with caution as many of these molecules have both
in vitro and in vivo efficacy with no reported phospholipidosis
(Lane and Ekins, 2021).

Regardless, there is an ongoing need to not just repurpose
existing drugs but develop novel ones that can combat such
infections (Zhao et al., 2022). Recently, two new drugs with classic
antiviral mechanisms (i.e., inhibition of protease activity or viral
reproduction) have shown promise and granted emergency use
authorization by the United States Food and Drug
Administration (FDA) for the treatment of COVID-19:
molnupiravir (Jayk Bernal et al., 2021) and nirmatrelvir (part
of the nirmatrelvir/ritonavir combination Paxlovid) (Owen et al.,
2021). Molnupiravir is a prodrug of the synthetic nucleoside
derivative N4-hydroxycytidine that exerts antiviral action
through introduction of copying errors during viral RNA
replication. It was developed originally for the treatment of
influenza at Emory University and acquired by Ridgeback
Biotherapeutics, who later partnered with Merck (Jayk Bernal
et al., 2021). Nirmatrelvir (PF-07321332) is an inhibitor of the
SARS-CoV-2 main protease (Mpro) developed at Pfizer starting
from PF-00835231, an inhibitor of recombinant SARS-CoV(-1)
Mpro identified during the response to the 2002 SARS outbreak
(Owen et al., 2021). It showed very promising clinical results as
Paxlovid (nirmatrelvir/ritonavir). In addition, AT-527, a double
prodrug of a guanosine nucleotide analog, derived from Atea
Pharmaceuticals’ nucleotide prodrug platform and shown to be
efficacious and well tolerated in hepatitis C virus (HCV) infected
subjects (Good et al., 2021), was also pursued, but it was not
successful in its first clinical trial. Lessons learned from RNA
viruses so far proved that the size and quality of existing antiviral
libraries needs to be increased and diversified and polymerase and
protease drugs need to be complemented with others targeting
different viral proteins (Edwards et al., 2022).

Small-Molecule PPI Targeting Approaches
Following the outbreak of COVID-19, due to the immense
therapeutic need generated by the pandemic it created,
tremendous screening and drug discovery efforts were invested
into the identification of effective preventive or therapeutic
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antiviral interventions in both academic and industrial settings
(Ghosh et al., 2020; Shyr et al., 2020; Xiu et al., 2020; Su et al.,
2021; Zhao et al., 2022). Here, those directed at identifying SMIs
of the SARS-CoV-2-S–hACE2 PPI will be highlighted briefly;
some of the earliest ones have been summarized in (Chang et al.,
2021). Various screening campaigns have been conducted aiming
to identify promising hits mainly from repositionable
(repurposable) drug and existing chemical libraries. Assays
used (often after virtual screening, i.e., in silico preselection
typically via molecular docking in AutoDock or Glide)
included ELISA (enzyme-linked immunosorbent assay) types
(Carino et al., 2020; Bojadzic et al., 2021b; Fu et al., 2021),
AlphaLISA (Hanson et al., 2020), Luminex bead-based (Tsegay
et al., 2021), surface plasmon resonance (SPR) (Day et al., 2021;
Yu et al., 2021; Zhu et al., 2021), affinity selection-mass
spectrometry (van Breemen et al., 2022), NanoBiT (Xiong
et al., 2021; Yu et al., 2021), CEBIT (condensate-aided
enrichment of biomolecular interactions in test tubes) (Pei
et al., 2022), and others. Some possible natural product
inhibitor have been highlighted in (Ma et al., 2021); however,
most are just molecular docking based hypotheses. Considering
that several publications relied solely on in silico derived
hypotheses or just one in vitro (often cell-free) inhibitory
assay, here, only those compounds will be highlighted first
that inhibited this PPI in vitro and have concentration-
dependent antiviral activity confirmed in a live virus or
pseudovirus assay with a sufficiently promising IC50.

In fact, following the emergence of the SARS-CoV(-1)
epidemic in the early 2000s, a few groups already performed
high-throughput screening (HTS) assays to identify possible
antiviral candidates targeting various early steps in its cell
invasion. As part of this, some putative SMI candidates of
viral entry have been identified, including, for example,
SSAA09E2 (from a screening using a SARS/HIV-luc
pseudotyped virus infection assay; pseudovirus IC50 9.7 μM)
(Adedeji et al., 2013) and VE607 (from a screening using
protection from SARS-CoV-induced cytopathic effects, CPE, in
Vero cells as a phenotypic indicator; live virus IC50 1.6 μM) (Kao
et al., 2004) (see structures in Figure 4). Other inhibitory small-
molecule candidates acting by different mechanism have also
been identified; they include, for example, SSAA09E1, SSAA09E3
(Adedeji et al., 2013); MP576, HE602 (Kao et al., 2004); ARB
05–018137, ARB 05–090614 (Severson et al., 2007); K22 (Lundin
et al., 2014); and others–see reviews in (Du et al., 2009; Gil et al.,
2020; Xiu et al., 2020). Most of these had low micromolar activity

(Xiu et al., 2020); however, none of them led to approved
preventive or curative therapies for human CoV diseases
mainly because in addition to their relatively low (i.e., not
nanomolar) potency, they were also not particularly suitable
for clinical translatability. They could not pass the preclinical
development stage and enter clinical trials due to their poor
bioavailability, safety, and pharmacokinetics (Xiu et al.,
2020).

SMIs of the SARS-CoV-2-S–hACE2 PPI with confirmed
antiviral activity in a live virus or pseudovirus assay having
IC50 < 30 µM are from the studies listed below in approximate
chronological order of their corresponding publications
(structures shown in Figure 5). Whenever possible,
therapeutic (selectivity) index (TI, SI) estimates are also
included as an indicator of the relative safety, as it quantifies
the separation between toxic and effective concentrations, TI =
TC50/IC50.

• A computational screening interrogating 57,641
compounds followed by SPR screening of a library of
3,141 compounds by Day and co-workers at Griffith
University, Australia identified three candidates showing
concentration-dependent antiviral activity in vitro: Evans
blue, lifitegrast (Figure 3), and lumacaftor (Day et al., 2021)
(March 2021). Of these, Evans blue was the most promising
candidate and the only one with IC50 < 30 μM; it had aKD of
2 μM for SARS-CoV-2-S and inhibited SARS-CoV-2
infection in Vero E6 cells with an IC50 of 28 μM.
According to the authors, it was also non-toxic for up to
1 mM (TC50 > 1,000 μM), suggesting a sufficiently large
therapeutic index (TI > 30).

• Our work at the University of Miami, Florida, United States
identified several organic dyes (Congo red, direct violet 1,
Evans blue) and novel druglike compounds (DRI-C23041,
DRI-C91005) that inhibited the interaction of ACE2 with
the spike proteins of SARS-CoV-2 as well as SARS-CoV(-1)
with low micromolar activity in cell-free ELISA-type
assays (IC50’s of 0.2–3.0 μM) (Bojadzic et al., 2021b)
(May 2021). Of these, DRI-C23041, Congo red, and
direct violet 1 (Figure 5) were also confirmed to inhibit
the entry of two different spike-bearing pseudoviruses into
HEK293/Vero E6 cells with IC50’s of 5.6/7.4, 20.3/27.4, and
35.8/16.4 μM, respectively. They were also relatively
noncytotoxic in the same assay having TC50 > 400 μM
for DRI-C23041 (i.e., TI > 70) and >100 μM for Congo red

FIGURE 4 | Compounds identified before the COVID-19 pandemic as possible SMIs of the SARS-CoV(-1)-S–hACE2 PPI. SSAA09E2 and VE607 have been
identified as viral entry inhibitors for SARS-CoV(-1) with low micromolar activity, see text for details.
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and direct violet 1 (TI > 5). Evans blue, which was the best
hit in the work fromDay, was identified as an inhibitor, but
was not tested here in viral assays as other compounds
were more active.

• During this screening, we also identified methylene blue as
a SMI and confirmed that it had a quite promising IC50 of
3.5 μM in this viral assay (Bojadzic et al., 2021a) (January
2021). This is of possible interest as a methylene blue is an
inexpensive and widely available drug approved by the FDA
for the treatment of methemoglobinemia and used for other
medical applications. It was also identified by several other
groups as having anti-SARS-CoV-2 activity and confirmed
to have low micromolar activity in concentration-response
studies including with live viruses, possibly due to additional
multiple mechanisms of action (Gendrot et al., 2020; Cagno
et al., 2021; Gendrot et al., 2021; Murer et al., 2022).
Methylene blue seems to be a promiscuous PPI inhibitor
with low micromolar activity and a relatively narrow TI, but
with multiple evidence suggesting that it clearly inhibits

SARS-CoV-2 including VOCs such as delta (B.1.617.2)
(Chuang et al., 2022).

• Fu and co-workers at the New York University School of
Medicine, United States screened a library of 958 FDA-
approved drugs using ELISA-based HTS, and identified five
drugs, N-acetylcysteine (NAC), tiopronin (TPR),
verteporfin (VP), calcitriol, and racecadotril, to inhibit
RBD–ACE2 interaction at both low and high
concentrations (Fu et al., 2021) (July 2021). Of these,
verteporfin (Visudyne) significantly inhibited
pseudovirus entry into hACE2 overexpressing
HEK293T cells (IC50 < 0.1 μM) while having a half
cytotoxic concentration TC50 ≈ 10 μM (implying TI >
100). Before this work, verteporfin was confirmed by
another group to potently inhibit the cytopathic effect
produced by SARS-CoV-2 infection with an IC50 <
0.31 μM with indications that the porphyrin ring
structure binds the ACE2 receptor (Gu et al., 2021)
(December 2020).

FIGURE 5 | Compounds identified so far since the outbreak of COVID-19 as possible SMIs of the SARS-CoV-2-S–hACE2 PPI. Only compounds that have been
confirmed to have antiviral activity in a live virus or pseudovirus assay with promising enough activity (IC50 < 30 µM) are shown.
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• Xiong and co-workers at the Chinese Academy of Sciences,
Shanghai and Beijing, China and collaborators virtually
screened and filtered compounds from the SPECS
database and then purchased 109 selected candidates for
follow-up biological testing including NanoBiT and SPR
assays to check their ability to block the SARS-CoV-2-S-
RBD–ACE2 PPI (Xiong et al., 2021) (Sep 2021). From these,
they highlighted two inhibitors as sufficiently promising in
pseudovirus assays with some separation between efficacy
and cytotoxicity: DC-RA016 (ZINC125276) (IC50 =
22.4 μM) and DC-RA052 (IC50 = 68 μM). The IC50 for
DC-RA016 was, however, somewhat overstated due to the
way the concentration-response curve was fitted (with a
non-zero bottom) as this compound barely caused 50%
inhibition at 100 μM (Figure 4B in (Xiong et al., 2021)).
Nevertheless, its structure was included here for illustration
(Figure 5).

• Finally, van Breeman and co-workers at Oregon State
University, Corvallis, OR, United States used affinity
selection-mass spectrometry for the discovery of
botanical ligands to the SARS-CoV-2 spike protein and
found cannabinoid acids from hemp (Cannabis sativa) to be
allosteric as well as orthosteric ligands with micromolar
affinity for the spike protein (van Breemen et al., 2022)
(January 2022). In follow-up virus neutralization assays,
cannabigerolic acid and cannabidiolic acid prevented
infection of human epithelial cells by a pseudovirus
expressing the SARS-CoV-2 spike protein and prevented
entry of live SARS-CoV-2 into cells including for variants
B.1.1.7 and B.1.351 with IC50’s of 21 and 23 μM (7.7 and
8.4 μg/ml) in the pseudovirus and 67 and 103 μM (24 and
37 μg/ml) in the live virus assay for cannabidiolic and
cannabigerolic acid, respectively, where their
cytotoxicities were not yet significant (van Breemen et al.,
2022). Cannabidiolic acid seems to have a TC50 around
80 μg/ml (Fig. S4 in (van Breemen et al., 2022)) giving
TI ≈ 10.

Some of the other works that identified SMI hits but did not
include confirmation in viral assay or the inhibitory activity in
these assays was not sufficiently potent include (again, in
chronological order of their corresponding publications):

• Carino and co-workers at the University of Perugia, Italy
used in silico prescreening followed by in vitro confirmation
using a commercial SARS-CoV-2 spike inhibitor screening
assay kit and found that naturally occurring and clinically
available triterpenoids, such as glycyrrhetinic and oleanolic
acids, as well as primary and secondary bile acids and their
amidated derivatives, such as glyco-ursodeoxycholic acid
and semi-synthetic derivatives such as obeticholic acid,
reduced the RBD–ACE2 binding (Carino et al., 2020)
(October 2020). However, these compounds showed only
weak activity and concentration dependence. None of them
caused 50% reduction at the highest concentration tested
(10 μM). Activities were not confirmed in viral or
pseudoviral assays.

• The group of Hanson an co-workers at the National Center
for Advancing Translational Sciences (NCATS), National
Institutes of Health (NIH), Bethesda, MD, United States
used an AlphaLISA assay based HTS of 3,384 small-
molecule drugs and preclinical compounds suitable for
repurposing and identified 25 possible hits (Hanson
et al., 2020) (November 2020). However, of these only
corilagin was validated in cherry-picking as showing
activity against ACE2−RBD with an IC50 of 5.5 μM, and
there was no confirmation in viral assays.

• Zhu and co-workers at Peking Union Medical College,
Beijing, China used SPR to screen a library of 960
compounds and identified demethylzeylasteral as having
promisingly high affinities for S-RBD and ACE2 (KD of 1.0
and 1.7 μM for S-RBD and ACE2, respectively) (Zhu et al.,
2021) (Dec. 2020). In a pseudovirus assay, it inhibited entry
of SARS-CoV-2 pseudovirus into HEK293T cells to “a
certain extent” at nontoxic concentration (7% inhibition
at 0.37 μM).

• Yu and co-workers at the Shanghai University of
Traditional Chinese Medicine, Shanghai, China used SPR
and NanoBit assays to verify the spike protein-binding
activity of compounds selected via virtual screening from
traditional Chinese medicines and then their inhibitory
activities on SARS-CoV-2-S-RBD–ACE2 PPI (Yu et al.,
2021) (May 2021). They found glycyrrhizic acid to be the
most efficient and nontoxic broad-spectrum anti-CoV SMI
with a KD of 0.87 μM toward SARS-CoV-2-S1 as suggested
by SPR, but an IC50 of only 22 μM for disrupting the
corresponding PPI in the NanoBiT assessment. There
was no confirmation in viral assay.

• Tsegay and co-workers at Seattle Children’s Research
Institute, Seattle, WA, United States screened 2,701
compounds from an “FDA-approved drug screening
library” for their ability to inhibit the binding of
recombinant SARS-CoV-2 spike to hACE2 in a Luminex
bead-based assay and identified 56 that inhibited in a
concentration-dependent manner (June 2021) (Tsegay
et al., 2021). Best SMIs were thiostrepton, oxytocin,
nilotinib, and hydroxycamptothecin with IC50’s in the
4–9 μM range, but there were no cell-based activity or
toxicity assessments.

• Pei and co-workers from Tsinghua University, Beijing,
China used CEBIT to screen 2572 FDA approved drugs
for their ability to inhibit this PPI and identified six
candidate compounds that were confirmed by SPR to
bind with KD of 17–780 μM: varenicline, sennoside A,
quercetin, quinacrine, methylene blue, and sunitinib (Pei
et al., 2022) (March 2022).

In addition to SMIs, peptide-based inhibitors of PPIs are also a
possibility–see (Lee et al., 2019; Wang et al., 2021; Trisciuzzi et al.,
2022) for recent reviews. Some peptide disruptors have also been
reported for SARS-CoV-2–hACE2, but so far none have been
very effective (Gil et al., 2020; Xiu et al., 2020; Zhang et al., 2020).
A stapled peptide approach carried out at the University of
Southern Denmark, Odense, Denmark showed some promise
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with an IC50 of 3.6 μM for inhibition of the PPI, but no cell-based
confirmations were performed (Maas et al., 2021). Relatively high
affinity peptide binders of the SARS-CoV-2 spike RBD (KD:
80–970 nM) have been identified by affinity selection-mass
spectrometry from a screening of 800 million synthetic
peptides at the Massachusetts Institute of Technology (MIT),
Cambridge, MA, United States ; however, they turned out to not
compete for ACE2 binding (Pomplun et al., 2021). Because of
bioavailability, metabolic instability (short half-life), lack of
membrane permeability, and other issues, developing peptides
into clinically approved drugs is difficult and rarely pursued
(Otvos and Wade, 2014; Henninot et al., 2018)—a main
reason why we focused here on small-molecule compounds
that represent an approach much more likely to ultimately
transition into clinical development.

SUMMARY AND OUTLOOK

Blocking of PPIs involved in the initiation of cell attachment and
entry of CoVs can provide efficient antiviral therapeutics and is
the main mechanism of action of biologics such as neutralizing
antibodies. SMIs face more challenges to achieve this, as they do
for all other PPIs; however, they could lead to new alternative
antiviral agents that are suitable for oral administration and act by
a different mechanism of action than existing small-molecule
antivirals such as protease or viral reproduction inhibitors. Oral
bioavailability is highly desirable to achieve widespread usage and
compliance (Neklesa et al., 2017), and oral therapeutics are much
more suitable for long-term use and/or broadly acceptable
preventive use (including for transmission control of viral
diseases) than any other routes of administration (Cochrane
et al., 1999; Moia et al., 2013). Broadly specific activity is also
of considerable interest as it could make possible mutation
resistant, multi-strain, or even pan-CoV inhibition. While it is
usually difficult if not impossible to achieve with antibodies that
tend to be target-specific, it could be more achievable with SMIs.
For example, we have shown that while the corresponding
antibodies did not cross-react for the human vs. mouse
CD40–CD40L PPI, our SMIs did and even maintained similar
potencies (Margolles-Clark et al., 2009; Bojadzic and Buchwald,
2019). The impact of SARS-CoV-2 variants on spike and RBD
structure and on nAb activity, which could also affect SMIs, has
been summarized recently (Nabel et al., 2022). Computational
simulations of SARS-CoV-2 spike flexibility and its interactions
with other proteins are being carried out and should provide
helpful tools for future screening efforts (Pedebos and Khalid,
2022).

SMIs of the SARS-CoV-2-S–hACE2 PPI identified so far and
summarized above provide proof-of-principle evidence for the
feasibility of such a small-molecule approach, but it remains to be
seen if they can ultimately lead to clinically usable therapies as
specificity and activity profiles still need improvement. While
specific goals vary somewhat depending on the specifics of the
project, small-molecule drug candidates are generally expected to
have, among others: • potency in at least the hundred-nanomolar
range (i.e., IC50 < 100 nM meaning pKi > 7) (the median of

existing drugs being ~20 nM); • adequate selectivity/specificity
(>20× versus other targets is a reasonable minimum and >100× is
desirable); • good safety profile (TI > 30 and optimally >100 in
early studies plus passing of all toxicity studies); • adequate
solubility and partition properties (needed to achieve
acceptable formulation and desired delivery to the intended
target); and • acceptable oral bioavailability and duration of
action (somewhat flexible, but oral bioavailability F% > 30%
and elimination half-life t1/2 > 4 h are reasonable goals)
(Williams, 2005; Smith and O’Donnell, 2007; Bodor and
Buchwald, 2012). Some of these are undoubtedly more
difficult to achieve with small molecules targeting PPIs than
with those targeting classic drug targets such as GPCRs, ion
channels, and enzymes that have pre-formed domains (pockets)
to bind their natural ligands with good affinity and specificity.
Problems related to lack of good binding pockets and thus a
relatively low ligand efficiency (LE) have been reviewed briefly
earlier (Small-Molecule Inhibitors of Protein-Protein Interactions;
see also illustration in Figure 2). Because of this, SMIs of PPIs
tend to be larger structures than classic drugs (Neugebauer et al.,
2007), and it is now well-recognized that the chemical space of
existing drugs and corresponding screening libraries does not
correspond well with that of promising SMIs of PPIs (Pagliaro
et al., 2004; Neugebauer et al., 2007; Reynès et al., 2010; Sperandio
et al., 2010; Morelli et al., 2011). Fortunately, computational
prescreening including exploration of relevant physicochemical
properties can provide valuable information (Villoutreix et al.,
2012; Trisciuzzi et al., 2019) and there are now databases, such as
TIMBAL (Higueruelo et al., 2009), 2P2I (Bourgeas et al., 2010), or
iPPI-DB (Labbe et al., 2016; Torchet et al., 2021), that contain an
increasing number of 3D structures for protein-protein and
protein-inhibitor complexes. These can make computationally
enriched library selection much more successful, which has been
shown to accelerate hit discovery (Milhas et al., 2016). A chemical
library of >10,000 compounds dedicated to PPI inhibition has
been developed (Fr-PPIChem) and is freely available upon
request for experimental screening against PPIs (Bosc et al.,
2020).

Larger structures, often with multiple aromatic rings, are
usually better suited for effective PPI inhibition (Che et al.,
2006; Fletcher and Hamilton, 2006; Hershberger et al., 2007);
however, these tend to violate the widely used “rule-of-five”
(Ro5) criteria, which includes MW < 500 (Lipinski et al., 1997;
Lipinski, 2004) and has been widely used to guide candidate
selection and ensure adequate oral bioavailability and ADME
(absorption, distribution, metabolism, and excretion) profile.
Nevertheless, an increasing number of new drugs have been
launched lately (including venetoclax and fostemsavir
discussed earlier) that significantly violate these empirical
rules proving that oral bioavailability can be achieved even
in the “beyond the rule-of-five” chemical space (DeGoey et al.,
2017; Doak and Kihlberg, 2017). Along these lines, it is
instructive to highlight that the first promising lead during
the development of venetoclax (ABT-199) was ABT-737,
which was so far from being suitable for formulation as a
drug that one of its developers jokingly described it as having
“the biophysical properties of brick dust” (Mullard, 2016b).
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Similarly, the incredibly tedious process of medicinal
chemistry optimization that was required to make the
original lead of the series that ultimately led to fostemsavir
(BMS-663068) as a clinical product is nicely described in detail
in (Meanwell et al., 2018).

Hits obtained so far for this PPI (Figure 5) reemphasize that
our approach relying on the chemical space of organic dyes as a
starting point when screening for SMIs of PPIs makes sense. For
example, Evans blue which was the best hit identified from a HTS
of >3,000 compounds selected after in silico prescreening of
~60,000 structures (Day et al., 2021), came up as a hit from
our screening of a much smaller library of <100 dyes (Bojadzic
et al., 2021b). For obvious reasons, organic dyes have good affinity
for proteins (Hunger, 2003), and they contain privileged
structures for protein binding (Che et al., 2006; Fletcher and
Hamilton, 2006; Hershberger et al., 2007). Thus, contrary to
commonly available drug-like libraries, they are a good starting
point to identify SMIs of PPIs. We have even found organic dyes
that are promiscuous PPI inhibitors (Ganesan et al., 2011;
Ganesan and Buchwald, 2013). Of course, organic dyes are not
particularly suitable for therapeutic development because of their
strong color (plus, for azo dyes, their quick metabolic degradation
(Levine, 1991; Feng et al., 2012)). Nevertheless, we have shown in
at least one case (the CD40–CD40L PPI, a member of the TNF
superfamily) that new drug-like SMIs can be developed by first
using this chemical space to identify the molecular scaffold
required for activity and then removing the color-causing
chromophore(s) while retaining PPI inhibitory activity (Chen
et al., 2017; Bojadzic et al., 2018). Specificity can be an issue with

dyes, and indeed most dyes found here as promising SMIs of the
SARS-CoV-2-S–hACE PPI seem to be quite non-specific as the
specificity plot shown in Figure 6 illustrates (data from (Bojadzic
et al., 2021b)). Also, many azo-containing dyes are likely PAINS
(pan-assay interference compounds) that can show up as false
positives in screening assays (Baell and Walters, 2014; Aldrich
et al., 2017); thus, they need to be treated carefully to ensure, for
example, that the PPI inhibitory activity seen is not due to
aggregation/polymolecular conglomeration. Nevertheless,
medicinal chemistry optimization for specificity should still be
feasible, and it is worth remembering that modern medicinal
chemistry emerged in the early 20th century from the synthetic
dye industry of the late 19th century (mostly in Germany at that
time) (Paterson, 1984). Following the discovery of the first
synthetic dye in 1856, Paul Ehrlich (1854–1915) (Drews, 2004;
Bosch and Rosich, 2008), who acquired his medical doctor’s
degree with a thesis on “the theory and practice of histological
staining”, laid the foundations of chemotherapy. The analogy
between the azo –N=N– bond common inmany of these dyes and
the arsenic bond –As=As– led to his search of arsenicals and
ultimately to the discovery of arsphenamine (Salvarsan, no. 606),
the first modern antimicrobial, in 1909. A few years later, the
testing of thousands of azo dye related compounds and the
contributions of Gerhard Domagk (1895–1964) led to the
discovery of Prontosil (1932), the first effective sulfonamide
antibacterial.

None of the SMIs of SARS-CoV-2-S–hACE2 identified so
far and discussed here (Figure 5) have reached clinical
development (Zhao et al., 2022); in fact, none seem to have
even been evaluated in existing preclinical animal models for
SARS-CoV-2 (Takayama, 2020; Saravanan et al., 2022).
Methylene blue, a phenothiazine dye we have identified as
such an SMI (Bojadzic et al., 2021a), is, in fact, included in the
WHO List of Essential Medicines and is orally bioactive; thus it
might have some potential for repositioning for COVID-19
prevention and treatment especially as its low micromolar
anti-CoV activity, possibly due to multiple mechanisms of
action, has been confirmed by several other groups (Chuang
et al., 2022). Overall, results summarized here provide proof-
of-principle evidence for the feasibility of such SMI
approaches toward antivirals that inhibit CoV attachment
and entry, and they serve as a first guide of the chemical
space needed to achieve this.
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FIGURE 6 | Illustrative selectivity plot comparing inhibitory activity of
SMIs against two PPIs. Selectivity plot showing the inhibitory activity of some
of the compounds found to inhibit the SARS-CoV-2-S-RBD–hACE2 as the
targeted PPI (quantified as log IC50) versus that against another non-
targeted PPI (here, TNF-R1–TNF-α PPI). More active and selective
compounds are clustered toward the lower right corner. Figure prepared with
data from (Bojadzic et al., 2021b).
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