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The pharmaceutical industry suffered a significant decline of innovation in the

last few decades, whose simple reason is complex biology. Artificial intelligence

(AI) promises tomake the entire drug discovery and development processmore

efficient. Here I consider the potential benefits of using AI to deepen our

mechanistic understanding of disease by leveraging data and knowledge for

modeling and simulation of genome-scale biological networks. I outline recent

developments that are moving the field forward and I identify several

overarching challenges for advancing the state of the art towards the

successful integration of AI with modeling and simulation in drug discovery.

KEYWORDS

modeling and simulation, biological networks, systems biology, drug discovery,
artificial intelligence

1 Introduction

The worldwide spending on pharmaceuticals (i.e., prescription drug sales) hit US

1.3 trillion in 2020 and is forecast to reach US 1.7 trillion by 2026 at a compound annual

grow rate (CAGR) in the range 3–6% (IQVIA, 2021). Pharma companies invest on

average 15% of their revenues in R&D, which is about five-fold more than the public

expenditure, a trend that has run unchanged over the last 30 years (Prokop and

Michelson, 2012). Nonetheless, the last 2 decades have seen a clear deterioration in

productivity, with an approximately 50% reduction in peak sales per asset and a >80%
decrease in return of investment (ROI) for the pharmaceutical industry during the years

2010–2019 (Hay et al., 2014; Steedman and Taylor, 2020). While the Covid-19 pandemic

somewhat mitigated these figures, the cost of developing a new drug and bringing it to the

market is still on the rise and it is now estimated at around US 2 billion (i.e., roughly

doubled in the last 10 years) (May et al., 2022).

Such decline in innovation is easily explained by the complex, and often hidden,

biology of diseases, which makes it difficult to identify and validate biological targets of

physiopathological significance (Prokop and Michelson, 2012). Our lack of disease

understanding is a major reason for the high failure rate of clinical trials, which

stands at about 90% (but possibly underestimated by the successful development of

“me-too” drugs) (Kola and Landis, 2004). Indeed, most drugs fail as a result of low efficacy
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(45–65% of cases) or high toxicity (15–35% of cases), and seldom

because of strategic, commercial, or operative reasons (Harrison,

2016; Takebe et al., 2018; Dowden and Munro, 2019). Clinical

trials have even occasionally had serious adverse effects on trial

participants, including death or severe injuries like hepatotoxicity

(e.g., fialuridine) or multi-organ failure (e.g., TGN 1412, BIA

10–2474) (Institute et al., 1995; Attarwala, 2010; Peck et al.,

2022). Additional complications are sometimes due to

unforeseen side effects of drugs already on the market that

have therefore to be recalled for safety issues.

Given the recent advances in computational biology and

bioinformatics, it seems a particularly good time to seek support

from modeling and simulation, i.e., carry out virtual experiments

using digital copies of human cells, tissues, and/or organ systems,

especially when in vitro or animal models are notoriously

unpredictive of human biology [for example, see (Booth et al.,

2003)]. The ability to predict clinical efficacy and toxicity in silico

can indeed be a time- and cost-effective solution for the

pharmaceutical industry, thus empowering sponsors to take

go/no-go decision earlier in the drug discovery and

development process (Pritchard et al., 2003). Gaining

information about a drug’s effects (including mechanism of

action, biological targets, network interactions, and so on) is

likewise important for small and medium-sized biotech

companies as they are largely reliant on venture capital

funding and are often unable to generate sufficient efficacy

and toxicity data to avoid failures happening further down the

line (Roberts, 2018).

2 Target-based vs. phenotypic drug
discovery

Target-based drug discovery (TDD) is a top-down approach

where the desired target is known (i.e., a protein thought to be

relevant for a disease) and compounds are screened against their

interaction with the target. Conversely, phenotypic drug

discovery (PDD) is a bottom-up approach where the desired

phenotype is known (i.e., healthy condition readouts) and

compounds are screened against replication of the phenotype.

Both approaches have the generation of chemical compounds as

their endpoint, yet they are characterized by one profound

difference. While TDD requires only the biological target for

drug screening, PDD requires a full biological system, like

cultured cells, animal models, or human subjects/patients.

Such difference is very likely the reason for why in silico

applications have found their main success in TDD. For

example, computer-aided drug design (CADD) uses a variety

of techniques, including quantitative structure-activity

relationship (QSAR), molecular docking, ADMET (absorption,

distribution, metabolism, excretion, toxicity), which can predict

drug-target binding using feature descriptors, e.g.,

physicochemical properties (Jiménez-Luna et al., 2020;

Jiménez-Luna et al., 2021; Paul et al., 2021; Galati et al., 2022;

Göller et al., 2022; Jia and Gao, 2022; Mamada et al., 2022).

Similarly, approaches based on artificial intelligence (AI) have

been very successful in drug design, where generative models for

in silico screening (for example, generative adversarial neural

networks, GANNs) are capable of sampling the chemical space at

an incredible pace compared with physics-based simulation such

as molecular dynamics (Díaz et al., 2019; Prykhodko et al., 2019;

Tong et al., 2021a; Blanchard et al., 2021; Gaudelet et al., 2021;

Abbasi et al., 2022). On the other hand, our level of insight into

the biological complexity of disease has been thus far deemed as

insufficient for a fruitful in silico PDD approach.

Strategies for TDD are very popular due to their cost-

effectiveness compared with PDD approaches, yet they carry

the risk of having an incomplete preclinical validation and a lot of

false positives. The problem is that the generation of a promising

lead compound that successfully interact with a target does not

immediately translate into the expected biological outcomes,

because many targets are disease-associated (which is

relatively easy to identify) but not disease-modifying [for

example, see (Florez, 2017)]. In addition, many drugs,

including most of the commercialized medicines, are

pleiotropic (i.e., they interact with more than one target) and

thereby interfere with several cellular processes including signal

transduction, receptor-mediated signaling, and metabolic

homeostasis. The ensuing changes in cell biochemistry

stimulate feedback and feedforward loops acting either to

amplify or suppress the activity of specific biological pathways

within very complex networks. As a consequence, the final net

biological outcome cannot be inferred from the individual effect

of the drug on a given target. The relatively low relevance of

target-specific effects is evidenced by the fact that for up to 20% of

currently approved drugs the biological targets and mechanisms

of action are actually unknown (Moffat et al., 2017).

The multiple interactions between drugs and biological

targets might well underlie unwanted side-effects, but often

they also contribute to therapeutical efficacy (Vincent et al.,

2022). In particular, even mild modulation of several targets

simultaneously can be much more efficient than strong

modulation of a single target. This notion forms the basis of

post-hoc polypharmacology (i.e., multi-target drug discovery and

combination therapy), which illustrates the idea that it is not the

target that should be treated, but rather the state of the biological

network (van Hasselt and Iyengar, 2019). Arguably, there is an

increasing demand on achieving a mechanistic understanding of

biological targets that takes into account the fact that such targets

are immersed in intricate networks and pathways often spanning

multiple cell types (Arrell and Terzic, 2010; Benson, 2015). Given

the high complexity and redundancy of biological networks,

predicting how perturbing multiple targets affects cell biology,

possibly at distinct points in space and time, requires the

development of computational tools that are capable of

capturing the holistic nature of living systems (Pujol et al.,
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2010; Rai et al., 2018). Specifically, in order to link TDD and PDD

it is necessary that such computational tools implements target

deconvolution, i.e., the identification of the biological targets that

are responsible for a specific drug-induced phenotypic response

(Hughes et al., 2021). Attempts in this direction have recently

employed AI and static interaction networks [reviewed by

(Cuperlovic-Culf, 2018; Zampieri et al., 2019)], e.g.,

compound-protein and phenotype-protein interactions (Iwata

et al., 2020). However, as discussed below PDD and target

deconvolution would greatly benefit from the integration of

AI with dynamical modeling and simulation of genome-scale

biological networks. Accordingly, cheminformatics, in silico

target prediction, as well as pathway network analysis are

thought to be critical tools along with the advancements in

experimental drug target deconvolution (e.g., chemical

proteomics) [reviewed by Hughes et al. (2021)]. This

argument is especially important for multiple or non-protein

biological targets, where computational methods provide

prioritized recommendations for subsequent in vitro and in

vivo experiments for target identification and validation (Leon

and Markel, 2006).

3 Artificial intelligence in biological
modeling and simulation

3.1 Overview

Systems biology aims at deciphering the complexity of

biological networks based on the formulation and use of

mathematical models. In particular, dynamical modeling and

simulation investigates the behavior and the relationships

between the elements of a particular biological system while it

is functioning and responding to perturbations (Ideker et al.,

2001). Typically, the dynamics of the biological network is

modeled by a set of ordinary differential equations (ODEs)

containing balance equations describing the time derivatives

of chemical species as well as rate equations describing the

velocities and mechanisms of action of chemical processes.

The ODE-based approach represents one of the most detailed

solutions for time-dependent analysis of biological networks

(Tangherloni et al., 2017). However, it requires the knowledge

of a large number of initial conditions and kinetic parameters,

and until recently only relatively simple biological systems have

been analyzed using such approach. Yet, being able to

quantitatively interrogate how complex biological networks at

the genome-scale (e.g., whole-cell level) respond to perturbations

holds great potential for gaining critical insights into the

mechanisms of diseases and the relevant therapeutic

interventions (Kell and Goodacre, 2014).

Biological networks can be studied at various spatial scales

spanning ~10 orders (nm to m) of magnitude (e.g., atomic/

molecular, molecular-complexes, sub-cellular, cellular, multi-

cellular, tissue, organ, multi-organ, organism) (Sali, 2021). In

order to cope with such complexity, multi-scale ODE-based

models commonly neglect spatial heterogeneity, for example

pools are considered instead of individual molecules, and/or

populations instead of individual cells. Even with these

simplifications, genome-scale models might still contain up to

tens of thousands molecular species and reactions within

different cells and cellular compartments, eventually across

distinct body organs (Thiele et al., 2020). The interactions

between system components are critically dependent on

network architecture, or topology, which brings about

emergent properties and behaviors so that phenotypic traits

arise from the collective action of genes (and conversely,

genetic diversity results in a variety of phenotypes). Collective

phenomena include steady-state multiplicity (e.g., bistability),

hysteresis, oscillations, whose details are outside the scope of this

paper [for reviews, see (Goldbeter, 2018; Goldbeter and Yan,

2022)]. As for the relevance in drug discovery, the deterministic

nature of ODE-based model simulation has the critical advantage

of allowing the study of “emergence” in terms of quantitatively

monitoring and analyzing the phenotypic response of the whole

biological system to pharmacological, genetic, environmental, or

pathophysiological perturbations.

3.2 Model construction

Genome-scale biological network models typically include

gene-regulatory, signal transduction, and metabolic pathways.

Metabolic models are among the most studied, as metabolism is

an exquisite indicator of the homeostatic functional state of the

cell and thus it is diagnostic of the patient’s disease phenotype

(Angione, 2019). Reconstructions of biological network topology

have recently advanced to the whole-body level, with genome-

scale single-cell networks [e.g., (Brunk et al., 2018)] scaled to

multi-cellular/multi-tissue systems (Thiele et al., 2020). Such a

process is supported by large community efforts across research

disciplines (Singla and White, 2021) that constantly generate

petabytes of publicly accessible datasets from high-throughput

biological experiments (Camacho et al., 2018). As highly complex

multi-omics information (e.g., abundance of genes, proteins, and

metabolites) are progressively more available, data-driven AI

techniques become increasingly important for efficient model

construction, validation and refinement.

Bottom-up biological network reconstruction is an iterative

process that requires both well annotated genome sequences and

literature-driven manual curation. For example, starting from

raw whole genome/exome sequences, similarity-based (e.g.,

sequence homology or local alignment) and ab initio

algorithms for gene-finding are used to predict the protein

coding regions and the functional sites of genes (Wang et al.,

2004; Ghorbani and Karimi, 2015; Chavali and Rhee, 2017).

Recently, deep learning has been employed to annotate enzymes
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and capture functional difference of enzyme isoforms on the

basis of raw sequence data (Li et al., 2018). Additional

biochemical information is needed on a protein-specific basis

(e.g., substrates and products for enzymes, or phosphorylation

state for receptors), which is typically obtained using basic

research (Reed et al., 2006). Other machine-learning

algorithms predict the cellular localization of proteins from

both the amino-acid sequence and high-throughput

experimental approaches (Schneider and Fechner, 2004; Nakai

et al., 2007). A combination of automatic and manual gap

analysis (e.g., due to genome misannotations) is then required

to obtain gap-filled biological networks (Karp et al., 2018; Pan

and Reed, 2018). Finally, gene-expression profiling via

transcriptomic data or reference atlases (Lähnemann et al.,

2020), possibly with the help of machine learning (ML)

(Abdolhosseini et al., 2019), is utilized to prune the biological

network in order to generate the single-cell reconstruction

(Raškevičius et al., 2018).

The topology of a biological network already containts lots

of information. For example, biological network analysis with

graph neural networks (GNNs) (Muzio et al., 2020) has been

used to predict novel disease-relevant protein-protein and

ligand-protein (i.e., drug-target) interactions (Li and Gao,

2019; Zhang et al., 2021). Network inference and graph

representations can also be exploited to learn and predict

across different types of -omics data (e.g., learn from bulk

RNA-seq and predict single-cell RNA-seq) (Hasibi and

Michoel, 2021). Molecular interpretation of single-cell RNA-

seq data has been also obtained using knowledge-primed neural

networks by matching biological and neural network topology

(Fortelny and Bock, 2020).

Biochemical profiling of biological fluids (e.g., serum,

urine, sweat) as well as tissue samples/extracts can be

employed to determine the extracellular and intracellular

pools that serve as initial conditions of the model. In

particular, the steady-state concentrations of chemical

species (e.g., small molecules) can be estimated using

experimental metabolomics, whereas proteomics can be

used to confirm gene expression patterns, since changes in

mRNA levels often correlate poorly with changes in protein

expression (Weston and Hood, 2004). Recently, ML has been

applied to chromatographic techniques (e.g., liquid or gas

chromatography) coupled to mass spectrometry for the

identification of specific (e.g., disease-associated) metabolic

pathways (Pirhaji et al., 2016; Toubiana et al., 2019).

Processing of proteomic and metabolomic datasets have

also been used in combination with systems biology and

deep learning to discriminate among different disease

phenotypes (Kopylov et al., 2021). Using ML, metabolite

concentrations have been even predicted from proteomic

data (Zelezniak et al., 2018) or from network topology-

based optimizations (Tepper et al., 2013; Küken et al.,

2019). Protein abundance can be also estimated by

integrating network models with transcriptomics (Li et al.,

2022) or metabolomic (Di Filippo et al., 2022) data.

Experimental fluxomics data can be used to estimate

substrate flow rates within the biological networks. Steady-

state and isotopically non-stationary flux analysis is typically

based on labeling experiments, like metabolite isotopic

enrichment studies that employ 13C-NMR spectroscopy

(Winter and Krömer, 2013; Niedenführ et al., 2015). In the

case of metabolic networks, flux analysis requires the

knowledge of the labeling patterns (i.e., atomic transitions) of

each chemical reactions. Since fluxomics data is generally very

difficult to obtain, predicting fluxes using ML is highly advised.

As an illustration, protein levels have recently been used for

training artificial neural networks in order to predict glycolytic

reaction fluxes (Ajjolli Nagaraja et al., 2019).

Open issues in model construction include the quality of the

reconstructed biological networks (eventually including

epigenomic data), because many genes have an unknown

function and the literature is often ambiguous or incomplete.

In this regard, AI can be used to support/validate the prediction

of gene network topology starting from a desired biological

function (Shen et al., 2021). Another outstanding challenge is

the development of automatic and reliable computational

methods for the prediction of the baseline values of

concentrations and fluxes, something that as discussed

necessarily goes along with the improvement of experimental

high-throughput methods and availability of transparent high-

quality multi-omics data.

3.3 Model simulation

The successful parametrization of biological network models

with AI and multi-omics data allows the implementation of

ODE-based simulation for the phenotype of interest, thereby

revealing mechanisms and pathways that are likely to contribute

characterizing drug actions as well as systemwide side-effects

(Michelson et al., 2006; Prokop and Michelson, 2012). Model

parametrization is a daunting task, but fortunately biological

systems do obey multiple constraints, from simple ones (e.g., flux

andmass balance) to more complex ones (e.g., genomic stability).

For instance, metabolic network models are inherently

constrained by reaction stoichiometry and thermodynamics

(e.g., Gibbs free energy and Haldane equations) (Chen et al.,

2016; Kiparissides and Hatzimanikatis, 2017). Biological

constraints make the corresponding high-dimensional

mathematical problems amenable to physics-informed neural

networks (PINNs) (Raissi et al., 2019; Karniadakis et al., 2021).

Embedding physics into ML is particularly relevant for

incorporating incomplete or noisy data in complex models

and obtain reliable predictions that can be used to e.g., solve

prohibitively expensive inverse problems such as target

deconvolution. Accordingly, model parameter estimation has
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been enhanced by incorporating the system of ODEs into deep

fully connected neural networks (Yazdani et al., 2020; Daneker

et al., 2022). In particular, loss functions for ML methods can be

formulated on the basis of specific simulation outputs that

depend on model equations. Notably, systems biology-

informed AI can be used to select among different reaction

kinetic schemes (e.g., mass-balance, S-systems, log-linear/lin-

log, Michaelis-Menten, generalized Hill, convenience,

modular) according to the available mechanistic knowledge,

experimental datasets, and desired level of details (Du et al.,

2016; Kim et al., 2018). Several approaches combining deep

learning with GNNs or GANNs have been recently used to

fully parametrize ODE-based genome-scale metabolic models

in terms of Michaelis-Menten affinity constants (Choudhury

et al., 2022) or enzyme turnover numbers (Li et al., 2021),

respectively. Bayesian meta-modeling is another systems

biology-based approach that uses different mathematical

representations, scales, and levels of granularity from prior

models in order to simulate cell activity (Raveh et al., 2021).

In addition, using ML some aspects of the system’s dynamics can

be learned from time-series data whenever these are available

(Costello and Martin, 2018).

Due to the high cost and difficulty underlying the experimental

determination of kinetic information, ODE-based systems are often

underdetermined (e.g., the number of variables is greater than the

number of known parameters). The increasing availability of useful

curated data notwithstanding, at themoment the sole viable solution

to the underdetermination problem is to step up the number of

different parametrizations of the same system. Statistical approaches

[e.g., (Liepe et al., 2014; Valderrama-Bahamóndez and Fröhlich,

2019)] can be used to obtain good coverage of the parameters space

in independent realizations that can thus be numerically solved in

parallel (i.e., using ensemble solving). Massively parallel resolution is

also beneficial for parameter estimation procedures as well as for

neural networks training in surrogate modeling (Renardy et al.,

2018; Engel et al., 2019; Vanhaelen, 2022). Recent developments in

graphics processing unit (GPU)-accelerated ODE solvers allows

investigating large-scale models of complex biological systems at

reduced computational costs [for example, see (Tangherloni et al.

(2017)].

Overall, stoichiometric, thermodynamic, and kinetic

information can be extracted from multi-omics data (Caudai

et al., 2021) and processed to enable the generation of ODE-based

genome-scale biological network models, a methodology that so

far has been limited to simple organisms for applications in

metabolic engineering and synthetic biology (Karr et al., 2012;

Chakrabarti et al., 2013; Almquist et al., 2014; Srinivasan et al.,

2015; Miskovic et al., 2019; St. John et al., 2019). However,

modeling and simulation of human cells and tissues promises

to enhance our understanding of therapeutical and/or

toxicological endpoints in drug discovery by quantitatively

uncovering the behavior of many molecular species (proteins,

enzymes, receptors, small molecules) that we normally do not

have access to in experimental settings. The critical contribution

of AI to biological modeling and simulation is the adaptive nature

of the algorithms to newly generated data and knowledge, which

dynamically affects the probability of performing certain

operations rather than others. Embedding biological principles

into AI-based approaches will strongly facilitate the

computational manipulation of biological networks and the

association of phenotypes to targets (i.e., target

deconvolution). In silico drug target deconvolution based on

modeling and simulation of genome-scale biological networks is

a large combinatorial problem. Deep reinforcement learning

(DRL) is a very powerful AI technique that presents unique

opportunities to map the high-dimensional states underlying the

dynamic behavior of ODE-based systems onto appropriate

physics-informed actions, e.g., the allowed set of perturbations

that result in the most favourable outcome in the long term

(Pawar and Maulik, 2021).

4 Conclusion and outlook

The integration of the predictive power of AI (statistical)

with the mechanistic understanding of modeling and

simulation (deterministic) is expected to give a substantial

contribution to the pharmaceutical industry. In particular,

convergence of data-driven and theoretical approaches is an

important step to complete the data-model-data cycle that is

necessary to solve the problem of parameter estimation and

elucidate biological system structure, mechanisms, and

dynamics (Wang et al., 2018). AI-enabled modeling and

simulation are promising tools to improve data

interpretation and distinguish between changes that are

caused by a disease from those that cause the disease.

Next-generation systems biology will undoubtedly benefit

from AI methods capable of converting multi-omics data at

different scales into actionable knowledge (Nielsen, 2017;

Angione, 2019), especially considering the expected

advances in data collection from patients (e.g., biosensors

for measuring the concentration of chemical species from

body fluids) (Jin et al., 2020; Bhave et al., 2021; Phatak et al.,

2021). In turn, personalized datasets are poised to substantially

enhance the ability of AI for parametrizing quantitative systems

pharmacology (QSP) models that combine systems biology with

pharmacokinetics and pharmacodynamics (PK/PD) in order to find

optimized therapeutics for individual patients or populations with a

given disease [for example, see (McEwen et al., 2021)]. Put in

perspective, patient-specific biological network models will form

the basis for the construction of medical digital twins (or “virtual

patients”) [(An and Cockrell, 2022) and references therein].

Genomic data, such as single nucleotide polymorphisms (SNPs),

can be incorporated into genome-scale biological networkmodels in

terms of enzyme/receptor kinetic parameters (e.g., protein

expression/abundance, substrate affinity, reaction or pathway
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velocity) (Yamada et al., 2001; Jamshidi et al., 2002; Jamshidi and

Palsson, 2006). Accordingly, systems biology and ML can be

used (for instance, within genome-wide association studies) to

discover SNP-disease association and possibly map individual

genetic variations to personalized models (Reilly et al., 2013;

Ho et al., 2019; Tong et al., 2021b; Mieth et al., 2021; Foguet

et al., 2022).

Overall, the AI-enabled computational framework for the

analysis of biological networks is anticipated to play a major

role in improving drug target identification and validation,

qualify any potentially associated side-effect, identify efficacy

and toxicity biomarkers, and help with hypothesis generation,

optimal experimental design, as well as testing for disease

understanding and identification of disease biomarkers (risk,

presence, or treatment selection) (Mardinoglu et al., 2014;

Zielinski et al., 2015; Raškevičius et al., 2018; Gu et al., 2019;

Turanli et al., 2019; Bintener et al., 2020; Gatto et al., 2020;

Proffitt et al., 2022). All these aspects are necessary to support

the decision-making process of pharmaceutical companies

towards de-risking and ultimately accelerating the time-to-

market of new effective and safe medicines for patients.
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