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The delivery of therapeutics into the brain is highly limited by the blood-brain
barrier (BBB). Although this is essential to protect the brain from potentially
harmful material found in the blood, it poses a great challenge for the treatment
of diseases affecting the central nervous system (CNS). Substances from the
periphery that are required for the function of the brain must rely on active
mechanisms of entry. One such physiological pathway is called receptor-
mediated transcytosis (RMT). In this process, ligands bind to specific receptors
expressed at the luminal membrane of endothelial cells composing the BBB
leading to the internalization of the receptor-ligand complex into intracellular
vesicles, their trafficking through various intracellular compartments and finally
their fusion with the abluminal membrane to release the cargo into the brain.
Targeting such RMT receptors for BBB crossing represents an emerging and
clinically validated strategy to increase the brain permeability of biologicals.
However, the choice of an appropriate receptor is critical to achieve the best
selectivity and efficacy of the delivery method. Whereas the majority of work has
been focused on transferrin (Tf) receptor (TfR), the search for novel receptors
expressed in brain endothelial cells (BECs) that can deliver protein or viral vector
cargos across the BBB has yielded several novel targets with diverse molecular/
structural properties and biological functions, andmechanisms of transcytosis. In
this review, we summarize well-studied RMT pathways, and explore mechanisms
engaged in BBB transport by various RMT receptors. We then discuss key criteria
that would be desired for an optimal RMT target, based on lessons-learned from
studies on TfR and accumulating experimental evidence on emerging RMT
receptors and their ligands.
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1 Introduction

Delivering therapeutics into brain tissue is highly restricted due to the presence of a
tightly-sealed layer of endothelial cells in brain microvessels that form the blood-brain
barrier (BBB). Specialized receptors that are capable of shuttling from the luminal to
abluminal side of the BBB, while carrying cargos with them, have provided avenues to
deliver therapeutics into this highly restricted area. The specialized pathway(s) that these
receptors are involved in is termed receptor-mediated transcytosis (RMT) and thus
receptors are usually called “RMT receptors” (Kadry et al., 2020). Currently, several
RMT receptors have been discovered at the BBB and demonstrated to deliver
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therapeutic cargos into the brain in preclinical studies. These range
in their biological functions but are mostly involved in transporting
physiological ligands or signals intracellularly and include
transporters of iron, lipids and solutes, and receptors of insulin,
insulin-like growth factors, neuropeptides, and other proteins.
While their involvement in the RMT pathway(s) is one of the
most important criteria for a receptor to be able to successfully
carry therapeutic cargo from the luminal to abluminal side of the
BBB, other criteria, such as receptor extracellular domains
accessibility on luminal surface of the BBB, their brain
specificity/abundance and sequence conservation, are just as
important when assessing developability for successful brain
delivery with minimal side-effects. In this review, we summarize
the different steps in the RMT process and examine various criteria
that are either attractive or undesirable in some of the currently
known RMT receptors. While we acknowledge that some non-
receptor mediated pathways (e.g., adsorptive-mediated
transcytosis) are also important for drug delivery into the brain,
these pathways are beyond the scope of this review and have been
reviewed elsewhere (Kadry et al., 2020; Banks, 2023; Zhang, 2023).
Furthermore, this review focuses on criteria for the receptors rather
than the criteria for the targeting antibodies, the latter having been
reviewed by others and us previously (Haqqani et al., 2022;
Pardridge, 2023).

2 Receptor-mediated transcytosis

RMT is a multi-step transcellular process that usually occurs in
polarized cells and is used by naturally-occurring macromolecules to
bypass physiological barriers and enter restricted areas throughout
the body. Examples of some of these macromolecules include low-
density lipoproteins (LDLs), transferrin (Tf), insulin (INS) and INS-
like growth factors 1 and 2 (IGF1, IGF2). These ligands bind to their
respective receptors on one surface of the polarized cell resulting in
receptor-mediated endocytosis (RME) (step 1), followed by their
endosomal sorting (step 2), and eventual exocytosis (step 3) at the
opposite surface of the cell. The RMT receptors are thus attractive
targets to develop targeting antibodies and peptides as
macromolecular Trojan horses for delivering therapeutics across
the BBB and into the brain. A significant understanding of the
various steps involved in the RMT receptor pathways at the BBB
have come from studying trafficking of the targeting antibodies
[reviewed previously (Haqqani et al., 2022)]. Here the key steps are
briefly summarized, namely, RME, endosomal sorting and
exocytosis.

RME is the process of targeted (i.e., receptor-mediated) uptake
of macromolecules from the extracellular space into intracellular
vesicles to reach endosomes. The RMT receptors at the BBB
predominantly internalize through the clathrin-mediated
endocytosis (CME) process (Liu AP. et al., 2010; Mayle et al.,
2012; Villaseñor et al., 2017; Haqqani et al., 2018a), although
caveolin-mediated endocytosis (CavE), and caveolin- and
clathrin-independent endocytosis (CIE) have also been implicated
for some receptors (Fagerholm et al., 2009; Xin et al., 2011; Ben-Zvi
et al., 2014; Haqqani et al., 2022). CME itself is a multi-step process
that starts with receptor activation, formation of clathrin-coated pits
and recruitment of a large endocytic protein machinery. This leads

to budding of the pits (containing both the receptor and ligand) into
endocytic vesicles, which then undergo un-coating and fuse with
early endosomes to release their contents (Conner and
Schmid, 2003).

The second step of the RMT pathway is endosomal protein
sorting where decisions are made regarding the fates of the receptor
and bound ligand. Several markers have been used to study
trafficking of antibodies in various endosomes, including early
endosomes (e.g., RAB5A, EEA1), late endosomes/lysosomes (e.g.,
RAB7A, LAMP1, LAMP2), multivesicular bodies (e.g., RAB27A,
CD82, PDCD6IP). In early endosomes, it is decided whether the
antibody will recycle back to the luminal side, be degraded, or
undergo exocytosis at the abluminal side. Molecules that do not need
to be degraded are concentrated in a network of tubular early
endosomal subdomains forming sorting tubules, which are
destined for the luminal membrane, multivesicular bodies
(MVBs) or the trans-Golgi network (TGN), thereby avoiding
lysosomal degradation (Maxfield and McGraw, 2004; Grant and
Donaldson, 2009). Typically, recycling vesicles recycle the RMT
receptor (with or without the ligand) back to the luminal side,
whereas the multivesicular bodies (MVBs) receive cargo for
degradation or exocytosis. For degradation, the cargo is sent to
late endosomes and lysosomes.

The final step of the RMT pathway is the externalization of the
receptor-ligand complex to the basolateral side of the barrier. This
process is the least understood of the RMT steps. Exocytosis may
occur through multiple routes from the early endosomes: directly
from vesicles (e.g., sorting tubules), via TGN, or via a direct fusion of
MVBs with the abluminal membrane [reviewed elsewhere (Haqqani
et al., 2022)].

To date about a dozen RMT receptors have been discovered by
involvement in one or more aspects of the RMT process. Examples
of these include Tf receptor (TfR) (Pardridge et al., 1991; Yu et al.,
2011; Niewoehner et al., 2014; Yu et al., 2014), LDL receptor (LDLR)
(Goldstein and Brown, 2009) and LDLR-related proteins (LRP1 and
LRP8) (Herz and Strickland, 2001; Xin et al., 2011), INS receptor
(INSR) (Coloma et al., 2000; Boado et al., 2010), IGF1 and
IGF2 receptors (IGF1R, IGF2R) (Ribecco-Lutkiewicz et al., 2018;
Alata et al., 2022; Shin et al., 2022; Yogi et al., 2022), TMEM30A/
ATPase complex (Abulrob et al., 2005; Farrington et al., 2014;
Webster et al., 2016), and neutral amino-acid transporter
CD98 heavy chain (SLC3A2) (Zuchero et al., 2016; Chew et al.,
2023; Pornnoppadol et al., 2023). These RMT receptors are
described below with more details to identify key criteria, besides
involvement in the RMT process, that are important for developing
BBB carriers against these receptors.

3 Types of transporters and their RMT
properties

3.1 Iron transporter: transferrin receptor

Transferrin receptor (TfR, CD71, TFRC) is a cell-surface protein
and a main source of cellular import of iron, which is a vital element
in several biological processes including oxygen transportation,
energy generation/mitochondrial function, as well as DNA
synthesis and repair (Laskey et al., 1988; Chua et al., 2007; Torti
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TABLE 1 Key features of known RMT receptors at the BBBa.

RMT
receptor

Receptor
complexity

Transmembrane
domains (TMDs)

Luminal/
Abluminal

Largest
ECD

(amino
acids)

N-linked
glycosylation

sites

Human vs.
mouse
ECD

sequence
similarity

(%)

Human vs.
mouse
ECD

sequence
identity (%)

CNS
delivery
type

Therapeutic
cargo

delivered

BBB
abundance

BBB
specificity

TFRC Single-pass
type II

1 Mostly L 672 3 86 76 Antibodies Anti-BACE; Anti-
Aβ; IDS; neprilysin;

ProGRN

Abundant
(top 30%)

Low

LDLR Single-pass
type I

1 Unknown 767 5 86 79 Peptides
(e.g.,

Transcend)

IL1R antagonist Abundant
(top 40%)

Low

LRP1 Single-pass
type I

1 L/A 4400 52 98 98 APOE;
Peptides
(e.g.,

Angiopep2)

Placlitaxel;
neurotensin;
APOE-coated
nanoparticles

Abundant
(top 30%)

Moderate

LRP8 Single-pass
type I

1 Unknown 784 6 89 86 Antibody;
peptide

Moderate
(top 50%)

High

TMEM30A 2-TMDs 2 L 255 4 91 87 FC5-based
antibodies

mGLUR1; anti-Aβ
peptide; dalargin;

galanin

Highly abundant
(top 10%)

Moderate

INSR Single-pass
type I

1 L 929 18 96 95 Antibodies IDUA; IDS; HEXA;
PPT1; ASM; GLB1

Moderate
(top 50%)

Low

IGF1R Single-pass
type I

1 L 195 16 97 97 Antibodies Neurotensin; Anti-
alpha-synuclein

Moderate
(top 50%)

Low/Moderate

IGF2R Single-pass
type I

1 Unknown 2264 18 90 82 Antibody LNP-containing
p11 gene

Moderate
(<50%)

Low

SLC2A1 12-TMDs 12 L 33 1 88 88 Antibodies
Glucose

Glucose-coated
nanoparticles for

SLC2A1

Highly abundant
(top 20%)

High

SLC3A2 Single-pass
type II

1 L 425 4 81 71 Antibodies BACE1 Highly abundant
(top 10%)

Moderate

Bsg Single-pass
type I

1 Unknown 186 3 71 51 Antibodies Abundant
(top 30%)

Low

LEPR Single-pass
type I

1 Unknown 818 18 84 76 Peptides Dendrigraft poly-L-
Lysine (DGL)
containing

plasmid DNA

Moderate
(<50%)

Low

(Continued on following page)
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and Torti, 2020). TfR imports iron via receptor-mediated
endocytosis of holo-Tf (i.e., iron-bound Tf) into endosomes
(Senyilmaz et al., 2015). Inside specific endosomes, holo-Tf-TfR
may directly reach the abluminal surface where holo-Tf is released
and unbound TfR recycled back (Duck and Connor, 2016).
However, more likely the lower pH of specific endosomes
releases iron from holo-Tf, producing apo-Tf (i.e., iron-lacking
Tf) bound to TfR. The apo-Tf-TfR complex is then recycled back
to the cell surface, where the apo-Tf is released from TfR at a neutral
pH (Qian et al., 2002). It should be noted that a homolog to TfR,
TfR2 is also able to bind circulating Tf (Kleven et al., 2018).
However, since expression of TfR2 is lacking at the BBB and is
predominantly at erythrocyte precursors and hepatocytes, only TfR
is discussed here.

At the BBB, TfR has been shown to act in a bidirectional RMT
manner, transporting holo-Tf from the blood to the brain and the
apo-Tf from the brain to the blood side (Skarlatos et al., 1995;
Zhang and Pardridge, 2001a). TfR has been detected predominantly
on the luminal side of the BBB (Zhang et al., 2015; Hill et al., 2021),
co-localizes with the CME pathway (Liu AP. et al., 2010; Mayle et al.,
2012; Villaseñor et al., 2017; Haqqani et al., 2018a; Haqqani et al.,
2018b), early endosomes (Bien-Ly et al., 2014; Niewoehner et al.,
2014; Sade et al., 2014; Haqqani et al., 2018a) andMVBs/exocytosing
vesicles (Haqqani et al., 2013; Villaseñor et al., 2017; Haqqani et al.,
2018b), and recycles back to luminal membrane likely involving the
CavE pathway (Pol et al., 1999; Gagescu et al., 2000; Hansen et al.,
2003; Lapierre et al., 2007; Leyt et al., 2007). Given its ability to
internalize and shuttle via endosomes between luminal and
abluminal membranes of the BBB, William Pardridge’s group
introduced the RMT approach for brain drug delivery (Pardridge
et al., 1987; Pardridge et al., 1991) and ever since TfR has been
extensively targeted to deliver drugs through the BBB and into the
brain parenchyma.

The protein sequence and structure of human TfR plays a key
role in designing antibodies against it. Human TfR is a single-pass
type II membrane protein and has 672 amino acids (89–760 aa) on
the extracellular domain (ECD) (UniProt consortium, 2024), a
significant binding surface accessible at the luminal membrane of
the BBB. However, the protein has one O-linked (Hayes et al., 1992)
and three N-linked (Lawrence et al., 1999) glycosylation sites in the
ECD which could provide some steric hindrance for antibody
binding. In addition, 192 amino acids at the C-terminus of the
ECD (569–760 aa) are important for Tf binding (UniProt
consortium, 2024) and targeting this region could interfere with
iron import into the brain. The remaining 481 amino acids of the
ECD region, excluding the transferrin-binding site, are not very
conserved between human and rodents, being only 68% similar and
53% identical (Table 1). This has made it difficult to raise species
cross-reactive anti-TfR antibodies for translational studies,
necessitating the development of transgenic mouse expressing
human full-length or ECD of TfR (Yu et al., 2011; Niewoehner
et al., 2014; Kariolis et al., 2020) for pre-clinical studies. Nonetheless,
several labs have successfully developed anti-TfR antibodies,
targeting different ECD regions, with different affinities that can
cross the BBB.

Numerous anti-TfR antibodies against human, non-human
primates (NHPs) and rodent TfR have been engineered to deliver
therapeutic cargos across the BBB in vivo. Following are fewT
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examples of some of the major studies. Watts and coworkers at
Genentech generated a bispecific antibody, with anti-TfR BBB-
carrier on one arm and anti-β-secretase therapeutic on the other
arm, and demonstrated that the antibody can be delivered to the
brain and effectively reduce the therapeutic target amyloid beta (Aβ)
in both the CSF and the brain of rodents and NHPs (Yu et al., 2011;
Bien-Ly et al., 2014; Yu et al., 2014). At Roche, Freskgård and co-
workers have developed anti-TfR based Brainsshuttle transport
system which when coupled to either an anti-Aβ antibody or Aβ-
degrading metallopeptidase neprilysin is delivered to the CNS and
substantially reduces Aβ levels in CSF and brain parenchyma
(Niewoehner et al., 2014; Campos et al., 2020). At NIH, Brody
and coworkers demonstrated in vivo target engagement of
therapeutic single-domain antibodies (sdAbs) against anti-Aβ and
anti- P2X7 receptor fused to anti-TfR sdAb (Esparza et al., 2023).
Similarly, Rutkowski and co-workers at Ossianix developed shark
anti-TfR sdAb, which was able to successfully deliver TrkB
neurotrophin receptor agonist antibody to brain parenchyma and
completely prevent neuronal cytotoxicity in a mouse model of
Parkinson’s disease (Clarke et al., 2022). Recently, Watts and co-
workers at Denali have developed several protein transport vehicles
(TVs) in which Fc domains are engineered to have TfR binding site.
TVs containing iduronate 2-sulfatase (IDS) (Arguello et al., 2022),
progranulin (Logan et al., 2021) and anti-β-secretase (Kariolis et al.,
2020) were shown to be successfully delivered to the CNS and
demonstrated strong pharmacodynamics effects. The success of
targeting TfR to deliver therapeutics into the brain has resulted
in several anti-TfR antibodies entering Phase 1 clinical trials. These
include delivery of anti-Aβ antibody in Alzheimer’s disease (Roche),
recombinant IDS protein in Hunter syndrome (separate clinical
trials by JCR Pharmaceuticals Co and Denali Therapeutics), and
recombinant progranulin in frontotemporal dementia (Denali
Therapeutics), all coupled with anti-TfR BBB-carrier function.
Promising efficacy and safety results were recently observed in
Phase 2/3 clinical trial of JCR Pharmaceuticals’ anti-TfR-coupled
IDS protein, which was recently conducted in 28 Japanese patients
with Hunter syndrome (Okuyama et al., 2021), and has recently
resulted in the first approval of TfR antibody—enzyme fusion
protein for facilitated brain delivery.

While TfR can be targeted to deliver cargo in the brain
parenchyma, TfR expression is neither specific to BBB nor to
brain tissues (Zhang et al., 2020). TfR is abundantly present in
brain tissues and microvessels (Zhang et al., 2020), ranking it in the
top 30% by gene expression but it is also similarly (or more)
abundantly present in the peripheral vessels and tissues (Uhlen
et al., 2010; Zhang et al., 2020). The high peripheral expression has a
potential to have off-target side-effects. Adverse drug-related events
were observed in Phase 2/3 clinical trial of anti-TfR-coupled IDS
protein (Okuyama et al., 2021), although it should be noted that
most of the TfR antibody-mediated adverse effects appear to be
reversible. However, it remains to be mechanistically determined if
any of these events were specifically due to off-target effects either at
the peripheral tissues or even within the brain in neurons—since TfR
expression is not specific to BBB within the human brain and is
abundantly expressed in multiple cell types (e.g., neurons,
astrocytes). Thus, while anti-TfR antibodies have provided a
significant success in demonstrating clinical proof of concept for
the RMT pathway for delivering therapeutics into the brain

parenchyma in preclinical and clinical studies, it must be noted
that the antibodies could potentially have off-site delivery and
adverse but reversible effects since TfR is not a BBB-specific
RMT receptor.

3.2 Lipid transporters

Several membrane proteins are responsible for transporting
lipids and lipoproteins intracellularly via the RME/RMT pathway
and thus considered as potential RMT receptors. These include the
family of LDL receptor (LDLR), including LDLR itself and LDLR-
related proteins 1 and 8 (LRP1 and LRP8, respectively), as well as a
lipid filppase complex containing TMEM30A. The discovery of
LDLR about 50 years ago by Michael Brown and Joseph
Goldstein (for which they won the Nobel Prize in 1985)
introduced the concepts of RME, receptor recycling, and
feedback regulation of receptors (Goldstein and Brown, 2009),
which are all central to the process of RMT. They demonstrated
that LDLR plays a key role in cholesterol homeostasis by
transporting cholesterol-enriched LDL via the CME pathway into
cells, which results in feedback regulation of intracellular cholesterol
synthesis (Goldstein and Brown, 2009). LRP1, on the other hand,
has a wide range of structurally and functionally diverse ligands that
it recognizes on the cell surface (Potere et al., 2019). For some
ligands, LRP1 transduces their interactions intracellularly via
signaling pathways, while for others (e.g., APOE),
LRP1 physically translocates the ligands to intracellular
compartments (Herz and Strickland, 2001) via CME or CavE
pathways (Xin et al., 2011; Haqqani et al., 2022). Like LRP1,
LRP8 also plays roles in both cellular signaling and RME. The
receptor plays a critical role during development by mediating
Reelin signaling, and also functions as a receptor for the
transport of APOE. Besides the family of LDLR, the TMEM30A/
ATPase complex involvement in various aspects of the RMT
pathway and ability to transport a cargo across the BBB has been
shown recently. The complex has a flippase activity that transports
amino-phospholipids from the outer to the inner leaflet of cellular
membranes and ensures the maintenance of asymmetric
distribution of phospholipids. Its role as a an RMT receptor was
identified after TMEM30A was discovered to be a receptor for
FC5 sdAb (Abulrob et al., 2007) that can cross the BBB via the
RMT pathway. The receptor has been shown to internalize via the
CME pathway, traffic via early endosomes into MVBs, and
exocytose likely via recycling vesicles and exosomes [summarized
in Haqqani et al. (2022)].

One of the features of the 4 lipid transporters that might make
them attractive targets for antibody generation is the accessibility of
their ECD. The LDLR family receptors are single-pass type I
membrane proteins and have highly accessible ECDs consisting
of 767, 4400 and 784 amino acids, respectively (Table 1).
TMEM30A, despite having two transmembrane domains, also
has a large ECD of 255 amino acids. LRP1 in fact has the largest
ECD of all known RMT receptors considered for BBB delivery. In
addition, it is the most conserved of the RMT receptors, with 98%
sequence similarity and identity between human and mouse
LRP1 proteins. However, LRP1 is also known to bind
to >100 ligands for its physiological/pathological functions
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(Potere et al., 2019), making it challenging to develop anti-LRP1
therapies that do not interfere with the binding of these ligands to
LRP1. Furthermore, LRP1 is the most heavily glycosylated RMT
receptor, with more than 50 glycosylation sites spread across its
entire ECD, which may also limit in vivo accessibility. The other
3 lipid receptors, LDLR, LRP8 and TMEM30, have moderate-to-
high sequence conservation between human and mouse proteins
and are moderately glycosylated (Table 1).

Nonetheless, macromolecules targeting these lipid receptors
have been developed and demonstrated to cross the BBB and
some have been shown to deliver cargo into the brain. For LDLR
and LRP1, although evidence of a successful antibody that can target
these receptors and cross the BBB is currently lacking, targeting-
peptides derived from the natural ligands of the receptors or
discovered through phage display technology have been identified
as cargo carriers across the BBB. An example is a 12-amino acid
peptide, also referred to as Transcend peptide, originating from
melanotransferrin (MTf). While having structural homology to Tf,
MTf is a natural ligand for LDLR instead of TfR (Demeule et al.,
2002). The Transcend peptide was able to deliver a full-length IgG
and interleukin-1 receptor antagonist into brain parenchyma as
demonstrated by confocal microscopy and a pharmacodynamic
effect in a neuropathic pain mouse model (Thom et al., 2019).
Another example is a 19-amino acid, LRP1-targeting peptide called
Angiopep-2 that was derived from Kunitz domains (Demeule et al.,
2008). Angiopep-2 was demonstrated to efficiently deliver the
cancer drug Placlitaxel to gliomas (Thomas et al., 2009), and its
pharmacodynamic effects were demonstrated as a neurotensin
fusion protein (Demeule et al., 2014). Whereas these peptide
ligands against LDLR and LRP-1 provided pre-clinical proof of
concept that these receptors are “targetable” for brain delivery of
payloads, their limitations including short circulation half-life and
instability hindered their clinical development. APOE is another
natural ligand of LRP1 that has been demonstrated in a number of
studies to deliver nanoparticles containing a variety of payloads
through the BBB in in vitro models and several animal models
(summarized in Hartl et al. (2021)). Phage display technology has
been used to develop targeting peptides that bind to ECDs of LDLR
(André et al., 2020) or LRP1 (Sakamoto et al., 2017; Sakamoto,
2022). These peptides have been demonstrated to effectively cross
the BBB in both in vitro and in vivo conditions, although their
abilities to carry a therapeutic along with them has yet to be shown.
However, it should be noted that LRP1 may not be predominantly
accessible at the luminal membranes of the BBB and has important
role for Aβ clearance in the abluminal membranes (Ramanathan
et al., 2015; Khan et al., 2021). Similar to LRP1, anti-LRP8 peptide
(Benatuil et al., 2018) and anti-LRP8 antibody (Argiriadi et al., 2023)
have been shown to cross the BBB but evidence of their ability to
carry a therapeutic cargo into the brain is currently lacking. On the
other hand, such evidence has been documented for TMEM30A-
binding sdAb FC5. This VHH to anti-TMEM30 complex has been
shown to effectively cross the BBB in both in vitro and in vivomodels
(Farrington et al., 2014; Webster et al., 2016; Ribecco-Lutkiewicz
et al., 2018; Kang et al., 2021). FC5 has also been demonstrated to
effectively carry short therapeutic peptides, including dalargin,
galanin and anti-Aβ peptide (Farrington et al., 2014; Stanimirovic
et al., 2014; Webster et al., 2016; Kang et al., 2021), as well as larger
proteins such as 150 kDa full IgG towards metabotropic glutamate

receptor-1 (Stanimirovic et al., 2014; Webster et al., 2016) into CNS
in animal models, triggering corresponding therapeutic effects
(Farrington et al., 2014; Webster et al., 2016; Kang et al., 2021).

Similar to TfR the expression of lipid transporters is not BBB-
specific, with the exception of LRP8. LDLR and LRP1 are abundantly
present in human brain tissues and microvessels, ranking in the top
30% by gene expression, and TMEM30A is even more abundantly
present in brain tissues and microvessels, ranking in the top 10%
(Zhang et al., 2020). However, the expression is similarly abundant
in the peripheral human tissues for both LRP1 and TMEM30A and
even higher for LDLR [(Uhlen et al., 2010; Zhang et al., 2020) and
Table 1]. Thus, off-target effects due to high peripheral expression in
various organs may need to be addressed for peptides and antibodies
targeting these RMT receptors. In fact, some adverse effects were
observed in a first-in-human study in patients with advanced solid
tumors, although they appeared to be reversible (Kurzrock et al.,
2012). On the other hand, LRP8 has strong CNS specificity, showing
5 to 10-fold higher expression in the CNS tissues than in peripheral
tissues (Uhlen et al., 2010; Zhang et al., 2020). However, the
abundance of LRP8 is moderate, ranking below the top 40% by
overall gene expression, and not as high as some of the other RMT
receptors. Thus, even though several lipid transporters have been
validated as RMT receptors and demonstrated the ability to deliver
cargo into the brain parenchyma, their specificity, accessibility and/
or abundance in peripheral tissues may hinder their development
towards clinical trials.

3.3 Receptors for insulin and insulin-like
growth factors

Receptors for insulin (INS), insulin-like growth factor-1 (IGF1)
and −2 (IGF2) are cell-surface proteins that mediate metabolic signals
and promote growth. The INS receptor (INSR) and IGF1 receptor
(IGF1R) are members of the receptor tyrosine kinase family that are
activated following high affinity-binding to their own ligands (INS
and IGF1, respectively), and with lower affinity to non-cognate
ligands IGF1, IGF2 or INS (e.g., INS can also activate IGF1R, and
IGF1 and IGF2 can activate INSR) (Mancarella and Scotlandi, 2018).
The activated receptors lead to similar intracellular signaling pathways
(PI3K and MAPK) but have distinct functional outcomes; INSR
signaling regulates glucose uptake and release, as well as the
synthesis and storage of carbohydrates, lipids and protein, whereas
IGF1R signaling is involved in cell growth and survival control (Kim
and Accili, 2002). IGF2R, on the other hand, is unrelated to either
INSR or IGF1R, does not bind to either INS or IGF1, and does not
transmit signals intracellularly (Mancarella and Scotlandi, 2018).
IGF2R instead is a receptor for IGF2 and mannose 6-phosphate
(M6P)—a post-translational modification of proteins—and mediates
their transport from various cellular compartments to endosomal/
lysosomal compartments (Oshima et al., 1988; McCormick
et al., 2008).

The 3 receptors (INSR, IGF1R, IGF2R) are involved in various
aspects of the RMT process. Both INSR and IGF1R have been shown
to internalize via the CME pathway, the non-CME pathway, and the
CavE pathway (summarized in Morcavallo et al. (2014)) and sort
through early endosomes and MVBs (Hunker et al., 2006; Haqqani
et al., 2022), especially when incubated with their antibodies.
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IGF2R plays important roles in intracellular trafficking of
IGF2 and M6P-modified proteins. For IGF2, IGF2R acts as a
signal antagonist that prevents excess IGF2 signaling by
removing it from the extracellular space and trafficking it via
endosomes to lysosomes for degradation (Goda and Pfeffer, 1988;
Johnson et al., 1990; Jadot et al., 1992). For M6P, IGF2R is known to
act as a cation-independent receptor, mediating the delivery of
newly synthesized M6P-modified lysosomal enzymes from the
Golgi complex to lysosomes via the early endosome (Oshima
et al., 1988; McCormick et al., 2008). Given their involvement in
RMT processes and intracellular trafficking, the 3 receptors (INSR,
IGF1R, IGF2R) are attractive targets for drug delivery into the brain.
However, it should be noted that the IGF2/M6P transport by IGF2R
is progressively lost with aging from neonates to adult, and in fact, by
adulthood, the BBB has totally lost this transport capacity (Urayama
et al., 2004), suggesting that the IGF2R system might be limited to
delivery in neonates only.

The protein sequences and structures of human INSR, IGF1R
and IGF2R have several features that make them attractive targets
for developing binding antibodies. All 3 receptors are single-pass
type I membrane proteins and have highly accessible ECDs
consisting of 929, 195 and 2264 amino acids, respectively. In
addition, protein sequences for INSR and IGF1R are highly
conserved among various species—likely amongst the highest for
all known RMT receptors—with each of the human sequences
being >95% identical to the sequences of their murine
counterpart (Table 1). Human IGF2R, while being only 82%
identical to mouse, has a very large ECD and as a result has
more conserved residues with mouse (>1850 aa) than the
conserved residues of INSR and IGF1R combined. However, the
3 receptors are heavily glycosylated with at least 16 N-linked
glycosylation sites in the ECDs, which can potentially provide
strong steric hindrance for antibody binding. Furthermore, the
receptors have multiple regions throughout their ECDs that are
important for their respective ligand binding (Bergman et al., 2013;
Ye et al., 2017; Li et al., 2019). Thus, generating antibodies to INSR,
IGF1R and IGF2R that do not interfere with their physiological
functions could be challenging and evidence needs to be provided
that these antibodies do not interfere with downstream pathways.

Antibodies to INSR, IGF1R and IGF2R have been developed and
shown to deliver cargo across the BBB in vivo. The most well
characterized anti-INSR antibody is the humanized monoclonal
antibody called HIRMAb (Pardridge, 2017) that binds an epitope
within the 469–592 amino acid region of the receptor (Pardridge
et al., 1995). The antibody has been shown to successfully carry a
number of enzymes as cargo across the BBB, including α-
L-iduronidase (IDUA) (Pardridge et al., 2018), IDS (Boado et al.,
2014), hexosaminidase A (Boado et al., 2019), palmitoylthioesterase-
1 (Boado et al., 2019), acid sphingomyelinase (Boado et al., 2019)
and beta galactosidase-1 (Boado et al., 2019). The HIRMAb-IDUA
antibody has shown positive results in clinical studies (Pardridge
et al., 2018) and is currently in clinical trials, although some mild
adverse effects including infusion related reactions and transient
hypoglycemia have been observed in pediatric patients (Giugliani
et al., 2018). Anti-IGF1R antibodies have been shown also to cross
the BBB and carry cargos into the brain parenchyma. These include
multi-species cross-reactive, VHH sdAbs IGF1R3, IGF1R4 and
IGF1R5 that can successfully carry cargo of a wide range of

molecular weight sizes (<10 kDa–140 kDa) across the BBB either
as sdAbs or in Fc format. The proof of concept for use of these
IGF1R VHHs has been obtained in human and rat in vitro BBB
models, as well as in rat, mouse and NHP in vivo models (Ribecco-
Lutkiewicz et al., 2018; Sheff et al., 2021; Alata et al., 2022; Yogi et al.,
2022). These sdAbs target receptor epitopes that do not interfere
with the physiological functions (Sheff et al., 2021; Sheff et al., 2023).
Recently, ABL Bio Inc. demonstrated that an anti-IGF1R scFv
(Grabody B) fused with therapeutic anti-alpha-synuclein IgG
crosses the BBB and improves the neuropathology and behavior
in a Parkinson’s disease animal model better than the therapeutic
IgG alone (Shin et al., 2022). Finally, an anti-IGF2R antibody called
IGF-II was demonstrated to carry lipid nanoparticles-containing
p11 gene and deliver it in rat and mouse brain parenchyma (Gandhi
et al., 2019), although details of the antibody and in vitro BBB-
crossing are unspecified, especially the fact that transport capacity of
IGF2R has been shown to be lost in adulthood (Urayama
et al., 2004).

Given the ubiquitous role of insulin and related growth factors,
their receptors are not uniquely expressed at the CNS. INSR and
IGF2R (mostly neuronal) are moderately expressed in human brain
tissues and microvessels, and their expression is actually higher in
many of the peripheral human tissues (Uhlen et al., 2010; Zhang
et al., 2020). Similar is seen for IGF1R, although the brain expression
is slightly higher than peripheral tissues (Zhang et al., 2020) and it is
easily accessible on the luminal surface of the BBB (Hill et al., 2021).
Nonetheless, while INSR and related receptors have been
demonstrated to deliver cargo successfully through the BBB and
into the CNS, their roles in essential physiological functions are
potential liability and requires careful engineering of binding
antibodies to mitigate interference with these functions.

3.4 Solute carrier transporters

Solute carriers (SLCs) represent a major superfamily of membrane
transporters with more than 450 members classified into 66 families
(Hu et al., 2020). These proteins mediate the exchange of substances
including ions, nutrients, signaling molecules and drugs across
biological barriers. Glucose transporter 1 (Glut1) is a member of the
SLC2 family (SLC2A1) that provides basal metabolic energy to the cells
mainly in the form of glucose although it can also transport galactose,
mannose and glucosaminewith different efficiencies (Calvo et al., 2010).
The transport of sugars by this transporter is bidirectional with passive
diffusion solely based on a concentration gradient. The heavy chain of
the cluster of differentiation 98 (CD98hc) is a member of the
SLC3 family (SLC3A2) forming heterodimeric amino acid
transporters by interacting covalently with one of six light chain
subunits from the SLC7 family. In the heterodimer, the heavy
subunit is responsible for the trafficking of the transporter to the
plasma membrane while the light subunit catalyzes the transporter
function (Fotiadis et al., 2013), conferring substrate specificity to the
molecule. In addition, CD98hc interacts with the cytoplasmic tails of β-
integrin subunits and participates in cellular signaling thereby
promoting cellular migration, survival, spreading and growth (Zent
et al., 2000; Cantor et al., 2008).

Both CD98 and Glut1 have been shown to internalize via CIE
pathways (Eyster et al., 2009) entering the cells independently of
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dynamin, but dependent upon plasma membrane cholesterol and
accumulating in vacuoles containing an active form of the GTPase
Arf6 (Arf6Q67L). However, the two proteins employ divergent
itineraries to tubular recycling endosomes. Once inside the cells,
Glut1 was found to merge with endosomes containing Tf and early
endosomal antigen 1 (EEA1) before entering the recycling tubules;
in contrast, CD98 utilizes novel downstream sorting mechanisms
and directly enters the recycling tubules by-passing the EEA1-
positive compartment (Eyster et al., 2009). CD98 likely utilizes
the CLIC/GEEC internalization pathway since it is a GPI-
anchored protein.

The structure of Glut1 is extremely complex with 12 trans-
membrane (TM) domains and very limited sequences available at
the cell surface for the generation of antibodies. Only the first extra-
cellular loop (ECL) containing 33 amino acids offers sufficient space
for antibody targeting whereas the other five loops are likely too
small. ECL1 contains a single N-linked glycosylation site and
interestingly, the pattern of glycosylation has been shown to vary
depending on the localization of the transporter (Patching, 2017).
The glycosylated form of Glut1 is observed at the BBB and on the
membrane of erythrocytes whereas the low molecular weight non-
glycosylated form can be found at the cell membrane of astrocytes
and to some extent microglia. The sequence of Glut1 is highly
conserved between species with 97% identity between human and
mouse for the full-length protein and 88% identity for ECL1
(Table 1). Finally, the binding sites for glucose are found within
TM domains (Deng et al., 2014) and therefore, the targeting of any
ECL with antibodies is unlikely to affect the physiological function of
the transporter. In contrast, CD98hc is a single-pass type II
membrane N-glycoprotein composed of an intracellular
N-terminal domain, a single transmembrane domain and a large
C-terminal ECD (425 aa) which is widely accessible for the
generation of antibodies (Table 1). However, this domain only
shares 71% identity with the murine protein combined with an
inconsistent glycosylation pattern and notable structural differences
(Deuschle et al., 2019). Therefore, the development of cross-reactive
antibodies with therapeutically significant affinities against this
protein is likely to pose a challenge. In addition, cryo-EM
analysis of the ECD revealed the presence of four glycans with
the potential to sterically hinder antibody binding (Lee et al., 2019).

Given the very high energy demand of the brain and the fact that
glucose is the main source of energy for this sophisticated organ, it is
no surprise that the Glut1 receptor is remarkably abundant at the
BBB compared to many other receptors and transporters (Uchida
et al., 2011). Taking advantage of the very high level of expression of
this protein in BECs, several nanocarriers were developed in which
glucose was used as the targeting ligand decorating the surface of the
delivery vessels (Qin et al., 2010; Xie et al., 2012). Nevertheless,
although these earlier versions of the system demonstrated cellular
uptake and BBB crossing in vitro, their analysis in vivo only led to a
modest accumulation of the nanocarriers in the brain (less than 1%
dose/g-brain) following intravenous injection in mice. The first real
success of using glucose-modified nanoparticles was obtained under
hypoglycemic conditions (Anraku et al., 2017), which have been
shown to result in a significant increase of the luminal expression of
Glut1 (Simpson et al., 1999) therefore facilitating target engagement
by blood-borne vehicles and leading to a significant increase in
transcytosis upon addition of glucose. When fasting mice received a

glucose solution, accumulation of glucose-modified nanocarriers at
high levels in the brain (~6% dose/g-brain) was observed. This
glycemic control strategy was later applied to deliver nanoparticles
containing antisense oligonucleotide (ASO) for brain gene
knockdown (Min et al., 2020) or antibody fragments for
Alzheimer’s disease treatment (Xie et al., 2020) in the brain. In
another set of experiments, Glut1 together with CD98hc were both
selected from a proteomic screen aiming at identifying
transmembrane proteins highly expressed in isolated mouse
primary BECs (Zuchero et al., 2016). Subsequent generation of
three antibodies targeting Glut1 (one antibody) or CD98hc (two
antibodies) demonstrated a significant accumulation in the brain in
vivo. In particular, systemic administration of CD98hc antibodies
showed the highest brain concentrations of all RMT targets
investigated. Reformatting of anti-CD98hc antibodies into bi-
specific molecules targeting CD98hc on one arm and the β-site
amyloid precursor protein cleaving enzyme 1 (BACE1) on the other
arm led to the reduction of brain Aβ by 30%–40% confirming the
penetration of antibody molecules into the brain parenchyma.
Importantly, targeting of CD98hc by antibodies did not affect the
total brain expression level or subcellular localization of the
transporter nor did it affect the level of amino acid transport.
Delivery into the brain of an anti-CD98hc antibody was also
demonstrated in non-human primates (Edavettal et al., 2022).
Finally, a mouse specific scFv fused to the C-terminus of one
heavy chain of an IgG molecule was shown to cross the BBB and
engage several endogenous targets in the brain parenchyma of wild-
type mice (Pornnoppadol et al., 2023). Notably, the CD98hc shuttle
demonstrated sustained brain concentration up to 1 week following
administration. Although experiments with these transporters have
been limited to mice and non-human primates, proteomics on
human brain microvasculature revealed a high expression of both
CD98hc and Glut1 (Uchida et al., 2011) suggesting that both targets
hold the potential to translate into humans. In fact, a human/mouse
cross-reactive transport vehicle composed of an anti-CD98hc IgG
and a modified Fc region was recently shown to reach the brain in
humanized CD98-knock in mice (Chew et al., 2023) with slower and
more prolonged kinetic properties compared to other BBB shuttles
and no safety issues noted.

Both Glut1 and Cd98hc are amongst the most abundant
proteins in brain microvessels (Zuchero et al., 2016; Zhang et al.,
2020). While Glut1 is expressed in virtually all tissues, it appears to
be selectively enriched in brain microvessels compared to peripheral
tissues and total brain (Zhang et al., 2020) making it quite attractive
as a brain delivery target. In contrast, in addition to the high
expression observed in brain microvessels, high levels of the
CD98hc transporter have been detected in the lungs and the
spleen as well as in total brain posing a significant risk for off-
target side effects upon targeting of this protein although nothing
has been reported to date.

3.5 Emerging RMT targets

Although the delivery of cargo across the BBB using known
RMT receptors described in the previous sections has demonstrated
some success, some important limitations remain and no receptor
investigated to date is optimal. In recent years, several groups have
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invested efforts to attempt to identify novel RMT targets with ideal
delivery properties. Notably, selective and enriched expression at the
BBB compared to whole brain and periphery has been the
critical criterion.

Through a screen for proteins highly expressed in mouse BECs
leading to the identification of Glut1 and CD98hc as described in the
sections above, Zuchero et al. (2016) also identified basigin as a
potential RMT target. This protein is a single-pass type I
transmembrane protein belonging to the immunoglobulin (Ig)
superfamily containing an ECD of 186 amino acids, a single-
chain transmembrane domain and a short cytoplasmic tail. The
ECD of the most common basigin isoform contains two Ig-like
domains covalently inter-linked (Yu et al., 2008) and three N-linked
glycosylation sites which are essential for the cell membrane
localization of the protein (Huang et al., 2013) but that could
sterically interfere with the binding of antibodies. Moreover, this
domain shares only 51% identity with the mouse basigin ECD
severely impeding the development of cross-species reactive anti-
basigin therapies (Table 1). Basigin acts as a co-receptor for the
lactate transporter, monocarboxylate transporter 1 (MCT1)
mediating its cell surface translocation which is essential for the
function of the transporter (Kirk et al., 2000). Basigin has also been
shown to interact either directly or indirectly with several other
partner molecules and is involved in numerous physiological and
pathological processes (Muramatsu, 2016) making it difficult to
develop basigin-targeting antibodies that do not interfere with the
function of the receptor. Although the expression of basigin is not
exclusive to the brain, it appears to be significantly enriched in BECs
compared to other organs (Tam et al., 2012; Zuchero et al., 2016; He
et al., 2018). However, this protein is also highly expressed in all
leukocytes (Weidle et al., 2010), erythrocytes (Coste et al., 2001) and
platelets (Schmidt et al., 2008) in which it plays a critical role and
dysregulation of its expression has been associated with an array of
immunological diseases (Hahn et al., 2015). Therefore, the targeting
of this receptor for BBB crossing presents significant risks of having
detrimental consequences on immune cell development and
function. Nevertheless, following identification of high levels of
basigin expression in mouse BECs, two antibodies against this
protein were generated followed by analysis of in vivo binding
after IV administration in mice (Zuchero et al., 2016).
Interestingly, while the two anti-basigin antibodies accumulated
in the brain, the high affinity antibody was found at levels
similar to an anti-TfR control whereas only modest accumulation
was observed for the lower affinity antibody against Basigin. This is
consistent with the affinity-dependent differences obtained with
anti-TfR antibodies at trace dose levels (Yu et al., 2011). In
contrast, both basigin-targeting antibodies were found to
accumulate at similar levels comparable to the anti-TfR control
antibody following injection with higher therapeutic doses (Zuchero
et al., 2016) and all antibodies were able to reach the brain
parenchyma as demonstrated by microvessel depletion
techniques. In view of better understanding the RMT properties
of basigin, a larger panel of antibodies were generated targeting
different epitopes of the receptor ECD with variable affinities
(Christensen et al., 2021). Antibodies from all epitope bins
demonstrated the ability to bind and internalize to variable levels
in a human brain endothelial cell line expressing basigin. Overall, the
differences in the binding characteristics observed within each

epitope bin did not correlate with differences in affinities
although this remains to be further confirmed. In a subsequent
study (Christensen et al., 2021), the same group investigated the
transcytosis ability of selected antibodies in a porcine in vitro BBB
model and found that all antibodies were able to cross the BBB
endothelial cell layer to then internalize in co-cultured astrocytes.
The analysis of the trafficking pathway in porcine BECs revealed a
CavE-independent internalization mechanism followed by the
accumulation of anti-basigin antibodies in EEA1 and TfR-
containing recycling vesicles and no localization with late
endosomes or lysosomes.

The integral membrane protein 2A (ITM2A) is a single-pass
type II integral membrane protein composed of four distinct regions
which are the hydrophobic, the linker, the extracellular BRICHOS
and the intracellular C-terminal domains. The ECD (190 aa) is of
particular interest since it is large and exposed at the cell surface
available for antibody targeting and it shares more than 95%
homology with the mouse protein (Table 1). ITM2A was first
identified as a marker for chondro-osteogenic differentiation
(Deleersnijder et al., 1996) whose role was later confirmed by
others (Tuckermann et al., 2000; Van den Plas and Merregaert,
2004; Boeuf et al., 2009). Since then, it has also been shown to play a
role in myogenic differentiation (Van den Plas and Merregaert,
2004; Lagha et al., 2013) and in the regulation of autophagy
(Namkoong et al., 2015; Zhou et al., 2019). However, little is
known about its biological function in the brain. Several studies
identified ITM2A as a brain endothelial cells-specific protein with
low expression in other brain cell types (Zhang et al., 2016;
McKenzie et al., 2018; Hu et al., 2020) including astrocytes,
oligodendrocytes, neurons and microglia and in peripheral
organs (Li et al., 2002; Pardridge, 2007; Bangsow et al., 2008;
Feng et al., 2019; Hu et al., 2020) such as liver, kidney, heart and
lung. Nevertheless, the involvement of this protein in RMT pathway
remains unclear. More recently, Cegarra et al. (2022) at Sanofi
interrogated the use of this protein as a delivery agent across the
BBB. Antibodies targeting extracellular regions of the protein were
generated and their ability to bind and internalize in cells
overexpressing ITM2A was demonstrated. However, attempts
made by the authors to demonstrate BBB crossing capabilities of
ITM2A-specific antibodies in vitro or in vivo were inconclusive.
While the overall characteristics of ITM2A point to a good RMT
target, its validation for brain delivery remains to be shown.

Leptin, a neuropeptide involved in the regulation of appetite is
secreted by peripheral adipocytes and acts centrally on leptin
receptor-expressing brain cells to reduce food intake and retard
weight gain (Houseknecht et al., 1998). Evidence suggests that this
peptide reaches the brain parenchyma through its receptor following
clathrin- and calveolae-mediated energy dependent endocytosis
(Banks et al., 1996; Barr et al., 1999) although other mechanisms
of entry might exist (Banks et al., 2002; Banks, 2004). The leptin
receptor (LERP) is a single-pass type I membrane protein which is
expressed in several regions of the brain including the choroid
plexus (Tartaglia et al., 1995) and the BBB (Golden et al., 1997) in
addition to many other peripheral organs and tissues with
enrichment in the lungs (Zhang et al., 2020). The non-CNS
specificity of this receptor could pose a significant challenge to
the development of brain delivery vectors. The extracellular part of
the receptor (818 aa), although widely accessible for antibody
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targeting in terms of size, contains several complex structural
domains from which the second cytokine receptor homology
(CRH2) module has been identified as the high-affinity binding
domain for leptin (Iserentant et al., 2005). The targeting of this
domain therefore represents a risk to interfere with the physiological
function of the protein. In addition, the extracellular part of LERP
has limited identity with the mouse domain (76%) and is highly
glycosylated representing a major obstacle to the generation of
antibodies (Table 1). In a search for regions responsible for brain
uptake, peptides covering the full-length human leptin protein were
synthesized and assessed for their ability to reach the brain
parenchyma in vivo in rats (Barrett et al., 2009). Two peptides
(positions 1–33 and 61–90) demonstrated higher brain uptake
compared to control molecules at levels that were similar to
those of leptin. Further dissection of peptide 1–33 led to the
identification of residues 12–33 with increased brain uptake
whereas truncation of the 61–90 peptide led to significantly
reduced brain accumulation. The peptides were shown to reach
the brain parenchyma through a saturable mechanism. Interestingly,
the two regions covered by the peptides were found to be involved in
the binding to the leptin receptor confirming the dependency of this
interaction for brain uptake. In a subsequent study (Liu Y. et al.,
2010), the most efficient peptide (leptin30) was further modified by
covalent linkage at the surface of synthetic polymers leading to
efficient brain-targeted gene delivery both in vitro and in vivo.

Finally, the neonatal crystallizable fragment receptor (FcRn)
is a single-pass type I membrane glycoprotein forming
heterodimers composed of a major histocompatibility complex
Class-I like heavy chain and a non-covalently associated β2-
microglobulin (β2m) light chain. The heavy chain consists of
three structural ECDs (α1, α2 and α3), one transmembrane
domain and a short cytoplasmic tail. The overall extracellular
region of the heavy subunit is composed of 274 amino acids
sharing 69% identity with its mouse counterpart which could
limit the generation of cross-species reactive molecules (Table 1).
In addition, the ligand binding sites have been mapped to
residues within the α1 and α2 ECDs (Giragossian et al., 2013)
thereby limiting accessible epitopes for antibody targeting
without altering the physiological function of the receptor.
FcRn interacts with the fragment crystallizable Fc domain of
immunoglobulin G (IgG) molecules and with albumin to regulate
their bi-directional transport across numerous biological barriers
including the epithelia found at the placenta (Story et al., 1994;
Leach et al., 1996), the lungs (Spiekermann et al., 2002), the
kidneys (McCarthy et al., 2000; Kobayashi et al., 2002) and the
intestines (Rodewald, 1976; Simister and Mostov, 1989)
translating in a ubiquitous expression across organs and
tissues potentially implying off-target sides effects observed
with anti-FcRn therapies. The interaction of IgGs and albumin
with FcRn is responsible for their prolonged plasma half-life
creating a protein reservoir that is protected from lysosomal
degradation and subsequently recycled to the extracellular space
(Lencer and Blumberg, 2005). At the BBB, FcRn has been shown
to regulate the efflux of antibodies from the brain parenchyma
into the blood following reverse transcytosis (Zhang and
Pardridge, 2001b; Cooper et al., 2013). Recently, Tien et al.
(2023) from Teva proposed that under the appropriate
conditions, the receptor could allow for the influx of

antibodies from the blood capillaries into the brain and
suggested FcRn as a potential RMT target for the development
of brain-targeting therapeutics. In this study, three amino acid
substitutions (YTE) known to improve the affinity of antibodies
for the mouse FcRn at acidic and neutral pH (6.0 and 7.4,
respectively) (Dall’Acqua et al., 2002) were introduced within
antibody Fc domains resulting in a strong accumulation in the
brain parenchyma for an extended period of time (504 h)
following IV administration in mice. This was in contrast to
antibodies bearing the WT Fc domain for which only very low
levels could be detected in the mouse brain. Importantly, the
improved translocation of YTE-modified antibodies was
independent of their target antigen or functionality while it
depended on their interaction with the FcRn receptor leading
to cellular internalization and trafficking. Although the
experiments were exclusively conducted in mice, the level of
FcRn expression in endothelial cells is comparable between
human and mouse (Latvala et al., 2017) and this strategy is
predicted to be clinically relevant. However, the mutations
that were applied in this study do not translate in the same
effect in humans than in mice and are unlikely to improve BBB
transport in humans. While the YTE substitutions resulted in an
improved target engagement at both pH 6.0 and pH 7.4, in
humans the same mutations increase the binding at
pH 6.0 but not pH 7.4, thereby enhancing FcRn-mediated
antibody recycling from endosomes and increasing antibody
half-life (Dall’Acqua et al., 2002). Specific mutations that
would enhance the interaction of antibodies with the FcRn
receptor in a pH-independent manner in humans would have
to be independently identified and validated before the real
nature of this receptor as a clinically-relevant RMT target for
brain delivery can be established. Additionally, it is not clear why
these engineered antibodies would behave differently in BECs
compared to peripheral ECs and this approach is likely to result
in a non-selective increase of transcytosis in all tissues of the body
leading to important safety issues.

In addition to the candidates described above, other proteins
emerged from early receptor identification studies where in most
cases the mechanism of their potential BBB crossing remains
unclear. These include the intracellular adhesion molecule 1
(ICAM-1) and podocalyxin (PODXL) which were identified as
potential RMT targets from analyses of BBB abundant cell-
surface proteins with endocytic properties (Agarwal et al.,
2010; Ito et al., 2020) ICAM-1 is however expressed in several
cell types of multiple organs with no real enrichment in the brain
and has been investigated more as a target for diseases with a wide
range distribution such as lysosomal storage disorders (Hsu et al.,
2012; Muro, 2012; Solomon et al., 2022) although ICAM-1-
targeted carriers have shown the ability to reach the brain
amongst other organs (Papademetriou IT. et al., 2013;
Papademetriou J. et al., 2013; Hsu et al., 2014) with the
highest accumulation observed in the lungs. While PODXL
was found to be selectively expressed and to internalize in
MBECs (Agarwal et al., 2010; Ito et al., 2020), further studies
are required to elucidate its role in the brain and its function as an
RMT target. Transthyretin (Ttr) was identified by screening the
rat serum proteome for candidates with the ability to
transmigrate in an in vitro rat BBB model (Kim et al., 2015).
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When conjugated at the surface of Quantum Dot (QD)
nanoparticles, Ttr-targeted particles demonstrated the ability
to cross the BBB both in vitro and in vivo. Although the
distribution of Ttr-QDs in the brain was significantly
increased compared to control molecules, a strong
accumulation was also observed in the liver and to lower
extent in the kidney, lung and colon suggesting that Ttr may
not represent a safe alternative to current RMT targets.

4 Key criteria for an RMT receptor

At least a dozen RMT receptors have been discovered at the BBB
and have been targeted for delivery of therapeutics into the brain
(Table 1). While they all have different desirable features that have
led to their successes in preclinical and even clinical studies, they also
have different limitations and concerns that need to be addressed on
the path to clinical translation. So far, none of the known RMT
receptors have all the desirable features; therefore, further
explorations of the BBB selective “transporter” proteome are
currently under way, with novel targets expected to be discovered
(or publicly disclosed).

Hence, here we list some of the key criteria for identifying an
“ideal” RMT receptor.

1. Role in transport. Beside their involvement in various RMT
processes, a key biological function that is common amongst
most (if not all) of the known RMT receptors is that they are
involved in cellular trafficking or transport of natural ligands
and nutrients, including transport of growth factors, iron, lipid,
glucose and other molecules across the BBB. Thus, when
choosing a receptor, it might be important to favor those
that are naturally involved in transport and understand its
endocytic pathways and intracellular trafficking routes
(Haqqani et al., 2018a; Haqqani et al., 2018b). However, as
a caveat, antibodies or peptides that target these receptors must
not interfere with this physiological function.

2. Abundant expression in brain microvessels. High expression of
receptors in brain microvessels is essential for effective therapeutic
delivery to the brain. Expression can be determined from omic
profiles (e.g., RNAseq, transcriptomics) of brain microvessels and
ranking all the genes by abundance (e.g., top 20% as “highly
abundant,” 20%–40% as “abundant,” 40%–60% as “moderate,”
and <60% as “low abundant”). Receptors with “low” or no brain
vascular expression are discouraged since antibodies or peptides
targeting them might not be delivered into the brain to achieve
pharmacological effect.

3. BBB selective. Beside abundant expression in brain microvessels,
low or no expression in peripheral tissues (e.g., lung, liver,
kidney) as well as other regions of the brain (e.g., neurons) is
important. This BBB selectivity is needed to ensure minimal off-
site delivery and adverse side-effects of the therapeutic.

4. Receptor accessibility.Most of the known RMT receptor-targeting
antibodies and peptides are administered systemically, usually in
the blood (via intravenous injection). Thus, unhindered access to
the RMT receptor is necessary for the antibodies or peptides to
easily go from the blood to the brain side. Several key criteria for
receptor accessibility have beenmentioned throughout this review.

These include: a) availability of the receptors on the luminal
membranes (blood-facing side) of endothelial cells in brain
microvessels; b) presence of a large ECD (ideally >100 amino
acids) that has minimal hindrance from post-translational
modifications (e.g., glycosylation); c) having a single
transmembrane domain (TMD), which has shown more
success in brain delivery than multi-pass membrane proteins;
d) minimal interference with natural ligands such that biological
function would not be affected by targeting antibodies.

5. Translatable. Sequence conservation of the ECD is another key
criterion that should be considered when deciding on an RMT
receptor in order for it to be translatable among multiple species.
For receptors that are not highly conserved between human and
rodents (e.g., TfR), it is difficult to make species cross-reactive
antibodies or peptides to translate studies into pre-clinical settings,
and instead transgenic models expressing human full-length or
ECD of the receptors are required to study them in rodent models
(Yu et al., 2011; Niewoehner et al., 2014; Kariolis et al., 2020). It is
thus important to have high sequence similarity/identity (>95%)
between human and rodent sequences.

5 Conclusion

The concept of receptor-mediated transcytosis as a pathway for
brain delivery of biological therapies, most notably antibodies and
therapeutic proteins, has made a significant evolution in the last
decade, driven by both better mechanistic understanding of
trafficking pathways within endothelial cells that can result in
exocytosis, as well as by the development of receptor-binding
ligands that allowed testing and confirmation, or revision, of the
concept in preclinical in vitro and in vivo models, and most
recently, in clinical studies. Whereas the studies with the “classical”
target, TfR, that have been initiated in early 90s, have recently resulted in
thefirst approval of TfR antibody—enzyme fusion protein for facilitated
brain delivery—and long-awaited clinical proof of concept for RMT as a
valid pathway to exploit for brain delivery of biologics, the recent
advances have been driven by a search for other RMT receptors using
advanced sequencing and proteomic techniques. The rapid generation
of antibody tools to validate the function of these receptors provided
some critical insights—firstly that they “belong” to vastly distinct
functional classes of molecules, including tyrosine kinase receptors,
growth factor and neuropeptide receptors, lipid transporters, and even
solute carrier family transporters. The ability of these diverse receptors
to shuttle antibody/protein cargo across the BBB, demonstrated in
various preclinical model systems, vastly expanded horizons of RMT
research and open possibilities to discover better and more efficacious
transporters, or those more appropriate for particular types of
therapeutic cargos. With discovery of each of these “non-canonical”
RMTs, comes further understanding of the mechanisms of their
internalization, endosomal sorting and cargo “hand-over,” as well as
their function in general. Translating from the initial discovery/proof of
mechanism studies into development and clinic is arduous and a long
process and many of these nominated novel RMTs may fail along the
path; however, the optimism and drive in the field to further exploit this
mechanism for design of better neurotherapeutics is high and bolstered
by initial clinical demonstrations of successes of the first, prototypical
TfR that followed through this path.
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