
Enhanced utility of AI/ML
methods during lead
optimization by inclusion of 3D
ligand information

Leo S. Bleicher1*, Ton van Daelen1, J. Dana Honeycutt1,
Moises Hassan1, Jayaraman Chandrasekhar2, William Shirley2,
Vickie Tsui2 and Uli Schmitz2*
1Dassault Systèmes BIOVIA, San Diego, CA, United States, 2Gilead Sciences, Foster City, CA,
United States

AI/ML methods in drug discovery are maturing and their utility and impact is

likely to permeate many aspects of drug discovery including lead finding and

lead optimization. Typical methods utilize ML-models for structure-

property prediction with simple 2D-based chemical representations of

the small molecules. Further, limited data, especially pertaining to novel

targets, make it difficult to build effective structure-activity ML-models.

Here we describe our recent work using the BIOVIA Generative

Therapeutics Design (GTD) application, which is equipped to take

advantage of 3D structural models of ligand protein interaction,

i.e., pharmacophoric representation of desired features. Using an SAR

data set pertaining to the discovery of SYK inhibitors entospletinib and

lanraplenib in addition to two unrelated clinical SYK inhibitors, we show

how several common problems in lead finding and lead optimization can be

effectively addressed with GTD. This includes an effort to retrospectively re-

identify drug candidate molecules based on data from an intermediate stage

of the project using chemical space constraints and the application of

evolutionary pressure within GTD. Additionally, studies of how the GTD

platform can be configured to generate molecules incorporating features

from multiple unrelated molecule series show how the GTD methods apply

AI/ML to drug discovery.
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1 Introduction

Bringing a new pharmaceutical entity from preclinical discovery to patients is a

long arduous process that even today involves substantial trial and error efforts, which

is insufficiently reflected in the common conception of the design-make-test-analyze

cycle. Besides sufficient modulatory potency toward the desired target, a successful
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oral drug requires adequate selectivity, absorption,

distribution, metabolic stability and lack of toxicity. These

properties have a complex dependency on the

physicochemical attributes of the molecule. Furthermore,

some of the properties have conflicting requirements that

make the design process a tedious balancing act, e.g.,

aqueous solubility is essential for a drug but too much

hydrophilicity usually impedes permeability. Thus, the

typical drug optimization campaign is a complex multiple

parameter optimization process. Another challenge comes

from the fact that the data that can be generated for most

if not all trial molecules only approximate the in vivo ADME

properties. For example, lipophilicity (LogD), aqueous

solubility and in vitro microsomal stability can be

measured readily, and those parameters are used to model

complex in vivo parameters like bioavailability and drug

clearance, but in vivo measurements are obtained only for

key compounds.

Machine-learning (ML) models have been available for

decades (Selassie et al., 2002; Abel et al., 2017; Sheridan, 2019;

Muratov et al., 2020) but recent improvements in compute power

and learning algorithms (Patel et al., 2020; Bender and Cortes-

Ciriano, 2021; Tong et al., 2021) along with the growing amount

of data have led to renewed interest, if not hype (Walters, 2022).

While definite improvements in the predictive power of the

models have been made (Feinberg et al., 2020; Goller et al.,

2020; Aleksic et al., 2022), typical error rates are still substantial.

For example, Feinberg et al. report that even the best R2 values

are −0.8, obtained for chromatographic LogDmeasurements and

the HPLC EPSA values when they used the time split analysis on

a large industrial data set fromMerck (Feinberg et al., 2020). The

median R2 for over 30 ADME assay endpoints was reported as

0.43. Using multiple models in conjunction lowers the

probability of any specific molecule to be correctly predicted

to exhibit all of the desired properties. A recent analysis by

Aleksic et al. (2022) using a large ADME data set at Boehringer

Ingelheim showed that general, class-models for most ADME

properties can be generated, but that they are most useful for pre-

filtering large compound libraries but not for lead optimization.

The latter requires more subtle predictions in the midrange of the

property functions. The authors specifically emphasized the

inadequacy of models to predict in vivo ADME endpoints

(Aleksic et al., 2022). While limited predictive power ML-

models, used in concert with generic calculable constraints

such as MW, number of HBAs, HBDs, aromatic rings, etc.,

can effectively shape the chemical space for a particular

design problem, early ML-model based lead optimization

projects typically suffer from poor models of biological

activity. By contrast, the traditional structure-based design

approach has relied on the analysis of the ligand protein

molecular interactions in crystal structures as a measure target

engagement. As a result, the combination of using the observed

ligand protein interactions with the chemical design space

criteria has been at the heart of structure-based design from

its inception.

Nonetheless, with the advances described above,

structure-based methods are evolving and taking two

distinct directions. One approach, exemplified by

Schrodinger’s AutoDesigner platform (Bos et al., 2022)

aims to exhaustively enumerate molecules in the relevant

chemical space at the level of tens of millions using a variety

of generative algorithms. These vast libraries are then filtered

using layers of “design space criteria” followed by

quantitative structure-based methods, including docking,

which still leaves potentially thousands of molecules to

evaluate. The last pruning step is often carried out via

computationally expensive free energy methods, e.g. FEP+

(Abel et al., 2017; Jespers et al., 2021).

The second approach takes advantage of generative

methods where molecules undergo iterative evolution under

various chemical property criteria in conjunction with ML

models as described by Besnard et al., 2012, or via

reinforcement learning as exemplified by Iktos’ Makya

Perron et al. (2022) and AstraZeneca’s REINVENT

(Blaschke et al., 2020). This approach can be

computationally much faster as the generative methods

need only enumerate molecules around the space defined

by the molecules from the previous iteration and identify

those with improved fit against the set property criteria. As

enhancing biological activity is paramount to the lead

optimization process, the outcome is tightly linked to the

quality of the ML-models. In the absence of highly predictive

ML-models for biological activity, which in our experience is a

common occurrence, we feel the 3D information of ligand

protein interactions need to be used within the generative

iteration cycles. Here we describe a new iterative molecule

optimization method termed Generative Therapeutics Design

(GTD) (Honeycutt et al., 2021), where these interactions have

become part of the optimization criteria in the form of simple

pharmacophore features, either as binary constraints or as a

quantitative parameter to be optimized against. The latter

could be a pharmacophore fitness function, such as fit values

for combined features, shape similarity, or even docking

scores.

In this report we briefly describe GTD and demonstrate its

utility in a number of settings commonly encountered during a

drug discovery project. Our report describes a “simulated

prospective study” chosen to allow us to make significant

enhancements to the algorithm based on knowing desired

outcomes.

Taking advantage of a large spleen tyrosine kinase (SYK)

inhibitor dataset, we show that GTD can effectively suggest

potent molecules that were withheld from the training set In

additionwe demonstrate how features of two unrelated

scaffolds can be merged into a new one and one scaffold

can be evolved into another known scaffold.
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2 Methods

2.1 GTD: Workflow with 2D ML models

The general approach of the GTD application has been

described (Honeycutt et al., 2021) and is shown schematically

in Figure 1A. Below we review some of the salient points but

focus on the capabilities added since our initial publication (see SI

for more detail on GTD method).

The key criteria for a generative design tool are that the

candidates proposed by the system be applicable, novel, and

feasible. In the arena of small molecule design applicable

translates into a balance of potency on target, a sufficient

therapeutic index with respect to off-targets including general

toxic effects, and appropriate pharmacokinetic properties. Novel

molecules are not “trivial” modifications of what was known at

the beginning of the process and are not described in the patent

literature. Feasibility covers synthetic accessibility, cost,

complexity and adherence to rules-of-thumb widely used by

med-chemists, e.g., Ro5.

The GTD application employs an iterative, evolutionary

approach to identifying molecules meeting the classes of

criteria described above. Each iteration involves several stages

with the intent of rapidly pruning away unproductive avenues of

investigation thus exploring the minimum useful portion of

chemical space. Thus, each iteration comprises a Generate-

Filter-Score-Prune (GFSP) cycle.

2.1.1 Generate
The first stage of the GTD iterative process is to generate new

molecules based on enumeration schemes or molecular

transformations. Both sets of methods make incremental

changes to an initializing collection of input molecules. In the

case of enumerations a random subset of R-groups or reactants

forms the initial set. Subsequent iterations retain R-groups or

reactants that were found in high performing molecules (as

FIGURE 1
The Generative Therapeutics Design platform. (A) The generate-filter-score-prune cycle. (B) Example for Input molecule with fixed atoms and
homology groups (Fixed atoms, outlined in blue, are not modified during the molecule generation process; homology groups, like “heteroaryl” or
“heterocyclic” impose restrictions on the substituents accepted at specific positions on a core). (C)User interface to setup a desirability function for a
predictive model in GTD. Red line shows histogram of scores for training samples labeled as “bad” when the model was created, green line
shows histogram of samples labeled “good”. Histograms help user refine GTD suggested desirability mapping function. Circular markers on blue line
are user configurable inflection points controlling the mapping of a raw score for a candidate molecule (along X-axis) to a desirability value (Y-axis).
X-axis labels show Positive Predictive Value for the predictive model. When no training data results are available GTD generates a histogram of
predicted responses from a selection of FDA approved drugs.
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described below), remove ones that were not, and add new ones

based on a set of criteria pertaining to group similarity. In the

case of user supplied input molecules, these are typically a

collection of leads from the project or the literature; here, the

user can specify substructures in the molecule(s) that will not be

modified and limit the range of possibilities at particular

attachment points to specified homology groups (see Figure 1B).

Starting from these input molecules GTD performs a variety

of transformations. (See SI for details of the methods.) The

breadth of variation produced by these transformations can be

tuned for exploratory or refinement stages. These methods are

designed to output new molecules that remain constrained to the

domain of feasible structures, and are appropriate for drug

discovery projects. Various assessments of the chemical space

accessible by these transformations are described in the SI and

will be the subject of future communications.

2.1.2 Filter molecules
The output of the generative methods above is reduced with a

variety of user selectable filters. Of course, different types of drug

targets require molecules with different characteristics which can

often be expressed in terms of countable or easy to calculate

molecular properties. GTD’s suite of chemical filtering

capabilities includes intrinsic molecular properties, built in

and user defined substructure and fragment quality catalogs,

as well as user defined “known molecules”. More details are

found in the Supplementary Information.

2.1.3 Score
The purpose of the score stage is to winnow the set of

candidate molecules according to the specific objectives as

represented by the target product profile (TPP). This typically

includes multiple predictions of biological activity and various

physicochemical properties. GTD uses 2DMLmodels to score and

then rankmolecules according to howwell theymeet the objectives

set by the TPP. Although other approaches are supported in GTD,

the current “best practice” approach that we generally advocate

uses classification models and assignment of a desirability (D)

profile for each element of the TPP. (See SI for further details.) The

limitations of this approach using purely data-derivedMLmodels,

and how we have modified it when 3D physics-based models are

available are described in a later section.

Note that in this “standard” workflow, a molecule is rejected

if it falls outside the applicability domain (AD) of any ML model.

While there is general agreement that every ML model has an

AD, there is less agreement on how exactly to assess whether a

molecule is within or outside the AD, with various different

approaches proposed in the literature (Kar et al., 2018). In

general, descriptors used in assessing the AD are the same

ones used to build the model. (See SI for further details.)

Once the AD and other filters have been applied, using the

desirability alone to rank the remaining molecules and determine

which ones survive an iteration tends to result in sets of

molecules with low chemical diversity. This is because

molecules with the greatest desirability scores often differ

from each other by only small variations. Thus, GTD imposes

additional evolutionary pressure to encourage diversity. This

helps to both ensure that the final collection of suggested

molecules has structural diversity, and to reduce the risk of

intermediate iterations becoming stuck in local maxima such

that most incremental changes result in “worse” molecules, even

though multiple changes could identify superior ones.

Two broad schemes for maintaining diversity are

implemented in the GTD system: cluster-based and Pareto-

based. In the clustering approach, molecules are grouped into

clusters according to one of various alternative criteria, and only

one or a few molecules with the greatest D values within each

cluster are considered for the final ranking before the pruning

step. Clustering by Tanimoto distance, common Bemis-Murcko

scaffold, or common scaffold outline (in which all heavy atoms

are replaced by carbon) is supported. The alternative to clustering

for maintaining diversity in GTD is Pareto optimization, trading

off diversity against desirability. See here for a description of this

method (Honeycutt et al., 2021).

2.1.4 Prune
Having completed the Generate, Filter, and Score stages, the

final step is to prune the often still large set of molecules resulting

from those stages into a subset to be used as inputs for the next

iteration. Typically, this is done by keeping the number specified

by the user (default 100) with the greatest overall desirability

scores. If clustering was used, only the top molecules from each

cluster are considered in the ranking by desirability. When

enumeration-based generation methods are used these top

ranked molecules are disassembled to determine the R-groups

or reactants that should be reused in the next round of partial

enumerations.

2.2 GTD: Modified workflows with
pharmacophore models

The ability of a machine learning model to make reliable

predictions for substructures outside its AD is limited. Indeed,

the standard methodology in GTD is to simply discard any

molecule that lies outside the AD for any of the models

making up the TPP. In practice, though, it is usually

necessary that the process of lead optimization suggests

structural motifs that have not been tried before within a

project. If such motifs differ too greatly from those found in

the ML models’ training data, then predictions cannot be trusted

for molecules containing them.

By contrast, a pharmacophore model derived from the 3D

structure of ligands bound to an active site would not be expected

to suffer the same limitations. Such models are a physical rather

than a statistical representation of ligand behavior relative to the
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target. Consequently, we incorporated such 3Dmodels into GTD

optimizations and found substantially increased success relative

to the use of 2D ML models alone.

The GTD application supports three different ways to

incorporate a pharmacophore (PH4) model into the workflow,

all of which we have found useful in different situations. Select

features of the Discovery Studio modeling suite (Dassault

Systèmes, 2022a) are available in GTD and thus, this

implementation of PH4 models was used in this work. In the

applications described below, pharmacophoric features

employed were Acceptor, Donor, RingAromatic, Shape (of

ligand) and ExclusionVolumes (for receptor). In order to

evaluate a GTD generated molecule against a PH4 model,

proper 3D conformers have to be generated, which must

include defining stereoisomers and protonation states. These

calculations are carried out using Pipeline Pilot components

(Dassault Systèmes, 2022b) with settings based on the

standard pharmacophore evaluation protocols found in

Discovery Studio (Dassault Systèmes, 2022a).

The supported usage scenarios for PH4 models in GTD are:

1) As part of the Filter step: Molecules for which one or more

conformers can be fitted to the PH4 model pass, while others

are rejected. The user can define the threshold for pass/fail

criteria to increase the quality of PH4 match (default settings:

FitValue>0 for combined features, ShapeSimilarity >0.5, both
on a normalized scale from 0 to 1).

2) As part of the Score step: The overall desirability, D, from the

2D ML models in the TPP is multiplied by the PH4 fit score.

This adjusted desirability score is used for ranking in the

Prune step.

3) As part of the Prune step: After an initial ranking and pruning

according to the desirability score of the 2DMLmodels in the

TPP, the PH4 fit score is used to re-rank and cull the set

further. When using a PH4 model in this way, the Prune step

is done in two stages. In the first stage x*nmolecules are kept

based on the overall desirability, where x is an expansion

factor (default 2) and n is the final number of desired

molecules. These molecules are then run through the

PH4 fitting. Scores from the PH4 model are then used to

re-rank the molecules, and the top n are retained as inputs for

the next iteration.

Specifics of how we used PH4 models for the SYK inhibitor

study, including modified workflow involving the gradual

enablement of filters are discussed below.

2.3 SYK inhibitor data set

SYK is a cytoplasmic tyrosine kinase and an important

mediator of immunoreceptor signaling. A plethora of drug

discovery efforts in multiple therapeutic areas have been

described (Liu and Mamorska-Dyga, 2017; Tang et al., 2022)

including the discovery stories of entospletinib and lanraplenib

(Currie et al., 2014; Blomgren et al., 2020). For an apt account of

the clinical progress see the following reviews (Liu and

Mamorska-Dyga, 2017; Tang et al., 2022).

Table 1 shows the key biological activity data (biochemical

kinase assay: SYK IC50; cellular activity: pBNLK EC50; whole

blood cellular activity: hWB CD63 EC50) along with metabolic

stability in human hepatocytes and the kinetic solubility at pH7.

Entospletinib emerged from hundreds of compounds as an early

clinical SYK inhibitor that had to be dosed orally twice a day at

400 mg due to poor metabolic stability and low micromolar

solubility at pH7. A back-up program for a once daily compound

was launched in which almost another 1000 compounds were

synthesized and evaluated. The TPP for this effort is also shown

in Table 1. While the discovery of the oxetano-piperazine instead

of the morpholine moiety furnished many metabolically more

stable compounds, finding a replacement for entospletinib’s

indazole proved difficult in that the SAR of the cell-based

activity, solubility and permeability was idiosyncratic.

Introduction of two non-adjacent nitrogen heteroatoms into

the indazole moiety and its analogs started the final phase of

the project leading to lanraplenib. The vast majority of the final

91 compounds contained the pyrazine substructure as seen in

lanraplenib.

To test the utility of GTD we used the SAR data for those

compounds that did not contain the “final” pyrazine motif,

leaving a total of 1655 compounds for model building and

91 compounds for validation (number of data points for

training each model are listed in Table 2).

This training data was used to generate 2D ML-models as

described above. Note that the 91 compounds in the validation

set were not a random subset of all the compounds but instead

were selected to omit information discovered late in the

candidate identification process, thus roughly representing a

time-based split (Sheridan, 2013).

3 Results

3.1 Application of GTD for finding high
value analogs during lead optimization

Standard usage of GTD would entail the application of 2D

ML-models built on existing SAR data along with project specific

or global physicochemical property ML-models along with other

design space filters as described above. One desired usage

scenario would be for GTD to generate new ideas that pass all

filters and score high in the ML-models when a lot of data exist,

like in the situation of the SYK inhibitor project team right before

the pyrazine moiety was discovered.

To simulate this situation, random forest classifier models

were built for three biological activity assays, solubility and
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TABLE 1 Clinical Stage SYK inhibitors used in this study.

Entospletinib
(bid 400 mg)

Lanraplenib (qd 50 mg) TPP* Mivavotinib PRT-
062607

Syk IC50 (nM) 7.7 6.2 <30 3.2 1

pBLNK EC50 (nM) 26 24 <70 9.8 n/a

hWB CD63 EC50 (nM) 367 76 <500 n/a 270

hHep Cl (L/hr/kg) 0.56 0.055 <0.1 n/a n/a

Kinetic solubility pH7 5 >95 >50 n/a n/a

Organization Gilead/Kronos Gilead/Kronos Takeda Portola

Highest phase Ph 3 for AML (400 mg bid) Ph 2 (50 mg qd) Ph 2 Ph 2

PDB ID 4puz 6vov 5tr6 4rx9

References Currie (2014) Mitchell (2020) Lam (2016) Coffey 2012

*Target product profile.
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permeability using the methodology described above. The

resulting model quality measures are shown in Table 2. While

the overall quality for all models was good when just considering

the training set, most ROC AUC values dropped significantly,

especially for biological activity, when just the final

91 compounds were predicted. But most importantly, many of

the best of the final pyrazine compounds were predicted to be

inactive in one or more of the activity models. Not surprisingly,

GTD did not generate compounds with the pyrazine moiety or

anything that would have been appealing for the project team to

pursue. Nevertheless, empirical testing of GTD molecular

optimization using these models revealed two problems:

1) The AD for the models built from the fewest data points was

so restricted that a majority of the 91 validation compounds

were rejected as outside the AD when all ML models were

used in the TPP. In particular, because none of the training

compounds included any pyrazine-containing compounds,

any appearance of this moiety in compounds produced by the

Generator would have been rejected.

2) When using ML (random forest) activity models alone, most

of the active compounds in the test set were predicted to be

inactive at the default PPV levels used in GTD. For SYK

activity a score cutoff corresponding to a PPV of 95% gave

two true positives (TP) and 73 false negatives (FN) for the test

set; a PPV of 90% gave 23 TP and 51 FN. Here, a true positive

indicates an active compound (potency better than 30 nM)

correctly predicted to be active, while a false negative indicates

an active compound incorrectly predicted to be inactive.

Reducing the PPV to 85% gave 73 TP and two FN but at

the cost of a large fraction of false positives (inactive

compounds predicted to be active). For the “best”

compound, lanraplenib, to be assessed as “active” by the

Syk model, the PPV would have had to be dropped to 88%.

Regarding the first issue, a slightly expanded AD (based on

modifying the molecular fingerprint used to assess it) was

sufficiently wide to pass the best of the 91 validation

compounds. However, it was not wide enough to allow

explorations of chemical space broad enough for the usage

scenarios below where multiple chemotypes are involved.

While we found productive settings for this retrospective

task, it might not be trivial to do that in a prospective

situation.

The second issue partially reflects a limitation of the PPV-

based method for setting score thresholds. Specifically, while a

threshold with a PPV of, say, 90% indicates that a molecule

scoring above the threshold has an 90% chance of being active

(true positive), it makes no statement about how likely a molecule

scoring below the threshold is to be either active (false negative)

or inactive (true negative). In practice, for generally good but not

great models (cross-validated ROC score −0.85–0.93), a high

PPV threshold results in large numbers of false negatives on test

set data. Yet we regard this as an acceptable tradeoff if (as is

typical in a drug discovery project) the goal is to find one or a

small number of sufficiently good molecules for advancement,

even if other potentially good molecules are overlooked.

A more serious issue with the use of ML models in molecular

optimization has been raised by Renz et al. (2019). In essence, the

issue can be summarized as a risk of poor prediction quality even

for test molecules within a model’s nominal AD if the

distribution of these molecules in chemical space differs

sufficiently from that of the training molecules. (This

summary is a bit of a simplification; we refer readers here for

details and nuances (Renz et al., 2019).

Thus, even with the first “simple” challenge, it became

evident that ML models built from the available modest-sized

data sets were insufficient by themselves to meet the challenge. As

a result, we proceeded to incorporate a pharmacophore model

into the workflow. Figure 2 shows both drugs overlaid in the SYK

binding pocket (as characterized in a co-crystal structure of

entospelitinib bound to SYK, pdbID 4PUZ) which was used

to create a PH4 model that captures the essential features of a

potent inhibitor. (See 4puz_ento_ExVol2 pharmacophore model

description in SI for complete details.)

In our initial exploration using the PH4 as the proxy for

biological activity, we sought to have GTD generate molecules

with the phenylamino-imidazopyrazine core shown in Figure 2C

TABLE 2 Statistics for 2D ML-models.

Assay # Data points BIOVIA ML model ROC AUC (CV) BIOVIA ML model ROC AUC (91 test cmpds)

Syk IC50 1645 0.86 0.78

pBLNK EC50 1655 0.84 0.76

hWB CD63 EC50 698 0.79 0.65

Kin Solubility pH7 1130 0.83 0.79

Caco2 (geometric mean of AB, BA) 288 0.75 0.73

Caco2 efflux (ratio BA/AB) 288 0.77 0.78
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FIGURE 3
Scaffold hopping using PRT-062607 and mivavotinib. (A) PRT-062607 and mivavotinib alignment using PDBid 4rxp and 5tr6, respectively. Six
common features are depicted (HBD magenta, HBA green, hydrophobe cyan, ring aromatic orange, negative charge red, for more detail see in
portola_6FeaSHP SI). (B–D) Representative GTD results aligned to PH4. (E) Unwanted substructure filter. (F) Closest GTD result to mivavotinib. (G,H)
Representative GTD results with cyclized carboxamide grouping.

FIGURE 2
Identifying high value analogs of Entospletinib. (A) Entospletinib and lanraplenib aligned in SYK active site using pdbID 4puz and 6vov,
respectively (receptor surface colored by hydrophobicity). (B) Same alignment with addition of five shared pharmacophore features (HBD magenta,
HBA green, ring aromatic orange; for more detail see 4puz_ento_ExVol2 in SI). (C) Substructure constraint for first round of GTD iterations, R1 and
R2 denote groups for enumeration. (D) Substructure constraint for second round of GTD iterations. (E) Representative GTD results with
desirability scores.
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where R1 and R2were supposed to be optimized against the PH4, a

set of calculatable molecular property constraints and a few ML-

models (i.e., CACO2, hWbCD63, and pH7-solubility).While GTD

can produce any number of molecules the user defines, a typical

run should render a few hundred ideas, a number small enough for

the user to process comprehensibly. While all batches of a few

hundred ideas exhibited the key features including the requiredHB

donor feature toward Asp512 (bottom feature in Figure 2B), the

aminopyrazine as the R1 of lanraplenib was not found. This should

not be surprising as the chemical space for R2 was much less

constrained compared to R1, such that more diversity for R2 is

observed. On the other hand, all solutions for R1 exhibited the

requestedHbond donor, whichwas amajor improvement over not

using the pharmacophore as additional driver.

Similar to real-word lead optimization by medicinal chemistry,

we fixed R2 by using a moiety that had been found to help with

solubility and stability, lanraplenib’s oxetano-piperazine

(Figure 2D). However, the iterative nature of optimization in

GTD means that while regions of chemical space far-separated

from the starting point can be reached, the individual steps through

this space are of modest size. One consequence is that if too many

constraints are activated simultaneously, it is possible that no

molecules pass the filter/prune step and the optimization halts.

This is what we observed in our initial R1 optimization. Thus, in

order to avoid premature termination of the optimization, we

allowed two iterations through the GFSP cycle before activating

the PH4 based filtering. This allowed the system to generate a diverse

collection of R1 substructures eliminating those without the required

H-bond. With this incremental activation of constraints the

expected aminopyrazines were indeed generated along with other

interesting molecules after five iterations. Figure 2E shows

representative GTD molecules along with the overall desirability

score (D) which ismade up of the individual desirability functions of

the employed ML-models which in this case include the

permeability model (caco2 D), the solubility model (SOL pH7 D)

and the human whole blood activity model (hWB CD63). Note that

the PH4model was used as a binary filter where the FitValue had to

be> 0. The short list of GTD ideas shown in Figure 2E demonstrated

that 1) some ideas fit the PH4 only as high-energy conformers, and

2) many ideas are close in analogs of suboptimal molecules that the

FIGURE 4
Entospletenib scaffold merging with cyclohexandiamine series. (A) PRT-062607 (cyan) and entospletinib (green) alignment using PDBid 4rxp
and 4puz, respectively. Receptor surface in HBond coloring. (B) Ligands from (A)with their individual pharmacophore features (features are colored
like the parent ligand). Asp512 is shown to demonstrate how ligands interact differently. (C) Hybrid PH4 with three features from each ligand (HBD
magenta, HBA green, hydrophobe cyan, ring-aromatic orange, negative charge red, exclusion volumes grey, for more detail see ento_portola_
6FeaSHP2_tight + ExV in SI) and the relevant part of associated ligand. Note that feature volumes had to be reduced considerably to obtain useful
results. (D) Representative GTD results aligned to PH4 model along with 2D rendering.
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team had made and abandoned (i.e., methyl-aminopyrimidine vs.

failed aminopyrimidine). Nevertheless, a typical design team could

triage these types of results quickly toward recognizing novel

candidates with high likelihood of success. We acknowledge that

other CADD workflows exist to enumerate an R-group to confer

certain properties to the resultingmolecule. However, those typically

require a finite list of R-groups or reagents. With GTD the user is

free from such restrictions.

3.2 Application of GTD to scaffold hopping

Another typical scenario for CADD design teams involves taking

advantage of an existing ligand to find related ligands with improved

properties. In a simple case, this might entail morphing a ligand series

fromapatent publication into a novel serieswith improved properties.

To explore how this could be done with GTD, we took advantage of

another two clinical SYK inhibitors, PRT-062607 and mivavotinib,

(Coffey et al., 2012; Lam et al., 2016), also shown in Table 1. Figure 3A

shows the two molecules as they align in the SYK active site. The

shared features, i.e., the cyclohexandiamine and carboxamide hinge

binding moiety, align perfectly yielding the six feature PH4 shown in

the figure (the shape constraint is that of PRT-062607 alone). (See

portola_6FeaSHP pharmacophore model description in SI for

complete details.) We wanted to see if GTD could generate

mivavotinib when given only PRT-062607 like structure as starting

structure and the cyclohexandiamine moiety as a fixed atom set (see

Figure 1B), the shared PH4 model without any other activity models

and some other reasonable constraints. Typical results are shown in

Figures 3B–D.Note that these novel examples satisfy all filters and the

PH4 model, but not a single molecule exhibited a cyclized

carboxamide, the hallmark of mivavotinib. Key to GTD producing

mostly lactams was the introduction of the unwanted substructure

filter shown in Figure 3E which eliminates all aryls with an

unsubstituted carboxamide (note that a molecule like Figure 3D

would still be allowed). In addition to this substructure filter, we

also found that molecular property filters were helpful in keeping

results near the expected chemical space (i.e., MW < 400 and number

of rings ≤5).
For this case as well, adding layers of constraints gradually

was essential. Specifically, constraints were activated in the

following order:

1) Iterations ≥1: ML model applicability domain.

2) Iterations ≥2: Standard structural filters (bad substructure,

molecular property ranges and counts).

3) Iterations ≥3: Pharmacophore FitValue >0.
4) Iterations ≥4: Custom structural filters related to unwanted

chemistries.

The result was that after 14 iterations, a batch of 200 molecules

contained a very close analog of mivavotinib (see Figure 3F). The

other two examples (Figures 3G, H) show that GTD can find both,

lactams with the direct aryl-aryl linkage of mivavotinib (Figure 3G)

and the aniline linker of PRT-062607 (Figure 3H).

This lead hopping example demonstrates thatGTD is an effective

idea generation tool especially when the design target space is well

understood and represented adequately by filters and constraints.

3.3 Application of GTD to scaffoldmerging

An even more common, yet more difficult scenario entails the

merger of certain features of two different chemical series into a novel

one with potentially improved properties. As an example, one could

imagine that a SYK inhibitor design team wants to combine certain

features of the entospletinib series with the unique

cyclohexanediamine of mivavotinib and PRT-062607, the moiety

which imbues a strong interaction with Asp512 and great solubility

due to its protonated amine. Figure 4 shows the alignment of

entospletinib and PRT-062607 in the active site along with their

individual pharmacophoric features. Note that the interaction with

Asp512 is very different between the two drugs, and even for the hinge

binding region the two drugs share only the middle Hbond. By

creating a hybrid PH4 (Figure 4C) using the cyclohexanediamine

associated features from PRT-062607 combined with the hinge

interactions of entospletinib, we focused GTD to generate hybrid

molecules. A shape constraint was defined by the combined volumes

of the two drugs. (See ento_portola_6FeaSHP2_tight+ExV

pharmacophore model description in SI for complete details.) For

our production runs, we added exclusion volumes for the protein to

create harder boundaries such that GTD molecules cannot protrude

beyond the shape. Like in the scaffold hopping example above, the

cyclohexandiaminemoietywas set to be a required 2D substructure. It

should be obvious at this point that a good number of trial and error

runs are required to define appropriate constraints for productive

GTD use.

The most successful runs used both of these molecules as

starting structures and the following scheme for the gradual

increase of the constraints:

1) Iterations one only: Filter to pass one molecule per common

scaffold outline before PH4 fitting

2) Iterations ≥1: ML model applicability domain and

pharmacophore fit score filter with FitValue >0
3) Iterations ≥2: Standard structural filters (bad substructure,

molecular property ranges and counts)

4) Iterations ≥3: Custom structural filters based on insight of

medicinal chemists on the design team.

In addition, we incorporated the PH4 fit score (e.g., FitValue)

into the overall desirability, thus making it the main driving force

in molecule evolution.

Figure 4D shows four representative examples from a

GTD production run where 150 molecules were requested.

Note that all of them exhibit a well-placed
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cyclohexanediamine along with the required hinge binding

moieties. The value of these GTD results is not so much

represented by these specific molecules since we have few

ML-models and filter to apply, but rather the suggestion of

hinge binding motifs that could be attached to the

cyclohexanediamine such that all features are satisfied. A

design team might just pursue simpler analogs and confirm

basic biological activity and the assumed binding mode. This

particular example of merging two scaffolds with GTD is a

powerful demonstration of its potential for idea generation,

especially in situations where ML-models do not exist to

guide the iteration process.

4 Discussion

Design of novel chemical structures meeting sets of

constraints relevant to lead optimization is an important way

in which AI/ML, cheminformatics and simulation technologies

can help drug discovery project teams achieve their goals rapidly

and cost effectively. The work described here is the result of a

joint effort to evaluate the utility of the GTD application in a

computational chemistry context. To do this a series of scenarios

were constructed to replicate typical situations faced by

computational chemistry teams when working in drug

discovery projects. Executing this work after the conclusion of

the relevant project, obviously allows the evaluation of the output

of the GTD system by a team who knows (at least one set of)

structural motifs that meet the criteria, and some that do not. At

the same time working across organizations allowed the team

using and enhancing the GTD software to minimize

“contamination” by knowledge of the expected outputs. Our

three use cases covering different, yet typical scenarios in

structure-based drug discovery demonstrate the utility of

pharmacophore models as part of GTD to drive iterative

molecule optimization. While this is demonstrated only for

kinase inhibitor design, this approach should have broad

utility as it is characterized by the user-dependent

pharmacophore perception, not by an atom-based

representation of the receptor. As this approach allows for a

wide range of customizability, it is also clear that not every

pharmacophore model used within the GTD system will lead to

valid hits. The full potential will become clear only by broad

application to diverse problems which we are currently pursuing.
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