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Amyotrophic Lateral Sclerosis (ALS) is a motor neurodegenerative disorder whose cellular
hallmarks are the progressive death of motor neurons (MNs) located in the anterior horn of
the spinal cord, brainstem and motor cortex, and the formation of intracellular protein
aggregates. Over the course of the disease, progressive paralysis takes place, leading to
patient death within 3–5 years after the diagnosis. Despite decades of intensive research,
only a few therapeutic options exist, with a limited benefit on the disease progression.
Preclinical animal models have been very useful to decipher some aspects of the
mechanisms underlying ALS. However, discoveries made using transgenic animal
models have failed to translate into clinically meaningful therapeutic strategies. Thus,
there is an urgent need to find solutions to discover drugs that could impact on the course
of the disease, with the ultimate goal to extend the life of patients and improve their quality
of life. Induced pluripotent stem cells (iPSCs), similarly to embryonic stem cells (ESCs),
have the capacity to differentiate into all three embryonic germ layers, which offers the
unprecedented opportunity to access patient-specific central nervous system cells in an
inexhaustible manner. Human MNs generated from ALS patient iPSCs are an exciting tool
for disease modelling and drug discovery projects, since they display ALS-specific
phenotypes. Here, we attempted to review almost 2 decades of research in the field,
first highlighting the steps required to efficiently generate MNs from human ESCs and
iPSCs. Then, we address relevant ALS studies which employed human ESCs and iPSC-
derived MNs that led to the identification of compounds currently being tested in clinical
trials for ALS. Finally, we discuss the potential and caveats of using patient iPSC-derived
MNs as a platform for drug screening, and anticipate ongoing and future challenges in ALS
drug discovery.
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INTRODUCTION

Neurodegenerative disorders (NDs) are a tremendous public
health challenge worldwide. Besides having a devastating
impact on the quality of life of patients, NDs are a heavy load
for caregivers and they pose a tremendous financial burden for
health-care systems (Collaborators, 2019; Deuschl et al., 2020).
Across the globe, with special emphasis on Western countries, as
the population is increasingly ageing, problems are expected to
loom bigger in the coming decades, with dramatic increases in the
number of diagnosis of NDs (Collaborators, 2019). In Europe, the
annual costs for brain disorders including neurodegenerative
diseases and brain injury related with stroke are close to a
trillion Euros, representing an average yearly cost per
inhabitant of € 5,555, which equals 3.7 months of average
yearly salary (Olesen et al., 2012). A delay of 5 years in the
occurrence of NDs coupled to a better recovery, would
effectively reduce the costs associated with a potential saving
of one third (Olesen et al., 2012).

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative
disease that is characterized by the progressive loss of motor
neurons (MNs) that locate in the motor cortex, brainstem and
anterior horn of the spinal cord (Figure 1) (Rowland and
Shneider, 2001; Brown and Al-Chalabi, 2017). Moreover, in
addition to being the most common motor neuron

degenerative disorder, ALS is the most common
neurodegenerative disorder in mid-life and amongst the most
rapidly fatal, with death occurring nearly 2–3 years after
symptom onset (Kiernan et al., 2011; Brown and Al-Chalabi,
2017). Motor neurons are a type of specialized neurons of the
central nervous system (CNS), which have their cell bodies
located in the motor cortex, in the mid- and hind-brain nuclei
and in columns throughout the ventral horns of the spinal cord
(Figure 1) (Kanning et al., 2010). Motor neurons transport
information from the brain to the periphery and, thus, permit
the magnificently and delicately orchestrated contraction of
skeletal muscles (Figure 1) (Grillner and Jessell, 2009;
Kanning et al., 2010). The nearly 300 bilateral pairs of muscles
present in the body are innervated by nearly 120,000 MNs in the
spinal cord (Kanning et al., 2010). However, even though MNs
have well-known common functions, they constitute in fact a
complex and heterogeneous population of CNS cells (Kanning
et al., 2010; Nijssen et al., 2017). Several actions on which life
depends are critically controlled by MNs, including swallowing
and breathing (Grillner and Jessell, 2009; Jessell et al., 2011). The
death of MNs leads to progressive motor impairment and
ultimately death (Talbot and Marsden, 2008; Talbot and
Oxford University Press., 2010; Brown and Al-Chalabi, 2017).
The group of diseases known as MN disorders can be
fundamentally divided into three categories: those with

FIGURE 1 | The motor system, which is critically affected in ALS. The motor system comprises motor neurons whose cell bodies are located in the central nervous
system (brain and spinal cord). They exit the central nervous system assembled in cranial and peripheral nerves, which will be in contact with and carry the electric signals
that elicit skeletal muscle contraction. In general, the different motor circuits comprehend upper cortical motor neurons and lower bulbar or spinal cord motor neurons.
The motor neurons influence the actions of skeletal muscle through a special type of synapse, the neuromuscular junction. The demise of motor neurons in ALS
leads to impairment of different motor circuits, with patients ultimately developing muscle weakness and paralysis (Diagram created with BioRender.com).
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exclusive upper MN degeneration [e.g., Primary Lateral Sclerosis
(PLS)], those with specific lower MN involvement [e.g., Spinal
Muscular Atrophy (SMA)] and MN diseases with combined
upper and lower MN involvement [e.g., ALS] (McDermott
and Shaw, 2008; Talbot and Marsden, 2008; Goutman, 2017;
Takeda et al., 2020). Regarding ALS, despite decades of research,
the available therapeutic options have a limited impact on
patients’ prognosis and the great majority of ALS patients still
die due to respiratory failure, which show us that our knowledge
on the disease remains in its initial stages (Rowland and Shneider,
2001; Brown and Al-Chalabi, 2017).

Human induced pluripotent stem cells (hiPSCs) are a type of
human pluripotent stem cells (hPSCs) that can be generated by
the reprogramming of somatic cells of an individual (Yamanaka,
2020). These cells, like human embryonic stem cells (hESCs), are
able to differentiate into all three germ layers and they can give
rise to virtually all cell types of the body. The use of hiPSCs has
opened up new fields of studies and exceptional possibilities to
generate in vitro, nearly inexhaustible sources of cells which are
normally inaccessible to study in the human body (Nizzardo
et al., 2010; Han et al., 2011; Karagiannis et al., 2019; Yamanaka,
2020). Indeed, numerous ethical and technical constraints
prevent the use of MNs obtained from patients in laboratory
studies and, thus, hPSCs have become an extraordinary resource
to study NDs like ALS (Silani et al., 1998; Palmer et al., 2001;
Nizzardo et al., 2010; Han et al., 2011). In the past 2 decades,
hiPSCs and hESCs have represented a powerful tool for studying
human development, modelling diseases, performing drug
screening campaigns, and evaluating the future of cell
replacement therapy (Avior et al., 2016; Karagiannis et al.,
2019; Rowe and Daley, 2019; Chang et al., 2020; Yamanaka,
2020). Importantly, it is also anticipated that these cells could be
used to meaningfully and robustly stratify patients based on
prediction of drug therapy response (Haston and Finkbeiner,
2016; Holmqvist et al., 2016; Stern et al., 2018a; Pasteuning-
Vuhman et al., 2020).

In the present review, we first appraise the main clinical and
neuropathological aspects of ALS. Next, we review the steps
undertaken to generate MNs from hESCs and hiPSCs, and
summarize how these cells were employed for ALS-directed
drug discovery efforts, which have led to the identification of
novel drug candidates and translation into a few recent clinical
trials for ALS. Finally, we discuss the current challenges in the
field, and novel avenues for drug discovery and drug repurposing
using these models.

CLINICAL AND EPIDEMIOLOGICAL
FEATURES OF AMYOTROPHIC LATERAL
SCLEROSIS
Also known as Lou Gehrig’s disease, ALS was initially described
in the scientific literature in 1869 by the French neurologist and
anatomical pathologist Jean-Martin Charcot (Rowland, 2001;
Kiernan et al., 2011; Katz et al., 2015). Clinically, ALS presents
more commonly as a progressive muscular weakness leading to
paralysis and death (Wijesekera and Leigh, 2009; Kiernan et al.,

2011) due to the progressive degeneration of MNs in the motor
cortex, brainstem and anterior horn of the spinal cord (Figure 1)
(Rowland and Shneider, 2001; Kiernan et al., 2011; Leblond et al.,
2014; Brown and Al-Chalabi, 2017). The ALS diagnosis is
fundamentally clinical due to the lack of disease biomarkers,
being common a 1–2 years delay between the initial symptoms
and the final diagnosis (Rowland and Shneider, 2001; Ludolph,
2011; Brown and Al-Chalabi, 2017; Masrori and Van Damme,
2020). ALS seems to affect women and men equally and the risk
of the disease increases with age, with an average age of onset
around 62 years (Orrell, 2007; Chio et al., 2013). The incidence is
roughly 2 per 100,000 persons per year, and the prevalence is
around 6 per 100,000 persons (Worms, 2001; Dunckley et al.,
2007; Orrell, 2007; Chio et al., 2013). The average cumulative risk
of developing ALS during lifetime is nearly 1 to 350 in men and 1
to 400 in women (Hardiman et al., 2011; Ryan et al., 2019;
Masrori and Van Damme, 2020). The time course of ALS can be
markedly heterogeneous and complex, but the prognosis is poor
for all patients, with death occurring within 3–5 years after the
initial diagnosis (Rowland and Shneider, 2001; Wijesekera and
Leigh, 2009; Brown and Al-Chalabi, 2017). ALS is an invariably
fatal disease, with the median survival after symptom onset of
27.5 months and the 4-years survival rate is close to 40%
(Hardiman et al., 2011; Su et al., 2014). Unfortunately, only
nearly 20% of patients survive longer than 5 years (Cooper-
Knock et al., 2014) and no more than 10% of patients are able
to survive for more than 8 years (Hardiman et al., 2011; Kiernan
et al., 2011).

For most of the ALS patients, the disease process starts in one
area and spreads in an anatomically contiguous manner
throughout the motor system (Ravits and La Spada, 2009;
Kanouchi et al., 2012; Ravits, 2014; Takeda et al., 2020). This
involves insidious progression to paralysis that initially starts in
one limb (arm or leg) as progressive weakness (limb-onset) or the
bulbar muscles, with speech and swallowing problems (bulbar-
onset) (Ravits et al., 2007; Ravits and La Spada, 2009; Kanouchi
et al., 2012; Brown and Al-Chalabi, 2017; Takeda et al., 2020). In
extremely rare cases, the disease starts simultaneously in multiple
areas or in the respiratory muscles (Ravits and La Spada, 2009;
Kanouchi et al., 2012; Ravits, 2014; Takeda et al., 2020). Other
unusual initial disease manifestations include weight loss,
cramps, fasciculations without muscle weakness, emotional
fluctuation and cognitive abnormalities, as well as, isolated
respiratory failure (Brown and Al-Chalabi, 2017; Masrori and
Van Damme, 2020; Norris et al., 2020). Upper MNs injury causes
spasticity and brisk deep reflexes, whereas dysfunction of lower
MNs leads initially to fasciculations (spontaneous muscle
twitching); and, with ensuing degeneration, loss of synaptic
connectivity with target muscles, which causes muscle wasting,
weakness and atrophy (Brown and Al-Chalabi, 2017; Masrori and
Van Damme, 2020; Norris et al., 2020). Numerous studies have
demonstrated that different groups of MNs show differential
vulnerability to neurodegeneration in ALS (Kanning et al., 2010;
Saxena and Caroni, 2011; Ravits et al., 2013; Kaplan et al., 2014;
Nijssen et al., 2017). The large alpha-MNs are the first to
degenerate, and fast-twitch motor units are preferentially
affected (Pun et al., 2006; Hegedus et al., 2007; Gordon et al.,
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2010; Kanning et al., 2010; Nijssen et al., 2017). Apparently, there
is a gradient of vulnerability in the spinal cord motor neurons,
since slower motor units become affected later in the disease
comparatively to fast motor units (Nijssen et al., 2017).
Consequently, the fast glycolytic muscles become paralyzed
first, followed by the slow oxidative muscles (Nijssen et al.,
2017). The presence of enhanced oxidative stress or higher
energetic demands that are not fulfilled could help explaining
the selective vulnerability of large MNs to neurodegeneration
(Schmitt et al., 2014; Ioannides et al., 2016; Vandoorne et al.,
2018). Interestingly, the MNs in the oculomotor (the third cranial
nerve), trochlear (the fourth cranial nerve) and abducens (the
sixth cranial nerve) nerves, which regulate eye movements; and
those of the Onuf’s nucleus are resistant to degeneration in ALS
(Mannen et al., 1977, 1982; Schroder and Reske-Nielsen, 1984;
Gizzi et al., 1992; Kaplan et al., 2014; Nijssen et al., 2017). Studies
employing omics analyses of MNs with distinct susceptibility to
degeneration in ALS allowed to identify candidate genes/proteins
that protect susceptible MNs. Thus, a protein signature for
resistant oculomotor MNs has been established; it includes
insulin-like growth factor 2 (IGF-2), GABAA receptor α1
(Gabra1), guanylate cyclase soluble subunit alpha-3 (Gucy1a3)
and parvalbumin, whose selective expression in these unique
neurons was consistently demonstrated through
immunohistochemistry in both human and rodent samples
(Hedlund et al., 2010; Comley et al., 2015). Candidate
molecules selectively expressed by vulnerable MNs are
numerous and include neuronal matrix metalloproteinase-9
(MMP-9) (Kaplan et al., 2014). Interestingly, the reduction of
neuronal MMP-9 levels delayed muscle denervation and
extended the survival of ALS mice, while the introduction of
MMP9 was demonstrated to be sufficient to induce degeneration
of fast MNs (Kaplan et al., 2014). In contrast, MMP-9
overexpression in resistant MNs did not enhance neuronal
death, even in the presence of SOD1 (Kaplan et al., 2014).
Together, these results highlight the role of MMP-9 in
selective MN degeneration, through a mechanism initially
involving activation of ER stress; and set forth MMP-9
inhibition as a promising therapeutic target in ALS (Kaplan
et al., 2014). A recent study also suggests that the mechanism
underlying MNs subtype vulnerability may be linked to
proteostatic stress and ability to efficiently degrade SOD1
protein aggregates (An et al., 2019). The ongoing research
efforts aiming at understanding more in-depth the selective
vulnerability of MNs in ALS will generate invaluable
knowledge on the requirements of MNs to keep themselves
alive, and have the prospect to open novel avenues in
therapeutic discovery for ALS.

The current lack of a definitive diagnostic test for ALS is one of
the major hurdles in the field. Therefore, the ALS diagnosis is
mainly based on the presence of indicative clinical signs coupled
with negative laboratory tests and imaging studies to rule out
other differential diagnosis (Baumer et al., 2014; Vucic et al., 2014;
Brown and Al-Chalabi, 2017; Norris et al., 2020).
Electromyography studies help to confirm the extent of
denervation and constitute a relevant and helpful diagnostic
tool (Ludolph et al., 2015; Brown and Al-Chalabi, 2017;

Masrori and Van Damme, 2020). In order to make the
diagnostic process less problematic and also to more
accurately stratify patients for clinical research studies and
clinical drug trials, the scientific community has put enormous
efforts in the past decades to unify patient symptoms and signs,
into a well-defined clinically entity (Wijesekera and Leigh, 2009).
To this end, ALS researchers developed the El Escorial diagnostic
criteria and the Arlie House criteria, which have been updated
over time (Ludolph et al., 2015; Hardiman et al., 2017; van den
Berg et al., 2019). In addition, based on comprehensive clinical
information numerous ALS staging systems have been proposed.
The Milano-Torino (MiToS) functional staging and King’s
clinical staging systems are the most widely studied and
previous studies demonstrated they could be complementary
(Roche et al., 2012; Chio et al., 2015; Hardiman et al., 2017;
Kiernan et al., 2020). The King’s clinical staging system is capable
to differentiate early to mid-disease well, whereas the MiToS
staging allows detailed differentiation in late ALS stages (Fang
et al., 2017; Hardiman et al., 2017; Kiernan et al., 2020). Thus,
researchers have proposed to use both in the evaluation of the
ALS disease stage (Fang et al., 2017; Kiernan et al., 2020).
Importantly, the ALS community has also attempted to
develop robust models to better estimate the individual
prognosis for ALS patients. In one recent successful attempt, a
group of European researchers developed a solid prognostic
model which was validated across 14 European ALS centers,
and which was made freely available online for the usage by
medical doctors (Mitsumoto, 2018; Westeneng et al., 2018). Eight
powerful prognostic factors were identified and a comprehensive
model was developed leading to five main different prognostic
categories (very long, long, intermediate, short, and very short
times) to the composite outcome (survival without tracheostomy
or non-invasive ventilation for more than 23 h per day) were
proposed (Westeneng et al., 2018). Robust and accurate models
for disease prognosis prediction are of fundamental application in
personalized ALS patient management and in the optimized
design of clinical studies (Mitsumoto, 2018; Kiernan et al., 2020).

Less than 10% of ALS cases are considered ‘‘familial’’ (fALS) or
inherited, with a familial genetic cause underlying (Brown and
Al-Chalabi, 2017; Chia et al., 2018; Kim G. et al., 2020). These
result from mutations inherited in a dominant monogenetic
manner, but they can also be dominant with incomplete
penetrance, recessive, and X-linked (Chia et al., 2018; Kim G.
et al., 2020). The remaining majority of ALS cases have an
idiopathic origin, hence they are considered ‘‘sporadic’’ (sALS),
or presenting without a clear familial history (Chia et al., 2018;
Kim G. et al., 2020; Shatunov and Al-Chalabi, 2021). Remarkably,
the courses of fALS and sALS cannot be distinguished (Rowland
and Shneider, 2001; Brown and Al-Chalabi, 2017). The
extraordinary advances in genetics research over the past
decades allowed the identification of mutations in nearly 30
genes which are linked with familial ALS, sporadic ALS, or
both (Chia et al., 2018; Kim G. et al., 2020; Shatunov and Al-
Chalabi, 2021). Generically, they can be grouped into three main
categories: genes coding for proteins implicated in protein
homeostasis [for example, superoxide dismutase 1 (SOD1)
(Rosen et al., 1993), vesicle-associated membrane protein B
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(VAPB) (Nishimura et al., 2004), optineurin (OPTN) (Maruyama
et al., 2010), valosin-containing protein (VCP) (Johnson et al.,
2010), ubiquilin 2 (UBQLN2) (Deng et al., 2011) and
sequestosome 1 (SQSTM1) (Rubino et al., 2012; Teyssou et al.,
2013)], those involved in altered RNA homeostasis and
trafficking [fused in sarcoma (FUS) (Kwiatkowski et al., 2009;
Vance et al., 2009), TAR DNA binding protein (TARDBP/TDP-
43) (Sreedharan et al., 2008) and Chromosome 9 open reading
frame 72 (C9ORF72) (DeJesus-Hernandez et al., 2011; Renton
et al., 2011)] and genes coding for cytoskeletal-related proteins
[dynactin (DCTN1) (Puls et al., 2003), profilin (PFN1) (Wu et al.,
2012) tubulin alpha 4a (TUBA4A) (Smith et al., 2014), and
kinesin family member 5A (KIF5A) (Nicolas et al., 2018)],
which further highlights the disease complexity and
heterogeneity of potential pathophysiological mechanisms at
play (Figure 2) (Grad et al., 2017; Chia et al., 2018; Kim G.
et al., 2020).

The SOD1 gene and the GGGGCC (G4C2) hexanucleotide
repeat expansion in the C9ORF72 gene are the twomost common
genetic alterations linked with ALS (Chia et al., 2018; Mejzini
et al., 2019). The SOD1 gene on chromosome 21 was the first gene
whose mutations were linked with ALS, in 1993 (Rosen et al.,
1993). Mutations in SOD1 are present in nearly 12% of the fALS
cases and 2% of sALS cases (Chia et al., 2018; Kim G. et al., 2020).
SOD1, which is an enzyme ubiquitously expressed, localizes to
different cellular compartments, protecting cells from toxic

reactive oxygen species (Kim G. et al., 2020). Over the past
30 years more than 180 mutations in the SOD1 gene have
been identified (Mejzini et al., 2019). These are associated with
diverse ALS clinical phenotypes and disease courses (Su et al.,
2014; Mejzini et al., 2019). For example, the D90A (aspartic acid
to alanine substitution in codon 90) SOD1 mutation is recessive
and patients homozygous for this SOD1 variant are only mildly
affected by the disease, with patient survival usually greater than
10 years (Andersen et al., 1996). Contrarily, the A4V (alanine to
valine substitution in codon 4) SOD1 dominant mutation leads to
a rapidly progressive form of ALS, with an average survival of
only 1.4 years after the initial symptoms (Juneja et al., 1997; Su
et al., 2014). The majority of studies in SOD1-ALS have
demonstrated the presence of gain-of-function mutations
(Chia et al., 2018; Kim G. et al., 2020). The discovery of SOD1
mutations in ALS originated the generation of the first transgenic
animal models and in vitro cellular models of ALS, which have
been instrumental to gain a more in-depth knowledge of the
disease (Turner and Talbot, 2008; McGoldrick et al., 2013).

In the last decade, a novel major genetic ALS breakthrough
was reported: the identification of a GGGGCC (G4C2)
hexanucleotide repeat expansion in the C9ORF72 gene
(DeJesus-Hernandez et al., 2011; Renton et al., 2011; Chia
et al., 2018; Kim G. et al., 2020). This unique mutation is
present in nearly 40% of fALS cases and approximately 8–10%
of sALS cases (DeJesus-Hernandez et al., 2011; Renton et al.,

FIGURE 2 | Overview of the most relevant ALS pathophysiological mechanisms. The complex and multifactorial neurodegenerative process that is at the core of
ALS not only involves mechanisms of disease occuring within the motor neuron, but also pathophysiological processes that arise from the interaction with neighbouring
partners, namely astrocytes, microglia, oligodendrocytes and skeletal muscle. The number of possible mechanisms and proteins associated with ALS onset has been
growing considerably over the past decades (Diagram created with BioRender.com).
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2011; Chia et al., 2018; Kim G. et al., 2020). In addition, C9ORF72
expansions are also directly related to frontotemporal dementia
(FTD) (DeJesus-Hernandez et al., 2011; Renton et al., 2011; Kim
G. et al., 2020; Yang et al., 2020). This helped to explain the
recently acknowledged clinical overlap between ALS and FTD,
which is present in 25% of familial FTD patients and up to 88% in
familial ALS/FTD patients (Ji et al., 2017; Strong et al., 2017; Chia
et al., 2018). In fact, up to 50% of ALS patients develop
progressive cognitive abnormalities and behavioral changes,
which ultimately lead to FTD, with autopsy evidence of
neuronal loss in the frontal and temporal lobes (Saberi et al.,
2015; Ji et al., 2017; Strong et al., 2017). Consequently, the
understanding of ALS pathogenesis has increased
tremendously with the discovery of C9ORF72 hexanucleotide
expansions, since they are linked not only to ALS, but also to FTD
(DeJesus-Hernandez et al., 2011; Renton et al., 2011). ALS is a
very complex neurodegenerative disorder, which possibly affects
multiple organic systems, besides the neuromuscular axis
(Cooper-Knock et al., 2014; Strong et al., 2017; Kim G. et al.,
2020). However, the exact function of the C9ORF72 protein
remains to be firmly established (Kim G. et al., 2020).
Furthermore, the detailed mechanisms by which the C9ORF72
gene expansions lead to neurodegeneration are also not entirely
understood, with three main prospective disease mechanisms
currently being considered: gain-of-function mechanisms linked
with repeat-RNA-mediated toxicity in the form of either RNA
foci or other aberrant RNAs; production of toxic homo-
polymeric dipeptide repeat proteins (DPRs) through RNA
translation and loss of function of the C9ORF72 protein
(Donnelly et al., 2013; Balendra and Isaacs, 2018; Kim G.
et al., 2020). Further extensive studies are needed to better
elucidate the disease mechanisms of C9ORF72 gene
expansions in ALS and ALS/FTD (Balendra and Isaacs, 2018;
Kim G. et al., 2020).

The ALS phenotype is highly heterogeneous, and to add
further to the complexity of disease mechanisms (Figure 2),
the interplay between genetic risks and the exposure to
different environmental risk factors (for example, pesticides,
lead or smoking, among others) cannot be ignored (Malek
et al., 2014; Oskarsson et al., 2015; Koeman et al., 2017). For
example, a recent study showed that there is also a complex
interaction between exercise and ALS pathology, which could
involve the Fibroblast Growth Factor (FGF) pathway, as a result
of oxidative stress and hypoxia (Julian et al., 2021). Interestingly,
modulation of the FGF pathway is important to lower glial
reactivity (Savchenko et al., 2019) observed in ALS, and
increase levels and activity of glutamate transporter GLT1/
EAAT2, important to buffer glutamate-induced excitotoxicity
(Figure 2) (Rothstein et al., 2005; Roybon et al., 2013). FGFs
secretion by injuredMNs could be a natural process to counteract
glial reactivity and modulate glutamate transporter activity.
Interestingly, FGF2 and FGF receptor 1 expression is
preserved in different parts of the motor system in post-
mortem tissue of ALS patients (Petri et al., 2009).

The complexity of ALS is also highlighted by the fact that
different gene mutations can result in the same clinical
phenotype, and different clinical phenotypes can be evident in

the presence of the same gene mutation (Al-Chalabi et al., 2012;
Grad et al., 2017; Takeda et al., 2020). The survival of ALS patients
is also influenced by a myriad of factors, including the clinical
phenotype; rate of disease progression; appropriate interventions
to manage symptoms, including use of nasogastric feeding;
nutritional status; prevention of aspiration (control of salivary
secretions and application of cough-assist devices), and the
specialized management of respiratory impairment (Jenkins
et al., 2014; Vucic et al., 2014; Dorst et al., 2018; Chio et al.,
2020; Norris et al., 2020). As far as pharmacological therapy is
concerned, only two drugs are currently used for the treatment of
ALS. The first one, Riluzole, started being used in ALS patients in
1995 (Bensimon et al., 1994; Norris et al., 2020). The drug
prolongs the life of the patients by about 2–3 months when
used in the standard dose of 2 × 50 mg per day (Miller et al.,
2007; Miller et al., 2012; Dorst et al., 2018). Riluzole is approved
by both the Food and Drug Administration (FDA) and European
Medicines Agency (EMA). Even though Riluzole has been used
for more than 2 decades, its precise mechanism of action remains
elusive, with current evidence suggesting that the drug elicits the
reduction of presynaptic glutamate release (anti-glutamatergic
effect), which may be due to blockage of sodium or calcium
channels, as well as, a decrease of persistent sodium currents
(Bellingham, 2011; Dorst et al., 2018). The second drug recently
approved is Edaravone. This drug was initially used in Japan to
treat acute ischemic stroke (Edaravone Acute Infarction Study,
2003). Edaravone is an anti-oxidative stress agent currently in use
in ALS patients in United States, Canada and Japan, but which is
only available as a compassionate medication in the European
Union (Dorst et al., 2018; Chio et al., 2020). In a selected group of
ALS patients in early disease stage, the drug demonstrated a
significantly smaller decline of the scores of the Revised
Amyotrophic Lateral Sclerosis Functional Rating Scale
(ALSFRS-R) after 6 months of treatment (Writing and
Edaravone, 2017). The long-term effects of Edaravone on ALS
patients have not yet been fully evaluated; however, a Japanese
study showed that the survival rate until the first endpoint
(tracheostomy-free survival or death) was significantly
improved in the Edaravone group (Okada et al., 2018).
Therefore, despite decades of knowledge on the disease and
extensive pre-clinical and clinical research, ALS is still
incurable and the development of new disease-modifying
therapeutic strategies is vital.

NEUROPATHOLOGICAL FEATURES OF
AMYOTROPHIC LATERAL SCLEROSIS

The loss of anterior horn cells and sclerosis in the lateral columns
of the spinal cord, which are the key macroscopic ALS
neuropathological features, were initially described by Charcot
in 1860s (Rowland, 2001; Katz et al., 2015). Indeed, there is
characteristically atrophy of the anterior nerve roots and a
reduction of the white matter especially in the corticospinal
tract (Saberi et al., 2015). Furthermore, the degeneration of the
corticospinal axons leads to thinning and scarring (sclerosis) of
the lateral elements of the spinal cord (Rowland, 2001; Katz et al.,
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2015; Grad et al., 2017; Takeda et al., 2020). The progressive death
of brain stem and spinal motor neurons will eventually give rise to
the denervation-induced atrophy of the muscles (amyotrophy)
(Figure 2) (Rowland, 2001; Katz et al., 2015; Takeda et al., 2020).
Macroscopically, the brain of the majority of ALS patients is
unremarkable, except for some cases which have atrophy of the
precentral gyrus (Saberi et al., 2015). However, if the ALS patient
also had dementia, it will be possible to observe atrophy of the
frontal or temporal cortex, with these atrophic features being
more pronounced in ALS/FTD cases (Boxer et al., 2011; Saberi
et al., 2015).

Microscopically, the most distinctive features are a marked
neuronal and axonal loss (Saberi et al., 2015; Takeda et al.,
2020). Upon observation of routine hematoxylin-eosin (H&E)
sections, depletion of large MNs in the anterior horn of the
spinal cord, lower cranial motor brainstem nuclei, and Betz
cells in the motor cortex (aspect originally described by
Broadman, in 1909) can easily be identified (Saberi et al.,
2015; Hardiman et al., 2017; Takeda et al., 2020). Moreover,
with stains highlighting myelin (for example, luxol fast blue),
reduction of myelinated axons in the lateral and anterior
columns of the spinal cord, as well as, decreases in the
dimension of the anterior horn of the spinal cord can be
observed (Saberi et al., 2015; Spencer et al., 2020; Takeda
et al., 2020). Remarkably, the neuropathological changes
observed in the central nervous system of ALS patients go
beyond these generic features. In fact, it also possible to observe
in representative sections a sponge-like appearance given by
neuronal vacuolization, empty spaces near neurons,
microscopic holes and spongiosis (Saberi et al., 2015; Takeda
et al., 2020). Another frequent and distinctive feature is the
presence of 3–6 mm round to oval eosinophilic intracellular
inclusions in the cytoplasm of MNs in the spinal cord and brain
stem, which were initially described in the 1960s (Bunina, 1962;
Saberi et al., 2015). These are Bunina bodies, which are best
seen on H&E-stained tissue samples, and are present in both
fALS and sALS patients (Saberi et al., 2015). Their presence in
Betz cells, oculomotor nuclei neurons and Onuf nuclei has
scarcely been reported (Saberi et al., 2015). The demise of MNs
is paralleled by a neuroinflammatory process, with significant
proliferation and activation of astroglia, microglia and
oligodendroglia, along with the increasingly recognized
altered function of immune cells in the CNS and
peripherally (Figure 2) (Philips and Robberecht, 2011;
Thonhoff et al., 2018; Chiot et al., 2019; Spencer et al., 2020).

A distinct neuropathological feature of ALS which has only
more recently been unraveled, thanks to the advent of
immunohistochemistry and other techniques, is the presence
of ubiquitin-positive cytoplasmic inclusions (Saberi et al.,
2015; Takeda et al., 2020). These were initially described in
the 1980s, and they were later shown to be composed
primarily by TDP-43 protein (Saberi et al., 2015; Takeda et al.,
2020). The misfolding of TDP-43 protein is a significant ALS
neuropathological feature, and aggregates are present in nearly
97% of the cases (Saberi et al., 2015; Hardiman et al., 2017; Takeda
et al., 2020). For both ALS and ALS/FTD, TDP-43 aggregates are
commonly found in neurons of the frontal cortex, temporal

cortex, hippocampus and striatum, but they can occasionally
been seen in glial cells (Arai et al., 2003). There are different kinds
of TDP-43 inclusions, which include fine skeins, coarse skeins,
dot-like and dense round inclusions (Saberi et al., 2015;
Hardiman et al., 2017). Nevertheless, TDP-43 inclusions are
far from being pathognomonic for ALS, since they can also be
seen in other neurodegenerative diseases including Alzheimer’s
disease (McAleese et al., 2017; Montalbano et al., 2020; Tome
et al., 2020).

For each genetic form of ALS there are also additional and
distinctive molecular features, which have begun to emerge and
will be briefly mentioned here. For example, in SOD1-ALS, the
anterior horn MNs also show inclusions composed by a
hyalinized, poorly stainable substance, known as Lewy
body–like inclusions (LBLIs) (Saberi et al., 2015). Using
immunohistochemistry LBLIs were shown to stain for SOD1,
ubiquitin, phosphorylated neurofilaments and different
chaperone proteins, but which are negative for TDP-43 or
phosphorylated TDP-43 (Okamoto et al., 2011; Saberi et al.,
2015). In the C9ORF72 cases, most of the observed
ubiquitinated inclusions are p62 positive, but negative for
TDP-43 (Al-Sarraj et al., 2011; Saberi et al., 2015).
Interestingly, most of these proteins (for example, p62,
ubiquitin and HSP70) were found co-localized in LBLIs in a
human cortical neuron-based model of alpha-synucleinopathy
(Gribaudo et al., 2019). Furthermore, another signature of
C9ORF72-ALS is the presence of foci of RNA of the
expanded repeats, which is a feature of several of the repeat
expansion diseases and can be detected by fluorescent in situ
hybridization (FISH) (Zu et al., 2013; Cooper-Knock et al.,
2015). These repeat expansions can hopefully be mitigated
experimentally by antisense intervention (Donnelly et al.,
2013; Riboldi et al., 2014). The ongoing and future studies in
the field will help to elucidate the pathophysiological
mechanisms leading to the neuropathological changes
observed in ALS patients.

DRUG DISCOVERY EFFORTS IN
AMYOTROPHIC LATERAL SCLEROSIS
HAVE FAILED TO TRANSLATE INTO
CLINICALLY APPLICABLE THERAPEUTIC
STRATEGIES FOR PATIENTS

The discovery of ALS pathophysiological mechanisms has been
accelerated by the generation of several animal and in vitro
cellular models ALS-linked, a great majority based on the ALS
mutations identified over the past decades. These models have
also allowed the testing of promising novel drugs that might
change the course of the disease (Lanka and Cudkowicz, 2008;
Turner and Talbot, 2008; Su et al., 2014; Philips and Rothstein,
2015; Lutz, 2018). Despite extensive research in the field over the
years, an unifying model of the molecular mechanisms
accounting for MN degeneration is still lacking, which
explains in part why few therapeutic advances have been
achieved so far, rendering ALS still incurable.
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The most widely studied animal models of ALS are transgenic
mice overexpressing mutant forms of the human SOD1 gene
(Jackson et al., 2002; Pasinelli and Brown, 2006; Turner and
Talbot, 2008; Van Den Bosch, 2011; Philips and Rothstein, 2015;
Browne and Abbott, 2016; Lutz, 2018). In the past decade, several
other animal models were developed, with mutations in
C9ORF72, TARDBP, FUS, among other genes (Philips and
Rothstein, 2015; Sharma et al., 2016; Batra and Lee, 2017;
Lutz, 2018; Ebstein et al., 2019). Much knowledge on ALS
pathology has been gained from studying transgenic mouse
models. The mouse models have also served as the best
accessible benchmark preclinical platforms to test numerous
promising drug candidates. Over the past decades anti-
epileptic compounds, antibiotics, anti-oxidants, anti-
inflammatory drugs, anti-apoptotic small molecules and
neurotrophic factors, among others were pre-clinically tested
as promising ALS drugs (Aggarwal and Cudkowicz, 2008;
Lanka and Cudkowicz, 2008; Turner and Talbot, 2008;
Vincent et al., 2008; Mitsumoto et al., 2014; Philips and
Rothstein, 2015). Unvaryingly, over the years, a myriad of
promising drug candidates discovered using those animal
models have failed to translate into relevant ALS therapies in
human clinical trials (Ludolph and Sperfeld, 2005; Aggarwal and
Cudkowicz, 2008; Turner and Talbot, 2008; Berry and
Cudkowicz, 2011; Mitsumoto et al., 2014; Su et al., 2014;
Petrov et al., 2017). This demonstrates a discrepancy between
promising animal-based studies and a lack of therapies that are
effectively translated into ALS patients (Benatar, 2007; Lanka and
Cudkowicz, 2008; Turner and Talbot, 2008; Vincent et al., 2008;
Mitsumoto et al., 2014; Petrov et al., 2017). Numerous possible
explanations can elucidate this scenario. For example, it remains
to be determined whether those animal models that pathocopy
and phenocopy ALS can truthfully recapitulate both fALS and
sALS pathogenesis, or whether they can only model certain
features of the disease. It is also important to note that the
great majority of ALS mouse models are created through
expression of high copy numbers of a mutated gene (Benatar,
2007; Turner and Talbot, 2008; van der Worp et al., 2010;
Mitsumoto et al., 2014; Moujalled and White, 2016). Indeed,
robust animal models of sALS are very much needed.
Furthermore, in most of the animal studies, the drugs are
given before disease onset, a strategy which is not feasible in
human clinical trials since relevant biological markers to identify
patients with a high risk of developing ALS have not been found
(Benatar, 2007; Aggarwal and Cudkowicz, 2008; Berry and
Cudkowicz, 2011; Otto et al., 2012; Mitsumoto et al., 2014;
Imamura et al., 2017; Petrov et al., 2017; Kiernan et al., 2020).
In addition, there are important pharmacokinetic differences
between rodents and humans, which makes it challenging to
directly extrapolate the mouse dosages and pharmacokinetics to
the ALS patients (Benatar, 2007; Lanka and Cudkowicz, 2008;
Kiernan et al., 2020). Interestingly, the great majority of animal
studies published until today have important methodological
weaknesses and did not involve randomization and blindness
to treatment (Benatar, 2007; Vincent et al., 2008; Kiernan et al.,
2020). These are standard obligatory conditions for a well-
conducted human clinical trial (Benatar, 2007; Vincent et al.,

2008; Kiernan et al., 2020). Furthermore, there are important
differences in the outcome measures in animal versus human
studies and species-specific responses to cellular damage
(Benatar, 2007; Kiernan et al., 2020). To curb the problem and
improve the conduction and interpretation of animal model-
based pre-clinical research in ALS, important guidelines were
established in the last decade (Ludolph et al., 2010).

Lastly, the lack of success in the translation of novel ALS
therapies into the clinic has also been linked with errors in clinical
trial design, patient recruitment due to the lack of meaningful
stratification, optimal drug dosage, control of the confounding
effects of prescription and non-prescription drugs taken by ALS
patients when undergoing a clinical trial, among others (Benatar,
2007; Berry and Cudkowicz, 2011; Mitsumoto et al., 2014; Petrov
et al., 2017; Kiernan et al., 2020). In line with this, there are
fundamental concerns regarding the potential interaction
between a candidate drug undergoing a clinical trial and the
concomitant usage of the standard Riluzole therapy (Mitsumoto
et al., 2014). In addition, the clinical heterogeneity of ALS has also
been neglected in clinical trial designs, leading to underpowered
studies (Beghi et al., 2011; Goyal et al., 2020; Kiernan et al., 2020).
Undeniably, studies involving a heterogeneous patient
population in a context of a heterogeneous disease may mask
the efficacy of certain drugs on a specific subset of patients, such
as genetic forms of the disease or restricted phenotypes (Petrov
et al., 2017; Goyal et al., 2020; Kiernan et al., 2020). For example,
the positive effects of Edaravone were only initially demonstrated
in a restricted group of patients (Writing and Edaravone, 2017).
Interestingly, a post-hoc meta-analysis on the data gathered from
ALS clinical trials involving lithium carbonate demonstrated that
this drug was able to enhance the survival of ALS patients
carrying UNC13A mutations, while it was not efficacious in
the global ALS population (van Eijk et al., 2017). Furthermore,
only SOD1-ALS patients seem to benefit from SOD1 antisense
oligonucleotide therapy, arimoclomol and pyrimethamine (Lange
et al., 2017; Benatar et al., 2018; Miller et al., 2020). Thus, better
stratification of patients will help to efficiently direct therapeutics
to the adequate ALS patient groups and disease subtypes, since
certain therapeutics may only work on a given genetic or
pathophysiologic ALS form rather than others (Haston and
Finkbeiner, 2016; Goyal et al., 2020; Kiernan et al., 2020). In
this respect, the development of accurate models for ALS
diagnosis, progression prediction, patient stratification and
treatment are much needed (Vihinen, 2017; Vihinen, 2020).
To treat the constellation of different ALS patients, multiple
different precision medicine approaches might also be required
(Morgan et al., 2018; Goyal et al., 2020; Morello et al., 2020).
Indeed, similarly to other diseases (for example, hypertension,
cardiac insufficiency, chronic obstructive pulmonary disease,
cancer, among others), it might be necessary to combine
diverse medications to address different pathological
mechanisms, in order to obtain meaningful ALS-modifying
strategies. Importantly, those efficacious therapeutics will have
to reach the CNS by crossing the blood-CNS barrier, which
appears to be impaired in ALS patients, posing challenges to
efficiently deliver drugs into the CNS (Garbuzova-Davis et al.,
2016; Saul et al., 2020).
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Altogether, these aspects have incited the search for optimized
strategies to improve clinical trial outcomes and biomarkers in
ALS, which shall lead to more personalized medicine approaches
(Mitsumoto et al., 2014; Goyal et al., 2020; Kiernan et al., 2020).
Accordingly, the EMA (EMA/531686/2015) and the FDA (FDA-
2013-N-0035) proposed in the last years new guidelines for the
conduction of clinical trials in ALS. Hopefully, we will witness in
the coming years improved therapeutic effects and improved
success rates of treatments in better stratified ALS clinical trials.

GENERATION OF HUMAN MOTOR
NEURONS FROM PLURIPOTENT STEM
CELLS
The study of human MNs is a valid and invaluable alternative to
the classical animal-based ALS studies (Han et al., 2011; Haston
and Finkbeiner, 2016; Karagiannis et al., 2019). Though, for
ethical and technical reasons studies involving human MNs
retrieved from patients are not feasible (Palmer et al., 2001;
Han et al., 2011). Besides, until recently, human MNs from
ALS patients were only accessible post-mortem when

pathological and adaptive cellular and molecular mechanisms
are advanced (Han et al., 2011; Sances et al., 2016). Thus, the
outstanding capacity to generate relevant human neural cell types
from pluripotent stem cells – both ESCs and iPSCs, has opened
unprecedented paths towards the understanding of ALS and
other MN disorders (Han et al., 2011; Bellin et al., 2012;
Haston and Finkbeiner, 2016). Regarding therapeutic
development, it is also anticipated that by studying human
cells and performing drug tests directly on them, the time of
translation of interesting pre-clinical research findings towards
clinical applicable strategies could be considerably shortened
(Figure 3) (Ebert and Svendsen, 2010; Engle and Puppala,
2013; Engle and Vincent, 2014; Haston and Finkbeiner, 2016;
Lee et al., 2018).

The development of studies involving human MNs generated
from pluripotent stem cells is directly linked with the advances in
the successful utilization of ESCs for medical research. The ESCs
are a unique group of cells isolated from the inner cell mass (ICM)
of developing blastocysts which exhibit unique properties of self-
renewal (capacity to generate identical stem cells by cell division)
and pluripotency [the ability to differentiate into all three
embryonic germ layers (endoderm, ectoderm and mesoderm)]

FIGURE 3 | Human motor neurons generated from Amyotrophic Lateral Sclerosis (ALS) patients have allowed disease mechanistic studies and in vitro drug
screening campaigns, with already some candidate compounds being identified and tested in the clinical setting (Table 1). ALS patient-specific iPSCs can be generated
through reprogramming of somatic cells harvested from patients. Once generated, the ALS hiPSCs can be efficiently differentiated into the specific cell types involved in
the disease (MNs, glial cells or sketelal muscle). Those cells can be utilized in vitro for disease mechanistic studies and massive efforts of drug testing. In the
particular case of hiPSC-derived MNs, it is anticipated that these cells might as well be employed in patient stratification strategies, and also in better selecting at the
laboratory stage the list of most promising small molecules that will be further tested in clinical studies involving ALS patients. Therefore, hiPSC-derived MNs constitute a
powerful tool for personalized medicine approaches that start at the clinic, being then further developed in the laboratory and hopefully translated back to the ALS patient
as a personalized effective therapeutic strategy (Diagram created with BioRender.com).
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(Evans, 2005; Zwaka and Thomson, 2005; Yu and Thomson,
2008; Evans, 2011). Since their initial use in research, because they
can potentially originate any mature cell type in the body, they
have been viewed as an exciting tool to unravel themechanisms of
developmental biology, for prospective cell replacement therapies
and for drug discovery studies (Evans and Kaufman, 1981;
Martin, 1981; Lerou and Daley, 2005; Gokhale and Andrews,
2009; Evans, 2011). The first ESCs were derived from mouse
embryos in the early 1980s (Evans and Kaufman, 1981; Martin,
1981). The first meaningful attempts to isolate and culture in vitro
hESCs was reported more than 1 decade later, with human
fallopian tube cells being used as system to grow them
undifferentiated (Bongso et al., 1994). However, the cells could
maintain a pluripotent state for only two passages (Bongso et al.,
1994). In 1998, Thomson and collaborators made a long-desired
breakthrough in the field of stem cell biology, by reporting a novel
robust strategy to isolate and culture hESCs that involved the
usage of a supporting monolayer of mitotically inactive mouse
embryonic fibroblast feeders, to guarantee proliferation in
undifferentiated state for up to 4 months in vitro (Thomson
et al., 1998). The hESC lines were generated after isolation of the
inner cell mass of blastocysts, a procedure which almost
inevitably causes the destruction of the fertilized human
embryo, leading to unending ethical discussions (Thomson
et al., 1998; Engels, 2002; de Wert and Mummery, 2003;
Landry and Zucker, 2004; Walters, 2004; Gavrilov et al., 2009;
Taylor, 2011). Although mouse ESCs and hESCs are considered
fundamentally comparable in their unlimited capacity to
originate any cell type of the three embryonic germ layers,
they have relevant differences in colony morphology,
expression of surface markers, growth factor requirements for
self-renewal and pluripotency maintenance, epigenetic profile
and resistance to apoptosis upon single cell dissociation (Sato
et al., 2003; Ginis et al., 2004; Gokhale and Andrews, 2009;
Schnerch et al., 2010; Ohgushi and Sasai, 2011).

For the first time, in early 2000’s, Wichterle and collaborators
demonstrated that mouse ESCs could be robustly differentiated
towards a specific spinal cord MN fate using the well-known
spinal cord developmental cues retinoic acid (RA) and sonic
hedgehog (SHH) (Wichterle et al., 2002). After an initial period of
expansion, the mESCs were allowed to differentiate by growing as
free-floating aggregates designated as embryoid bodies (EBs)
(Wichterle et al., 2002). To mimic the established in vivo
mouse motor neurogenic period, both RA and SHH were
applied in vitro in a logical and defined temporal window
(Wichterle et al., 2002). The RA was initially used to drive
neuroectodermal cells towards a spinal cord identity
(neuralization followed by caudalization) (Wichterle et al.,
2002). Then, SHH was used to commit the previously
caudalized prospective progenitor cells towards a MN lineage
(ventralization) (Wichterle et al., 2002). A culture period of 7 days
was sufficient to obtain an enriched population of neuronal cells
positive for MN and pancreas homeobox 1 (MNX1), also known
as Homeobox HB9 (HLXB9); the insulin gene enhancer protein
ISL-1, also known as the ISL LIM Homeobox 1 (ISL1); and
choline acetyltransferase (ChAT) (Wichterle et al., 2002).
These mESCs-derived MNs (mESC-MNs) shared many of the

well-known molecular characteristics of spinal MNs (Wichterle
et al., 2002). Interestingly, once they were successfully
transplanted into the developing chick embryonic neural tube,
they were capable to both integrate in the ventral horn of the
spinal cord and also to project axons to muscle targets (Wichterle
et al., 2002). Additional studies also allowed to demonstrate that
in vitro-generated mESC-MNs could recapitulate functional
properties displayed by embryonic MNs in vivo (Miles et al.,
2004). In addition, the mESC-MNs were shown to contain
properly functioning receptors for excitatory and inhibitory
neurotransmitters and, thus, develop adequate
electrophysiological properties by producing the typical firing
patterns (Miles et al., 2004). Finally, when cultured in vitro with
C2C12 myotubes, they were able to establish functional
cholinergic synapses (Miles et al., 2004).

This work inspired the development of protocols to efficiently
generate MNs from hESCs with the first successful attempts being
reported in 2005 (Li et al., 2005; Singh Roy et al., 2005). However,
the time required to generate hESC-MNs expressing HB9, ISL1
and ChAT induced by RA and SHH was five times longer when
compared to mESC-MNs (Restagno et al., 2005; Singh Roy et al.,
2005). Similarly to mESC-MNs, the hESC-MNs were shown to
harbour normal electrophysiological activity and, once co-
cultured with muscle cells in vitro, develop functional synapses
(Restagno et al., 2005; Singh Roy et al., 2005). Since these early
days, numerous protocols to improve the efficiency of MN
generation from pluripotent stem cells were developed and
published (Faravelli et al., 2014; Sances et al., 2016). In the
majority of the proposed protocols, three fundamental steps in
MN differentiation comply with the initial methodology
established by Wictherle and colleagues: neuralization,
followed by caudalization and then ventralization (Wichterle
et al., 2002). Neuralization is currently most commonly
performed by dual-SMAD signalling pathway inhibition, using
the chemical compound SB431542, a potent inhibitor of
transforming growth factor (TGF)-beta type I receptor/ALK5,
ALK4 and ALK7; and either the noggin protein [inhibitor of
several bone morphogenic proteins (BMPs)] or the small
molecule LDN193189, a derivative of dorsomorphin which is a
highly selective antagonist of BMP receptor ALK2 and ALK3
(Chambers et al., 2009; Roybon et al., 2013; Sances et al., 2016).
The caudalization stage is directed by RA and together with Wnt
activation via inhibition of glycogen synthase kinase 3 (GSK-3)
using the compound CHIR-99021 (Maury et al., 2015; Sances
et al., 2016). The ventralization process relies on the adequate
hedgehog signalling, using the recombinant SHH protein or
agonists of the hedgehog receptor smoothened (SMO),
purmorphamine and/or SAG (Faravelli et al., 2014; Sances
et al., 2016). Nevertheless, the exact mechanisms that lead to
the generation of different subtypes of MNs have only recently
started to be understood (Peljto et al., 2010; Amoroso et al., 2013;
Maury et al., 2015; Allodi et al., 2019; An et al., 2019). A more in-
depth knowledge of these mechanisms will allow us to robustly
generate in vitro all the different subtypes of MNs present in the
human spinal cord, especially the entire set of thoracic and
lumbar MNs (Sances et al., 2016). In line with this, another
fundamental challenge is that we are still unable to consistently
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generate pure populations of MNs from pluripotent stem cells
(Sances et al., 2016). Indeed, these MN cultures also contain a
myriad of other neural related cells including glia (Lamas et al.,
2014; Sances et al., 2016). This has led to enormous challenges
using these cultures, especially in MN survival studies, since
ongoing neurogenesis occurs, leading to important
confounding effects (Lamas et al., 2014). Using laborious and
expensive methodologies this problem can, however, be
efficiently circumvented using cell sorting strategies [for
example, employing fluorescence activated cell sorting (FACS)]
and adequate culturing conditions (Lamas et al., 2014; Garcia-
Diaz et al., 2020).

The stem cell scientific community always aimed to robustly
generate patient-specific pluripotent stem cells, due to the far-
reaching therapeutic and regenerative possibilities offered by cells
with such unique characteristics (Kondo et al., 2017; Readhead et al.,
2018; Laperle et al., 2020; Schweitzer et al., 2020; Yamanaka, 2020).
On one hand, the chances of rejection would be theoretically
decreased if regenerative strategies were attempted using cells and
tissues that immunologically match the donor by being generated
from personalized stem cells (Hallett et al., 2015; Karagiannis et al.,
2019; Schweitzer et al., 2020; Yamanaka, 2020). On the other hand,
personalized stem cells could permit the study of any cell type with
the genetic background of the donor, opening novel avenues towards
in vitro patient-specific studies of disease mechanisms and also
patient-directed drug therapies, making the vision of personalized
medicine a closer reality (Figure 3) (Bellin et al., 2012; Haston and
Finkbeiner, 2016; Stern et al., 2018b; Karagiannis et al., 2019;
Yamanaka, 2020). In 2006, this long-aimed scenario became a
real possibility with the breakthrough successful generation of
iPSCs by the team of Shinya Yamanaka (Takahashi and
Yamanaka, 2006). In a set of well-thought and planned
experiments, they initially screened 24 genes that were linked to
pluripotency, to demonstrate later that the combined overexpression
of only four factors [octamer 3/4 (OCT3/4), sex determining region
Y-box 2 (SOX2), kruppel-like factor 4 (KLF4) and cellular
myelocytomatosis oncogene (c-MYC)] was capable to transform
a fibroblast into a pluripotent stem-cell like cell that could be
efficiently and endlessly grown in vitro as small colonies
(Takahashi and Yamanaka, 2006). The newly generated iPSCs
not only annihilated one of the core dogmas of cell biology,
which was that a cell could not go back to a pluripotent stem
cell stage once differentiated; but also paved the way for the
development of easy-to-use and robust methods to generate the
long-aimed-for individual-specific pluripotent stem cells (Takahashi
and Yamanaka, 2006; Yamanaka, 2020). One year later, this
methodological approach was promptly applied to human
fibroblasts leading to the historic generation of hiPSCs by two
independent research teams (Takahashi et al., 2007; Yu et al.,
2007). While the Yamanaka team followed an analogous
methodology and reprogrammed human adult dermal fibroblasts
by applying the same four factors (Takahashi et al., 2007); that of
Thomson reported the generation of hiPSCs from embryonic
fibroblasts and postnatal foreskin fibroblasts by using a lentiviral
system to overexpress the transcription factors OCT4, SOX2,
NANOG and LIN28 (Yu et al., 2007). A new era in stem cell
biology was initiated with these two milestone studies, which further

triggered a myriad of follow-up studies. First, researchers aimed to
demonstrate that other human cell types could as well be
reprogrammed into iPSCs (Stadtfeld and Hochedlinger, 2010;
Robinton and Daley, 2012). Soon, numerous studies were
reporting the generation of hiPSCs from peripheral blood
monocytes, keratinocytes, adipose-derived stem cells, hepatocytes,
urothelial cells, among others (Stadtfeld and Hochedlinger, 2010;
Pan et al., 2012; Robinton and Daley, 2012; Liu et al., 2020). Second,
numerous studies have also aimed to investigate novel methods to
generate hiPSC lines in a more efficient and safer manner because
the initially proposed reprogramming methods had low efficiency
and involved the usage of two oncogenic transcription factors
(c-MYC and KLF4), and transduction using viruses integrating
the genome to overexpress the four transcription factors
(Gonzalez et al., 2011; Robinton and Daley, 2012; Liu et al.,
2020). In the meantime, others researchers have compared hESCs
and hiPSCs properties to confirm or refute their biological
equivalence, whereas other groups have studied the mechanisms
underlying reprogramming (Amabile and Meissner, 2009; Narsinh
et al., 2011; Bilic and Izpisua Belmonte, 2012; Christodoulou and
Kotton, 2012; Puri and Nagy, 2012; Robinton and Daley, 2012;
Cahan and Daley, 2013). Unsurprisingly, the advent of hiPSCs was
also followed by a scientific boom in research applied to specific
diseases, aiming to develop in vitro models of those diseases
(Grskovic et al., 2011; Han et al., 2011; Tiscornia et al., 2011;
Robinton and Daley, 2012; Karagiannis et al., 2019; Chang et al.,
2020). Regarding NDs, hiPSCs have made possible the generation of
the diverse neuronal cell types, which were previously not easily
accessible, carrying the different genetic traits linked with the
deterioration of the CNS environment of a given individual (Han
et al., 2011; Faravelli et al., 2014; Sances et al., 2016; Chang et al.,
2020).

The first hiPSCs derived from an ALS patient were originally
reported in 2008 by Dimos and collaborators (Dimos et al., 2008).
In their milestone study, not only the authors demonstrated for the
first time the differentiation of MNs from hiPSCs, but also they
successfully reprogrammed fibroblasts from aged ALS patients into
iPSCwith the capacity to differentiate into spinal cordMNs using a
protocol that was very similar to the one previously described to
generate hESC-MNs (Dimos et al., 2008). Accordingly, the
generation of patient-specific ALS-hiPSCs and the ability to
differentiate in vitro human MNs harbouring the genetic
background of the original patient, immediately opened the
prospect to generate models of human MN diseases in vitro,
despite their embryonic features (Dimos et al., 2008; Ho et al.,
2016; Sances et al., 2016). Since the pioneer study of Dimos and
colleagues, numerous research teams have generated different ALS
patient-derived hiPSC lines, taking advantages of themore efficient
protocols to generate human MNs (Boulting et al., 2011; Faravelli
et al., 2014; Li et al., 2015; Sances et al., 2016). This allowed to
conduct relevant in vitro disease modelling studies to reveal early
and late phenotypic alterations in the MNs, many of them
mimicking those identified in ALS patient post-mortem tissue
(Vasques et al., 2020). The most significant cellular changes
reported in ALS patient iPSCs-derived MNs (from SOD1,
C9ORF72, TARDBP, FUS, VAPB and sporadic cases) comprise
DNA damage and abnormalities in DNA repair, reduced cell
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viability, increased susceptibility to different stressors,
abnormalities in neuronal morphology, presence of protein
aggregates, mitochondrial alterations and electrophysiological
changes, among others (Figure 2) (Mitne-Neto et al., 2011;
Burkhardt et al., 2013; Sareen et al., 2013; Chen et al., 2014;
Kiskinis et al., 2014; Wainger et al., 2014; Devlin et al., 2015;
Lopez-Gonzalez et al., 2016; Naujock et al., 2016; Bhinge et al.,
2017; Imamura et al., 2017; Wang et al., 2017; Fujimori et al., 2018;
Naumann et al., 2018; Selvaraj et al., 2018; Seminary et al., 2018; Shi
et al., 2018; Bursch et al., 2019; Keskin et al., 2019; Kim B.W. et al.,
2020; Hawrot et al., 2020; Vasques et al., 2020). For example, the
hiPSC-derived MNs have been instrumental to better understand
the role of DNA damage inALS pathogenesis, which is triggered by
different routes, including oxidative stress linked with impaired
anti-oxidative mechanisms (Kim B. W. et al., 2020). In a recent
study, different forms of DNA damage were observed in
postmortem CNS tissue from ALS patients, both in upper MNs
of the motor cortex and lower spinal cord MNs (Kim B. W. et al.,
2020). Through the study of some DNA damage repair (DDR)
mechanisms, it was possible to demonstrate an apparently intact
DDR response, also evident in human ALS iPSC-derived motor
neurons harbouring SOD1 mutations, which displayed a robust
DDR response equivalent to wild-type MNs (Kim B. W. et al.,
2020). Mechanisms of DNA damage have also been studied in FUS
ALS-hiPSC derived MNs, which were shown to have
mislocalization of the cytoplasmic RNA/DNA-binding protein
FUS and to develop FUS-positive inclusions, which correlated
well with ALS severity (Higelin et al., 2016). FUS ALS-hiPSC
derived MNs were shown to accumulate foci of DNA damage
(Higelin et al., 2016) and have abnormalities in DNA nick ligation
and oxidative damage repair (Wang et al., 2018). New experiments
are needed to further assess the mechanisms of DNA damage and
altered DNA repair related with MN degeneration and also
evaluate the quality and effectiveness of repair mechanisms
evidenced by ALS hiPSC-derived MNs.

Hence, hiPSCs allow the generation in vitro of infinite
quantities of different neuronal cell types that are patient-
specific, enabling the study of early cellular dysfunction and
other neurodegenerative processes (Figure 2), otherwise
difficult to observe in post-mortem tissues. Finally, these
patient cell-based innovative in vitro ALS models have the
prospect to help unravel novel pathogenic mechanisms, and to
evaluate the utility of new therapies, opening promising avenues
towards the discovery of efficacious pharmacological agents to
halt the progression or even cure ALS (Figure 3) (Sances et al.,
2016; Lee et al., 2018; Hawrot et al., 2020; Okano et al., 2020;
Vasques et al., 2020).

USING HUMAN MOTOR NEURONS
GENERATED FROM PLURIPOTENT STEM
CELLS TO PERFORM IN VITRO DRUG
TESTING

The usage of patient-specific ALS hiPSC-derived MNs has led to
innovative in vitro disease models and also to drug screening

campaigns, some of which involve drug repurposing (Haston and
Finkbeiner, 2016; Lee et al., 2018; Hawrot et al., 2020). In the last
decade, hiPSC-derived MNs have allowed the identification of
several promising compounds to tackle ALS (Wainger et al., 2014;
McNeish et al., 2015; Imamura et al., 2017; Fujimori et al., 2018;
Lee et al., 2018; Okano et al., 2020). Among the candidate
compounds identified, a few have already been translated into
drug testing involving ALS patients, in well-designed clinical
trials (Table 1). The first of these therapeutic clinical
candidates, identified in 2015, was the Kv7 channel activator
Retigabine/Ezogabine, a known anti-epileptic drug (Wainger
et al., 2014; Wainger et al., 2020). Neuronal hyperexcitability
is a significant pathophysiological mechanism in ALS (Vucic
et al., 2008; Fogarty, 2018; Huang et al., 2021). Through
electrophysiological analysis using multielectrode arrays, the
Eggan team demonstrated that Retigabine/Ezogabine was
capable of suppressing the hyperexcitability of ALS iPSC-
derived MNs (Wainger et al., 2014). In brief, spontaneous
neuronal excitability of MNs derived from fALS-SOD1A4V
hiPSCs was initially demonstrated to be increased (Wainger
et al., 2014). This was linked with reduced delayed-rectifier K+

current amplitudes in patient-derived MNs comparatively to
control MNs, leading possibly to neuronal hyperexcitability
(Wainger et al., 2014). The application of Retigabine/
Ezogabine, which is a potent K+ channel activator that causes
membrane hyperpolarization, blocked hyperexcitability and
enhanced the in vitro survival of hiPSC-derived MNs from
fALS patients with mutations in SOD1 or FUS, and C9ORF72
repeat expansions (Wainger et al., 2014). On this basis, a phase 2
randomized clinical trial involving 65 patients was conducted to
assess the efficacy of Retigabine/Ezogabine on central and
peripheral nerve excitability in ALS (ClinicalTrials.gov:
NCT02450552) (Wainger et al., 2020). Participants were
treated with 600 mg/day or 900 mg/day of Retigabine/
Ezogabine or a matched placebo for 10 weeks (Wainger et al.,
2020). The drug was well-tolerated, similarly to studies involving
epilepsy patients; and decreased cortical and spinal MN
excitability in the involved ALS patients was demonstrated
(Wainger et al., 2020). However, it remains to be determined
whether a similar treatment for a longer period can endure the
effects on excitability and halt disease progression (Wainger et al.,
2020). Interestingly, the data obtained in this clinical trial are in
line with the findings gathered during pre-clinical studies
involving ALS hiPSC-derived MNs, reinforcing the idea that
patient hiPSC-based in vitro models are suitable to identify
novel disease relevant targets and to quickly help translating
basic research findings into clinically testable strategies (McNeish
et al., 2015; Hawrot et al., 2020; Okano et al., 2020).

A second drug entering ALS clinical testing following its
discovery after drug screening involving ALS hiPSC models is
Ropinirole, which was identified by the Okano group (Fujimori
et al., 2018). A panel of 1232 FDA-approved drugs was tested
in vitro in FUS and TDP-43 (TARDBP) fALS iPSC-derived MNs,
for their capacity to revert established ALS-related phenotypes,
namely MN death/damage, neurite retraction, mislocalization of
FUS/TDP-43 and stress granule formation (Fujimori et al., 2018).
All the compounds were tested on selected fALS models and nine
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drugs were identified as top candidates (Fujimori et al., 2018).
Following enriched gene ontology terms and transcripts
pathways analysis, detailed drug information regarding
permeation through the blood-brain barrier (BBB), presence of
serious side effects, and dose-response relationships, the authors
selected Ropinirole as the most promising small molecule
candidate (Fujimori et al., 2018). Ropinirole is a non-ergot
dopamine receptor agonist employed in the treatment of
Parkinson’s disease (Okano et al., 2020). The positive action of
Ropinirole in ALS MNs is not fully understood yet, but it was
proposed to be linked with the reduction of toxic neuronal
hyperexcitability via Dopamine D2R activation (Okano et al.,
2020). Other studies have also recently identified D2 dopamine
receptors as significant modulators of ALS MN excitability
(Huang et al., 2021). Interestingly, the beneficial effects of
Ropinirole were also identified in non-SOD1 sALS MNs, but
not in SOD1-mutant ALS models (Fujimori et al., 2018).
Following these promising results, the ROPALS phase I/IIa
clinical trial [UMIN Clinical Trials Registry (UMIN-CTR):
UMIN000034954] started in Japan in 2018, involving 15 ALS
patients treated with oral Ropinirole up to 16 mg/day and five
ALS patients submitted to placebo (Okano et al., 2020). This first
clinical trial aims to evaluate the safety, tolerability and efficacy of
Ropinirole, as measured by delay in the progression of ALS, for an

initial 24 weeks (double-blind phase) and ensuing 24 weeks
(open-label continuation phase) (Okano et al., 2020). The
results of this trial have not been published yet.

The third drug identified in a high-throughput screening
campaign involving ALS hiPSC-derived MNs is Bosutinib, a
BCR-ABL and src tyrosine kinase inhibitor employed to treat
chronic myelogenous leukemia patients (Imamura et al., 2017).
The study was conducted by the Inoue research team and
involved the testing of 1,416 compounds (including several
FDA and EMA approved drugs), at 10 µM concentration, in
fALS-SOD1 patient iPSC-derived MNs to assess their ability to
enhance neuronal survival beyond 7 days in culture (Imamura
et al., 2017). The screening led to the initial identification of 27 hit
compounds, with 14 of them targeting the Src/c-Abl signalling
pathway (Imamura et al., 2017). Further experiments showed
Bosutinib as the most promising compound (Imamura et al.,
2017). The inhibition of Src/c-Abl kinases was demonstrated to
promote autophagy, reduce the amount of misfolded SOD1
protein, restore energy homeostasis and rescue ALS MN
degeneration (Imamura et al., 2017). Furthermore, Bosutinib
also had a positive effect on TDP-43 ALS and C9ORF72 ALS
hiPSC-derived MNs (Imamura et al., 2017). Interestingly,
Bosutinib was also tested in an ALS animal model, prolonging
their survival by 7–8 days (Imamura et al., 2017). After these

TABLE 1 | Summary table of clinical studies involving ALS patients and employing small molecules with pre-clinical supportive data comprising drug testing in human
pluripotent stem cell-derived motor neurons (hPSC-MNs).

Candidate ALS
small
molecule

Compound
structure

Proposed mechanisms
of action
on human

motor neurons
(MNs)

Pre-clinical
studies
using
human
MNs

ALS clinical
study

Start year

RETIGABINE/EZOGABINE PubChem CID
121892

Anti-epileptic drug which induces activation
of a potassium channel, leading to
membrane hyperpolarization, inhibiting MN
hyperexcitability

(Wainger
et al., 2014)

Phase II NCT02450552 2015 (Wainger et al.,
2020)

ROPINIROLE PubChem CID
5095

Non-ergot dopamine receptor agonist
which is likely to reduce MN
hyperexcitability. Further studies are needed
to explain the mechanisms behind the
positive effects of the drug in human MNs

(Fujimori
et al., 2018)

Phase I/IIa
UMIN000034954

2018

BOSUTINIB PubChem CID
5328940

Inhibitor of Src/c-Abl kinases that promotes
autophagy, decreases the accumulation of
misfolded proteins, restores neuronal
energy homeostasis and inhibits MN
degeneration

(Imamura
et al., 2017)

Phase I UMIN000036295 2019

TAUROURSODEOXYCHOLIC
ACID (TUDCA)

PubChem CID
9848818

Hydrophilic bile acid normally produced in
the human liver that exerts neuroprotective
actions through anti-apoptotic, anti-oxidant
and immunomodulatory effects

(Thams
et al., 2019)

TUDCA alone Phase II
NCT00877604
TUDCA + Sodium
phenylbutyrate Phase II/III
NCT03127514
TUDCA alone Phase III
NCT03800524

2009 (Elia et al., 2016)

2017 (Paganoni et al.,
2020)

2019

FASUDIL PubChem CID
3547

ROCK inhibitor small molecule shown to
increase MN survival, induce axonal
regeneration, modulate astrocytic and
microglial activity, leading to improved
survival and enhanced motor function in
models of ALS

(Lamas
et al., 2014)

Phase II NCT03792490 2019
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encouraging results a phase I clinical trial of the drug Bosutinib
for ALS started in Japan, in 2019 [UMIN Clinical Trials Registry
(UMIN-CTR): UMIN000036295]. The main objective of the
study is to evaluate the safety and tolerability of Bosutinib
(100 mg/day, 200 mg/day, 300 mg/day, or 400 mg/day) to
define the maximum tolerated dose (MTD) and a
recommended phase 2 dose to treat ALS patients (Okano
et al., 2020). Three to six ALS patients will be enrolled in each
of the four planned Bosutinib dose levels (Okano et al., 2020). The
study involves a 12-weeks observation period, a 1-week
(5–9 days) transitional period, a 12-weeks study treatment
period, and a 4-weeks follow-up period (Okano et al., 2020).
The results of this trial are not yet publicly available.

Other studies of the past decade captured the attention of the
scientific community. Among them are three studies,
independently led by the research teams of Rubin (Yang et al.,
2013) and those of Wichterle and Henderson (Lamas et al., 2014;
Thams et al., 2019). In the first study, researchers employed wild-
type mESCs and mESC harbouring the SOD1G93A transgene,
also carrying the expression of the green fluorescent protein
(GFP) under the control of the MN-specific promoter HB9.
The produced HB9::GFP-positive MNs were used to develop a
MN survival assay based on neurotrophic factor deprivation in
line with previous studies (Bordet et al., 2007). The survival assay
was employed in a drug screening campaign involving nearly
5,000 compounds (Yang et al., 2013). Out of the several hits
identified, the small molecule Kenpaullone had the most
neuroprotective effect (Yang et al., 2013). Kenpaullone, which
is an ATP-competitive inhibitor of glycogen synthase kinase 3β,
besides inhibiting other kinases, was further explored in that
landmark study (Kim and Lee, 2013; Yang et al., 2013). The drug
demonstrated to enhance the survival of wild-type and ALS
hiPSC-derived MNs, leading the authors to propose the HGK-
Tak1-MKK4-JNK-c-Jun cell death signalling cascade as a
potential ALS therapeutic target (Yang et al., 2013). This
pioneer study represented one of the first successful attempts
to use patient iPSC-derived MNs to validate candidate drugs to
treat MN disorders (Yang et al., 2013). Despite not showing ALS
disease specific phenotypes in human MNs, their approach was
also a remarkable example of preclinical testing using human
MNs “in the dish” (Figure 3), since they tested other candidate
drugs like Dexpramipexole, which had promising results in ALS
mouse models, but that later failed in ALS clinical trials
(Cudkowicz et al., 2011; Yang et al., 2013). In line with the
clinical trial results, Dexpramipexole was unable to increase the
survival of human MNs carrying SOD1 mutations, further
suggesting that in vitro studies involving hiPSC-derived MNs
could be used to conduct patient stratification and also refine the
list of candidate drugs that will be tested in ALS clinical trials
(Figure 3) (Yang et al., 2013; McNeish et al., 2015; Haston and
Finkbeiner, 2016; Fujimori et al., 2018). The study by Yang and
colleagues has stimulated follow up studies which aimed to
identify blockers of the HGK-Tak1-MKK4-JNK-c-Jun pathway
(Bos et al., 2019).

The second study employed an innovative dual-color mESC-
derived MN co-culture assay to evaluate 1,300 compounds
(Thams et al., 2019). The co-culture assay [with equal

numbers of HB9::red fluorescent protein (RFP)-hSOD1 WT
MNs displaying red colour under fluorescent light and HB9::
green fluorescent protein (GFP)-hSOD1 G93A MNs displaying
green colour under fluorescent light] allowed the researchers to
identify Cyclopiazonic acid (CPA), an inducer of endoplasmic
reticulum stress, as a molecule prompting preferential accelerated
degeneration of hSOD1 G93A mutant MNs, comparatively to
hSOD1 WT MNs (Thams et al., 2019). Later, in a secondary
screening effort to find compounds that protected MNs against
CPA-induced degeneration, the authors identified numerous
candidate neuroprotective compounds, including Kenpaullone
and Tauroursodeoxycholic acid (TUDCA) (Thams et al., 2019).
TUDCA is a drug in clinical use that has also captured the
attention of the ALS community in the past decade. TUDCA is a
hydrophilic bile acid derivate normally produced in the human
liver by conjugation of Taurine to Ursodeoxycholic acid (UDCA)
(Kusaczuk, 2019). It is widely used clinically for the treatment of
chronic cholestatic liver diseases and gallstones and, thus, it is
well tolerated and safe (Vang et al., 2014; Kusaczuk, 2019).
TUDCA has revealed anti-apoptotic, anti-inflammatory and
anti-oxidant effects in various models of NDs, including ALS
(Vang et al., 2014; Cortez et al., 2015; Elia et al., 2016; Daruich
et al., 2019). Subsequent studies employing hiPSCSOD1A4V
MNs validated the neuroprotective properties of TUDCA on
MNs (Thams et al., 2019). Besides, TUDCA supplementation led
to reducedmuscle denervation in a transgenic SOD1G93Amouse
model of ALS (Thams et al., 2019). This study helped to gather
further information on the mechanisms leading to the selective
vulnerability of MNs in ALS, and also highlighted the relevance of
using pluripotent stem cell-derived MNs in the discovery of
meaningful neurotoxic and neuroprotective small molecules
(Thams et al., 2019). In a phase IIb clinical trial involving a
small series of ALS patients (ClinicalTrials.gov: NCT00877604),
TUDCA was well tolerated and the data showed a slower ALS
progression in the TUDCA-treated group when compared to
placebo-treated control group (Elia et al., 2016). A larger phase 3
randomized clinical trial to establish the efficacy of the TUDCA
in ALS patients is currently underway in multiple ALS centers
across Europe, with the results expected to be available late in the
year 2021 (ClinicalTrials.gov: NCT03800524). In another
recently finished ALS clinical trial TUDCA was combined
with Sodium Phenylbutyrate (ClinicalTrials.gov:
NCT03127514) (Paganoni et al., 2020). Both drugs were
shown to significantly decrease neuronal death in previous
preclinical studies (Ryu et al., 2005; Castro-Caldas et al., 2012;
Roy et al., 2012; Gaspar et al., 2013; Cortez et al., 2015; Gomez-
Vicente et al., 2015). In the multicenter, randomized, double-
blinded clinical trial that comprised 177 definite ALS patients, it
was demonstrated that the drug combination resulted in a gentler
decline of the ALSFRS-R score comparatively to the placebo
group over a period of 24 weeks (Paganoni et al., 2020). Even
though the results are promising, it remains to be determined if
this drug combination is able to induce benefits in larger
populations of ALS patients and for extended periods.

Finally, the Rho kinase (ROCK) inhibitor Fasudil, which has
been in clinical use in Japan since 1995 with encouraging results
in the prevention of the vasospasm associated with subarachnoid
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haemorrhage (Zhao et al., 2006; Zhao et al., 2011), recently emerged
as another promising neuroprotective compound for MNs in ALS
and other motor neuron disorders (Takata et al., 2013; Coque et al.,
2014; Tonges et al., 2014). In a SOD1G93A mouse model of ALS,
treatment with Fasudil was shown to reduce MNs loss, slow disease
progression, improve motor function and increase lifespan (Takata
et al., 2013; Tonges et al., 2014). Fasudil was also shown to influence
the astroglial activity and to modulate the phenotype of microglia
from “M1” (pro-inflammatory, with release of pro-inflammatory
cytokines and chemokines) to “M2” (anti-inflammatory, with release
of anti-inflammatory cytokines and growth factors) (Tonges et al.,
2014). Additionally, ROCK inhibition up-regulates astrocytic
glutamate transport, which could also help to explain the
beneficial effects of the drug in ALS models since glutamate
transporters are of fundamental value in the maintenance of the
CNS homeostasis by countering cell death due to excitotoxicity (Lau
et al., 2011; Lau et al., 2012). Moreover, Fasudil supplementation
helps astrocytes to adopt a pro-survival phenotype (Lau et al., 2012).
Furthermore, in a previous work using aMN survival assay based on
FACS-purified hESC-MNs submitted to neurotrophic deprivation
for 7 days, we showed that Y-27632, another small molecule in the
ROCK inhibitor family, significantly increased the survival of FACS-
purified human MNs in vitro (Lamas et al., 2014). Besides, Y-27632
also stimulated neuronal outgrowth, similarly to what was initially
described in mouse studies (Lamas et al., unpublished data)
(Dergham et al., 2002; Fournier et al., 2003). When tested along
with Y-27632 and other ROCK inhibitor compounds, Fasudil was
able to induce axonal growth, but could not significantly increase the
survival of hESC-MNs deprived of neurotrophic factors for 7 days
(Lamas et al., unpublished data). Fasudil has already been used in a
compassionate regimen in 3 ALS patients, and it was well tolerated
(Koch et al., 2020). A randomized phase IIa clinical trial of Fasudil in
ALS patients (EudraCT: 2017–003,676–31; ClinicalTrials.gov:
NCT03792490) started in early 2019 (Lingor et al., 2019). The
primary endpoints are safety and tolerability, whereas efficacy is a
secondary endpoint [assessed by the change in ALSFRS-R, slow vital
capacity (SVC) and survival, among other parameters] (Lingor et al.,
2019). A total of 120 patients will be recruited and randomized to
receive a daily dose of either 30mg or 60mg Fasudil, or placebo in
two intravenous applications for a total of 20 days (Lingor et al.,
2019). A follow-up period of 180 days will ensue (Lingor et al., 2019).
It remains to be established whether Y-27632 has a similar safety
profile as Fasudil, but our observation that Y-27632 is also capable of
promoting the survival of hESC-derived MNs deprived of
neurotrophic factors for nearly 1 week (Lamas et al., 2014) along
with previous studies in animal models, raise the possibility that Y-
27632, and perhaps novel ROCK inhibitors in the market, similarly
to Fasudil, merit a more in-depth pre-clinical and clinical assessment
as promising disease-modifying drugs for ALS patients.

CHALLENGES AND FUTURE
PERSPECTIVES

The comprehensive work carried out in the field of pluripotent
stem cells over the past decade has led to the development of
numerous protocols for generating hiPSCs, producing neurons,

glia and many other cell types from them, as well as enhanced
conditions for in vitro culture (Figure 4) (Roybon et al., 2013;
Sances et al., 2016; Tao and Zhang, 2016; Gonzalez et al., 2017;
Costamagna et al., 2019; Logan et al., 2019; Savchenko et al., 2019;
Suga et al., 2019; Karagiannis and Inoue, 2020; Li and Shi, 2020).
Even though we still lack a comprehensive knowledge on the
survival requirements of human MNs in vitro, patient-specific
MNs can still be used to gain insights into the underlying
mechanisms of ALS and to perform screenings to identify
drug candidates (Figure 3). However, hurdles still remain.
Different methodological approaches lead to numerous sources
of variation, which help to explain the differences in viability and
in ALS hiPSC-derived MN-based phenotypes observed across
numerous studies. The choice of the human iPSC lines employed
to produce MNs is also key, as clonal variability exists and it may
affect the yield of MNs produced from them and their response to
compounds. This is even more important in the case iPSC lines
carry different ALS-associated gene variants. If diseased human
iPSC lines are employed for screening, one will need to ascertain
that the lines exhibit accurate phenotypes, as these may slightly
vary between gene variants due to different altered cellular
pathways and networks present in the individuals they are
derived from. Resistance to drug compounds can also be
identified using iPSCs (Vadodaria et al., 2019). Ultimately,
small compound screens should be designed to employ several
patient iPSC lines. Thus, it will be important to keep on
developing more efficient protocols and lines displaying
accurate and robust phenotypes, as well as implementing
minimal standards across laboratories worldwide, so that
results can be more easily compared and, ultimately, more
easily translated into clinical applicable solutions for ALS
patients (Sances et al., 2016).

In a translational perspective, MNs generated from different
forms of ALS patient-specific iPSCs could be useful to help
stratify patients for clinical studies according to their genetic
background, drug response, etc (Figure 3) (Bellin et al., 2012;
Haston and Finkbeiner, 2016; Shinde et al., 2016; Fermini et al.,
2018a; Silva and Haggarty, 2020). In line with this, for example,
the study conducted by Fujimori and collaborators, besides
demonstrating that Ropinirole is a promising drug against
ALS, also showed that ALS iPSC-based disease modelling
might help to subdivide genetically and clinically
heterogeneous sALS cases based on the observed in vitro MN
features (Fujimori et al., 2018). Those sub-classifications were
correlated with both clinical features and disease progression,
enabling the generation of complex disease models that might
accurately reflect the evolution of the disease in ALS patients
(Fujimori et al., 2018). This type of approach, if validated by other
research groups, has the prospect to change dramatically the pre-
clinical studies and clinical trials based on putative drug
responders vs non-responders, with far reaching positive
implications in ALS drug development (Fujimori et al., 2018).
The fact that Ropinirole did not impact positively in SOD1
mutant ALS models illustrates the heterogeneity and
complexity of the disease (Fujimori et al., 2018) and highlights
the need for a more targeted and sound approach for studying
pathophysiological mechanisms and in efficient drug testing.
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In the present review, we have mainly focused onMNs, the cell
type that is ultimately affected in ALS patients. However, over the
past decade, a growing number of studies have implicated other
players of the CNS environment in the development of ALS
(Figure 2) (Lee et al., 2016; Serio and Patani, 2018; Valori et al.,
2019; Crabe et al., 2020). Indeed, astrocytes, microglia and
oligodendrocytes have all been implicated in MN death either
through the release of yet to be identified toxic factors or through
the lack of neuronal support (Figure 2) (Di Giorgio et al., 2007; Di
Giorgio et al., 2008; Ilieva et al., 2009; Phatnani and Maniatis,
2015; Lee et al., 2016; Serio and Patani, 2018; Valori et al., 2019;
Crabe et al., 2020; Izrael et al., 2020). Therefore, multi-cellular
culture systems, involving neuronal, glial cells and muscle cells,
grown as 2D monolayers or in 3D structures, may more closely
mimic the brain and spinal cord environment (Figure 4), hence
allowing the access to pathogenic processes that are at play in the
spinal cord, the brainstem or the motor cortex, which are
critically important to help understand the pathophysiological
mechanisms underlying ALS and also in drug testing (Roybon
et al., 2013; de Boer and Eggan, 2015; Richard and Maragakis,
2015; Costamagna et al., 2019; Halpern et al., 2019; Logan et al.,
2019; Rowe and Daley, 2019; de Jongh et al., 2020).

The recently 3D cortico-motor assembloids model developed
by the Paşca group bring hiPSCs into another dimension as this
innovative approach allows the efficient combination of 3D
structures analogous to the cerebral cortex and/or the
hindbrain/spinal cord with human skeletal muscle spheroids,
creating a functional nervous circuit in vitro (Andersen et al.,
2020). This offers unprecedented opportunities in terms of ALS
disease modelling and for drug discovery (Andersen et al., 2020;
Panoutsopoulos, 2020).

Most of the drug testing and drug repurposing strategies based
on hiPSCs described so far involved limited numbers of
compounds. Through collaboration with pharma companies
and academic-based drug discovery centers, it will be of
priceless value and solid potential to test larger arrays of
compounds. For example, we previously screened 50,400 small

molecules for their ability to promote MN axonal growth on
inhibitory substrata (MAG-expressing CHO cells) and found
different hit compounds, among which the most relevant hits
were the clinically used cholesterol lowering drugs statins (Li
et al., 2016). Statins strongly stimulated the neurite outgrowth of
MNs, both in vitro and in vivo, even under marked growth
inhibitory conditions (Li et al., 2016). Accordingly, in vitro
drug discovery studies based on hiPSCs should aim to test
larger collections of small molecules, so that more disease-
relevant hits can be identified.

Regarding the clinical setting, given the underlying molecular
complexity of ALS and in light of the progress in precision
medicine, a push for genetically targeted or patient-tailored
therapies is emerging. In addition, it will be of fundamental
value to identify biomarkers oriented towards specific ALS-
patient clusters. Besides, the translation of novel therapies into
clinical applicable strategies will also benefit from better methods
for patient stratification and more efficient clinical trial designs
(Haston and Finkbeiner, 2016; Fermini et al., 2018b; Kiernan
et al., 2020). One recent appealing proposal is the multi-arm
multi-stage (MAMS) strategy, in which the sample size is not
fixed in advance (Ghosh et al., 2020; Kiernan et al., 2020). It is a
strategy already used in cancer research which is a cost-effective
approach for testing several drugs in parallel with a single placebo
arm (Kiernan et al., 2020; Millen and Yap, 2020). In fact, eligible
patients are initially randomly assigned to one of several sub-
studies (Ghosh et al., 2020; Kiernan et al., 2020; Millen and Yap,
2020). The data are then sequentially analyzed, with pre-
determined futility or superiority analyses built in, which
enables treatment arms to be discontinued owing to a lack of
efficacy (Kiernan et al., 2020; Millen and Yap, 2020).
Subsequently, in the next phase of the study, patients are
randomly assigned to receive active treatment or placebo
(Kiernan et al., 2020; Millen and Yap, 2020). New arms can be
added over time (Kiernan et al., 2020). The results of future ALS
clinical trials might also greatly benefit from incorporating
genotypic information into patient selection. This fact is

FIGURE 4 | Human iPSC-derived spinal cord spheroids aged 30 days in vitro. The central nervous system-like structures were generated from hiPSCs by the
sequential addition of LDN + SB431542 and RA + SAG + BDNF + GDNF (Roybon et al., unplublished data). The panels are representative fluorescence images of
sectioned immunostained cervical HOXB4+ human spinal cord spheroids composed of NESTIN + neural progenitors, GFAP + astroglia andMAP2+, HB9+, ISL+, CHAT
+ MNs.
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specially highlighted in the post-hoc meta-analysis of 3 clinical
trials that demonstrated that lithium carbonate, although overall
ineffective, could have a positive effect in the subgroup of ALS
patients carrying a UNC13A polymorphism (van Eijk et al., 2017;
Kiernan et al., 2020).

Finally, the ALS community should stimulate the
widespread sharing of pre-clinical and clinical data and the
assembly of relevant databases like the Pooled Resource Open-
Access ALS Clinical Trials (PRO-ACT) database, which is the
largest worldwide publicly available database of ALS patients,
comprising data from 10,723 ALS patients involved in ALS
clinical trials since 1990 (Atassi et al., 2014; Zach et al., 2015).
This database was kindly donated by the members of the
Pooled Resource Open-Access ALS Clinical Trials
Consortium, an organization created in 2011 by Prize4Life,
in collaboration with the Northeast ALS Consortium, and with
funding from the ALS Therapy Alliance (Atassi et al., 2014;
Zach et al., 2015). Taking advantage of databases like the PRO-
ACT database, together with genetic information and pre-
clinical data, coupled with artificial intelligence (AI)-based
strategies, it will be possible to develop novel artificial neural
network-based systems to confidently predict patient survival
and stratify ALS patients for enrolment in clinical trials,
perhaps, improving the efficiency of the drug discovery
process (Atassi et al., 2014; Ko et al., 2014; Zach et al.,
2015; Zhou and Manser, 2020). For example, similar
systems have already been employed clinically in the
estimation of survival prognosis in patients diagnosed with
eye melanoma (Damato et al., 2008), thyroid cancer (Mourad
et al., 2020), glioblastoma multiforme (Hao et al., 2018),
among other diseases (Kourou et al., 2015; Zhu et al., 2020).
Indeed, AI-based technologies can be wisely applied to
compile, digest and interpret “hidden knowledge” in large
datasets and make the data usable to researchers in the ALS
field and beyond (Ko et al., 2014; Kusumoto and Yuasa, 2019;
Cota-Coronado et al., 2020; Zhou and Manser, 2020).

Together, all these aspects have the prospect to impact
positively on the natural course of ALS, which is a deadly
heterogeneous ND most likely triggered by the complex
interaction of different genetic traits with a myriad of
environmental factors.

CONCLUSION

Neurodegenerative diseases have a devastating impact on the
quality of life of patients. In the case of ALS, MNs gradually
perish, resulting in an early and rapid death due to respiratory
failure. ALS is a complex ND, with diverse pathological
mechanisms connected with disease onset and progression,
which appears to be mediated by, yet to be explained,
composite interactions between different genes and multiple
environmental factors. Despite extensive research over the past
4 decades and the hundreds of promising compounds to treat
ALS that emerged from preclinical animal-based studies, only
Riluzole and Edaravone seem to have changed the course of the
disease, albeit with a very modest increase in lifespan and quality

of life. The continuous efforts to develop novel therapeutic drug
candidates for ALS are of vital importance. Human pluripotent
stem cells have opened unparalleled opportunities to study
previously inaccessible neuronal and glial cell populations, as
well as muscular cells from ALS patients (and healthy
individuals). In fact, hESC- and hiPSC-derived MNs have
been a robust platform that allows a more in-depth
understanding of the mechanisms involved in the death and
survival of human MNs. In addition, the possibility of studying
human MNs and glial cells that capture the genetic background
of patients opens novel avenues towards a thorough
understanding of MN degeneration and ultimately might lead
to the development of more effective ALS therapeutic strategies.
In this regard, there have been several encouraging success
stories in drug discovery in ALS, through drug screening or
drug repurposing, using easily accessible human MNs specified
from hESCs and hiPSCs, which were highlighted in the present
review. Yet, similarly to other neurodegenerative diseases (e.g.,
Parkinson’s disease, Alzheimer’s disease, etc) and in light of a
personalized medicine approach, it is becoming clear that a
single therapeutic agent will not be a panacea for all ALS
patients. In fact, given the heterogeneity of the ALS cases
and the complexity of the disease, together with advances in
genetics and biomarker development, we should envision a
personalized ALS-patient approach, based on the specific
clinical and biological characteristics of homogeneous
subgroups of patients. Despite its predicted high cost, this
personalized strategy is expected to be paramount for the
discovery of more effective ALS treatments. The advent of
novel technologies such as 3D organoids (Lancaster et al.,
2013; Kawada et al., 2017), spheroids (Chumarina et al.,
2019; Pomeshchik et al., 2020) and assembloids (Sloan et al.,
2018; Andersen et al., 2020; Miura et al., 2020) has the prospect
to give further insights into the pathogenesis of
neurodegenerative diseases including ALS, and also lead to
successful drug discovery campaigns. These developments,
coupled with genetic studies, big data analysis and AI
platforms will help to better stratify ALS patients and build
more robust clinical trials. Altogether, in the near future, we
may be able to significantly accelerate the process of drug
development, and considerably shorten the time and reduce
the costs needed to translate preclinical research into clinically
applicable drug therapies for ALS patients, hopefully, halting
disease progression or even cure ALS.
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