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In recent years, deep learning (DL) has led to new scientific developments with immediate
implications for computer-aided drug design (CADD). These include advances in both
small molecular and macromolecular modeling, as highlighted herein. Going forward,
these developments also challenge CADD in different ways and require further progress to
fully realize their potential for drug discovery. For CADD, these are exciting times and at the
very least, the dynamics of the discipline will further increase.
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INTRODUCTION

The computer-aided drug design (CADD) field encompasses a wide range of computational
approaches for small molecular and macromolecular modeling as well as for the analysis and
prediction of protein-ligand interactions (Jorgensen, 2004; Bajorath, 2015). In addition, a variety
of molecular property calculations are a part of this methodological spectrum. CADD can
roughly be divided into structure- and ligand-based approaches, augmented by bio- and
chemoinformatics, respectively, where the scientific boundaries are rather fluid (Bajorath,
2015). While mostly dominated by quantitative structure-activity relationship (QSAR)
methods since the 1960s and pharmacophore modeling since the 1970s, the field
substantially expanded through increasing focus on structure-based drug design beginning
in the mid-1980s and the advent of machine learning (ML), which experienced increasing
attention during the 1990s. Structure-based design was strongly supported by advances in X-ray
crystallography, high-resolution computer graphics, and the development of docking
algorithms. It was further extended though fragment-based design approaches from the
mid-1990s on. Concomitantly increasing computational power also triggered the application
of molecular dynamics (MD) and other simulation techniques to large biomolecular systems.
Docking methods opened the door to structure-based virtual compound screening while
similarity searching and ML were applied to ligand-based virtual screening. Combined
quantum mechanics/molecular mechanics (QM/MM) simulations originated in the 1970s
and were increasingly applied to biomolecular systems over the next 2 decades. Taken
together, these and other developments shaped the CADD field for years to come. In the
2 decades since the turn of the century, many incremental improvements have been made to
existing approaches for ligand- and structure-based design, but truly novel methodological
concepts have been rarely introduced. During this time, methodologies receiving high levels of
attention in the field were essentially extensions of approaches originally introduced much
earlier. Prominent examples include free energy perturbation for the calculation of relative
ligand binding energies (Williams-Noonan et al., 2018) or deep neural networks (DNNs) (Chen
et al., 2018) enabling deep (machine) learning (DL). DNNs have extended the traditional use of
shallow neural networks (NNs) in chemoinformatics (vide infra) and put NN modeling onto a
new level.
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In this Perspective, exemplary applications of DL are
highlighted that currently generate excitement and promise for
CADD going forward. By its very nature, this Perspective is
selective and far from being comprehensive and conclusions
drawn are partly subjective. It is also attempted to put these
recent developments into scientific context by providing an
overview of the development and foundations of the CADD
field. While scientific views might certainly differ, the
discussion presented herein is intended to emphasize selected
applications of DL having the potential to substantially influence
and shape CADD as it further evolves.

Foundations
One of the characteristics of the CADD field as it has evolved is that
despite many methodological developments reported over the past
20+ years, some of the foundations of CADD and underlying
approximations have remained essentially unchanged. For
example, the way in which the physical basis of biomolecular
interactions was approximated by MM force fields and force
field-based scoring functions for protein-ligand interactions has
not fundamentally changed since the early days, although many
refinements have been introduced over the years such as the
inclusion of various solvation models in force field calculations.
During the past decade, a hot topic in CADDhas been the use of FEP
calculations to estimate differences in the affinities of congeneric
compounds (analogs) binding to pharmaceutical targets. FEP has its
roots in the 1980s and employsMD and techniques such as umbrella
sampling for simulating ligand-target systems and compound
modifications (Williams-Noonan et al., 2018). Successful FEP
case studies reported over the past decade essentially employed
the same force field framework as in the early days of biomolecular
simulations (Wang et al., 2015). Advances in FEP calculations were
largely attributed to increasing computational resources available for
prolonged simulations andmore refined sampling techniques, rather
than fundamental changes in the underlying theory or the way in
which physical reality was approximated. Recently, the interest in
FEP applications appeared to decrease again. However, going
beyond FEP analysis, no conceptually new methodology has
become available to this date to consistently and reliably predict
free energies of small molecule binding across pharmaceutical targets
with known three-dimensional (3D) structures, which would
represent a true milestone event for CADD.

As another example for long lasting foundations and
approximations, molecular similarity analysis and similarity
searching in virtual screening still employ the same compound
representations for the past 20 or more years (Willett, 2009;
Maggiora et al., 2014). Moreover, while descriptors for known
bioactivities have been introduced, in similarity searching and
ML-based virtual screening, one continues to extrapolate from
calculated molecular similarity to property similarity, for
example, in predicting new active compounds, without taking
bioactivity measures directly into account (Maggiora et al., 2014).

Deep Neural Networks
Over the past few years, DL using DNNs has become increasingly
popular in chemistry, chemoinformatics, and CADD (Baskin
et al., 2016; Chen et al., 2018), just as in many other scientific

fields, spurred on by high predictive performance of DL achieved
in computer vision or natural language processing (LeCun et al.,
2015). Shallow NNs were popular in chemoinformatics during
the early days of ML, but have largely been replaced over the years
with other ML methods, mostly due to the tendency of NNs to
overfit models for small data sets and their notorious black box
character (Castelvecchi, 2016). Table 1 presents a summary of
widely used ML methods. In recent years, the situation has
fundamentally changed again. Currently, DNNs are widely
applied for predictions at the small molecular as well as the
macromolecular level and the popularity of DL is further
increasing. Table 1 also includes examples of specialized DNN
architectures that have become popular in chemistry.

A variety of DNN architectures have been introduced for
molecular applications (Baskin et al., 2016). Figure 1 shows
examples of specialized DNN architectures that are frequently
applied in chemoinformatics and CADD. In Figure 1A, a multi-
task DNN is shown where each output node represents a different
prediction task. While single-task DNNs have a single output
node reporting the prediction, multi-task DNNs are designed to
address several related predictions tasks simultaneously,
attempting to exploit synergies between these tasks. Figure 1B
shows a convolutional DNN that is typically used for learning
from image data or molecular graphs. Figure 1C depicts one of
the preferred DNN architectures for generative de novo
compound design, as further discussed below.

The great variety of available DNN architectures, fittingly
termed the “neural network zoo” (van Venn, 2016), makes it
often difficult to scientifically judge choices of DNNs for specific
applications and their performance compared to simpler
computational approaches. DNNs can be rendered increasingly
complex through addition of multiple layers with different
functions. With the popularity of DL on the rise, there is a
tendency to apply complex DNN architectures for standard
prediction tasks and omit performance controls using simpler
ML methods. In chemoinformatics, this especially applies to
compound property predictions where relatively small data
sets are available for learning and well-defined molecular
representations are typically used. In benchmark settings using
compound activity classes of limited size as test cases, reported
prediction accuracies using other ML methods (Table 1) are
typically high (often artificially high when compared to
prospective applications) and in these cases, it is difficult to
demonstrate significant advantages of DNNs over other widely
used ML approaches (Bajorath, 2021). In property prediction,
these ML methods often perform better than DNNs. While
representation learning from large volumes of low-resolution
data (such as pixels in image analysis) is a noted strength of
DL, this situation usually does not apply to chemoinformatics/
CADD applications. Accordingly, graph-based DNNs including
message passing networks have increasingly been investigated for
learning model-internal representations from molecular
structure (Chuang et al., 2020). In addition to graph-based
representation learning, DL has recently also been applied to
predict biological signatures of test compounds (Bertoni et al.,
2021), which might be combined with standard structural
descriptors in virtual screening (vide supra). However, on the
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basis of currently available data, it remains to be determined
whether alternative molecular representations–be they learned
from graphs or predicted–might yield higher performance in ML
and other applications than long-used standards such as
molecular fingerprints or numerical descriptors. Although

DNNs are unlikely to become a general performance booster
in molecular ML, the versatility and adaptability of DNN
architectures referred to above opens the door to new DL
applications that were difficult, if not impossible to tackle
before. These include, for example, new electron density

TABLE 1 | Popular machine learning methods for drug discovery and design.

Machine learning algorithm Methodological principles

Multivariate linear regression (MLR) Statistical regression with multiple independent variables
Partial least squares (PLS) Statistical regression and dimensionality reduction including correlated variables
Naïve Bayes (NB) Probabilistic modeling with assumed feature independence (Bayes’ theorem)
Random forest (RF) Ensemble of independent decision trees
Gradient boosting (XGB/GB) Decision tree ensemble with shared information
Support vector machine (SVM) Support vector
regression (SVR)

Kernel-based feature mapping with dimensionality increase

Feed-forward neural network (FNN) Neuron layers for learning through backpropagation
Recurrent neural network (RNN) NN architecture for learning from sequential data with recurrent use of activation functions
Message passing neural network (MPNN) Graph-based NN that recursively updates node-associated features with learned message functions
Convolutional neural network (CNN) NN with multiple convolutional neuron layers for transforming feature spaces into new ones detecting local

information

FIGURE 1 | Exemplary advanced deep neural networks. Shown are specialized DNN architectures including (A)multi-task DNN, (B) convolutional DNN for learning
from molecular images or graphs, and (C) autoencoder as an exemplary DNN architecture for generative de novo design.
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calculations in quantum chemistry, molecular image-based
learning, computer-assisted synthesis planning, generative de
novo compound design, or de novo protein structure
prediction in bioinformatics. Enabling access to previously
infeasible applications represents a major attraction of DNNs,
which sets DL indeed apart from other methodological
developments in CADD over the past 2 decades. In the
following, two selected applications are highlighted, in
macromolecular and small molecular design, which represent
particular growth areas for DL.

Focus Areas
The discussion of these two focal points begins with protein
structure prediction, which has thus far served as a supporting
approach for structure-based drug design. Here, an unprecedented
breakthrough of DL with immediate relevance for CADD has been
achieved in de novo protein structure prediction from sequence.
Over the past decade, the accuracy of de novo protein modeling
significantly increased through inclusion of residue coevolution
analysis in computational design protocols (Marks et al., 2011).
The residue coevolution concept accounts for the fact that amino
acids distant in sequence but proximal in 3D structure undergo
compensatory mutations during evolution. The identification of
coevolving residue positions then defines spatial constraints for
model building. By combining residue coevolution with
sequence-structure correlation and conformational analysis,
encouraging results have been reported in protein structure
prediction and design, as perhaps best exemplified by the Rosetta
approach (Leman et al., 2020). Recently, however, de novo protein
structure prediction has reached a new level through DL. Building
upon the coevolution and structural fragment/template matching
framework, AlphaFold2 was able to predict single-domain protein
structures consistently with an accuracy of ~2 Å compared to
experimental structures, as revealed by the 14th critical
assessment of protein structure prediction (CASP14) blind test
competition (Jumper et al., 2021). These findings were
unprecedented, especially in their consistency. An accuracy of
~2 Å is often within the limits of crystallographic resolution and
protein models at this accuracy level rival experimental structures as
templates for CADD. The AlphaFold2 approach uses multiple
sequence alignments or template structures as input for an
attention-based DNN to identify important sequence segments
and structural patterns for model building. Beyond CASP14, the
AlphaFold DL methodology was also applied to generate protein
domain models for nearly the entire human proteome at an overall
high level of confidence (Tunyasuvunakool et al., 2021) and further
extended to systematically predict protein-protein complexes
(Humphreys et al., 2021). Taken together, these results are
regarded as a milestone event in solving the protein folding
problem and one of the premier global achievements of artificial
intelligence (AlQuraishi, 2021; Eisenberg, 2021).

In chemoinformatics and CADD, DL has in recent years
substantially impacted chemical reaction prediction and
automation of synthesis (e.g., Segler et al., 2018; Coley et al.,
2019) as well as de novo compound design (e.g., Blaschke et al.,
2020; Kotsias et al., 2020). These two areas have essentially
dominated the use of DNNs in small molecule modeling and

design and methodological aspects have been comprehensively
reviewed (Struble et al., 2020; Tong et al., 2021). A flurry of recent
publications reports different DNN architectures and protocols
for generative de novo compound design. The principal goal of
the approach is the generation of novel chemical entities with
desired properties such as a specific biological activity. Generative
modeling is expected to further extend the coverage of
biologically relevant chemical space with novel chemical
structures. A characteristic feature of this field and other
applications of DL in early-phase drug discovery is that these
efforts are currently dominated by methodological developments,
whereas practical proof-of-concept applications are still rare
(Bajorath et al., 2020). This characteristic and other aspects
have implications for the future of DL in CADD.

Implications and Challenges for Deep
Learning
Intense scientific efforts investigating DL in different CADD-
relevant areas, as discussed above, provide an opportunity for
CADD to enter its next phase and further expand. However,
realizing this potential will critically depend on a number of
adjustments requiring substantial scientific efforts. First and
foremost, early-phase drug discovery is not a data-rich discipline.
Rather, it is characterized by data heterogeneity and the availability
of only limited chemical and biological data for many discovery
projects, which poses a problem for data-hungry DL approaches.
Accordingly, attempts are being made to investigate the ability of
generative design to operate on the basis of confined data sets
(Skinnider et al., 2021). Limited data availability in drug discovery
also implies that more attention should be paid to learning strategies
for low-data regimes such as transfer,multi-class, one-shot, few-shot,
meta learning, or active learning (Baskin, 2019; Ding et al., 2021;
Stanley et al., 2021). Furthermore, ML/DL in the life sciences and
drug design is still lacking generally applicable criteria and standards
for performance evaluation, assessment of design validity, and
ensuring reproducibility, which hinders methodological progress
and limits the impact on drug discovery. These issues are now
beginning to be addressed (Walters and Murcko, 2020; Heil et al.,
2021; Walsh et al., 2021), which is a positive trend in the field.
Moreover, it will be of critical importance for the future of DL in
CADD to concentrate on prospective applications with measurable
impact on experimental programs. To these ends, it will also be
crucial to reduce the black box character of DL by integrating
methods for explaining predictions (Fisher et al., 2019; Murdoch
et al., 2019; Lundberg et al., 2020; Matveieva and Polishchuk, 2021;
Rodríguez-Pérez and Bajorath, 2021). The ability to rationalize DNN
predictions will further increase the acceptance of DL for
experimental design.

Milestone achievements in protein structure prediction
discussed above provide new opportunities for structure-based
drug design. This is perhaps the largest growth area for CADD as
a whole. The availability of high-quality models with near
experimental accuracy for the human proteome puts structure-
based virtual screening onto a new level, but also challenges it
more than ever before. To positively impact drug discovery, the
computational efficiency of high-throughput flexible ligand
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docking will need to further increase through methodological
adjustments or increasing hardware resources, as exemplified by
docking complemented with DL models derived from scores
(Gentile et al., 2020) or docking of ultra-large virtual libraries
(Alon et al., 2021). Furthermore, for 3D molecular
representations, methods for geometric DL incorporating
symmetry relationships such as 3D CNNs, which are entering
the molecular modeling arena (Atz et al., 2021), also have the
potential to advance structure-based design including QM/MM
approaches. Most importantly, however, substantial
improvements of the accuracy of scoring functions will be
essential, as volumes of computational screening data grow.
Without such improvements, many large-scale virtual
screening campaigns will be doomed to fail. This should
encourage CADD investigators to concentrate on the
development of approaches for more reliable estimation of
ligand binding energies, which represents a principal
shortcoming of current scoring schemes and one of the grand
challenges ahead.

There also are important consequences for the interplay
between computation and experiment. AlphaFold2 models will
globally reduce the burden of experimental structure
determination in an unexpected manner. Single domain-
proteins might already be covered with models that are
sufficiently accurate for CADD applications across the proteome
(Tunyasuvunakool et al., 2021). However, this will not alleviate the
need for experimental structure elucidation of complex protein
targets such as multi-domain membrane receptors using X-ray
crystallography or, more likely, cryo electron microscopy.
Although first attempts have been made to systematically
predict protein-protein complexes using AlphaFold2 (vide
supra), coverage is lower than for single-domain proteins. The
prediction of protein-protein complexes is closely related to the
prediction of domain assemblies in multi-domain proteins, which
is still in its infancy at present. Furthermore, additional
experimental efforts of considerable magnitude will be required
to make meaningful use of structural models for CADD. For novel
targets, putative small molecule binding sites will need to be
mapped and experimentally confirmed. In addition, structures
of target complexes with interesting active compounds might
still need to be determined experimentally at high resolution to
guide chemical optimization efforts in a meaningful way. Hence,

anticipated growth of structure-based design will not only depend
on computational advances, but require interdisciplinary research
efforts. This also applies to the analysis of increasing numbers of
available models of protein-protein complexes, which are expected
to aid in developing new protein-protein interaction inhibitors.

CONCLUSION

Herein, a brief overview of the CADD field has been presented
as it has evolved over time and recent scientific developments
have been highlighted that are likely to strongly impact CADD
and contribute to its further growth. Most of these
developments depend on DL applied to macromolecular or
small molecular design. While CADD may have experienced
a relatively dormant phase over the past years, with only few
methodological breakthroughs, these recent developments will
likely increase the dynamics of the field. Hence, CADD might
well enter its next phase, provided key challenges outlined
herein will be met. These include further improved validation
of DL at different levels, with particular emphasis on prospective
applications, but also improvements of core methodologies such
as molecular docking. To these ends, off-the-beaten path
scientific concepts might need to be explored, for example, to
arrive at reliable estimates of ligand binding energies. Last but
not least, the integration of novel computational approaches, as
they are shaping up, into the practical workflows of drug
discovery programs will be of central relevance for CADD
going forward.
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