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Ovarian cancers are a complex and heterogenic group of malignancies that are
difficult to detect, diagnose and treat. Fortunately, considerable knowledge of
ovarian cancer specific biomarkers has been generated, that is pertinent to the
development of novel theranostic platforms by combining therapies and
diagnostics. Genomic and proteomic data has been invaluable in providing
critical biomolecular targets for ovarian cancer theranostic approaches.
Exploitation of the wealth of biomarker research that has been conducted
offers viable targets as beacons for ovarian cancer detection, diagnosis, and
therapeutic targeting. These markers can be used in theranostics, a treatment
strategy that combines therapy and diagnostics and is common in nuclear
medicine, where radionuclides are used for both diagnosis and treatment. The
development of theranostics has taken substantial focus in recent years in the
battle against ovarian cancer. Yet to date only one theranostic technology has
emerged in clinical practice. However, given the wealth of ovarian cancer
biomarkers the field is poised to see the emergence of revolutionary disease
treatment and monitoring outcomes through their incorporation into the
development of theranostic strategies. The future of ovarian cancer treatment
is set to enable precise diagnosis, targeted treatment, and vigilant monitoring.
This review aims to assess the status of ovarian cancer diagnostic tools and
biomarkers in practice, clinical development, or pre-clinical development,
highlighting newly emerging theranostic applications.
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1 Introduction

Ovarian cancer comprises several subclasses of heterogeneous and aggressive
malignancies that pose a significant health challenge to women worldwide (Eisenhauer
et al., 2018). Ovarian cancer is the fifth most common cancer in women, and the second
most common gynecological cancer (Arora et al., 2023). Globally, approximately
300,000 new cases and 185,000 deaths were attributed to ovarian cancer in 2020
(Inggriani et al., 2023) . In 2040, nearly 42% more women worldwide are predicted to
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be diagnosed with ovarian cancer, bringing the total number of new
cases to over 445,000 (Zoń and Bednarek, 2023). Despite advances in
cancer care, ovarian cancer remains a major contributor to cancer-
related deaths among women (Ferlay et al., 2015; Cabasag
et al., 2022).

The pathogenesis of ovarian cancer is complex with several
subtypes (Zhao et al., 2023). Epithelial ovarian cancer (EOC)
accounts for about 90% of cases (Sung et al., 2023) and is
grouped into type I and type II grades based on distinct
molecular and clinical characteristics (Grabowska-Derlatka et al.,
2023). Type I EOCs comprise low-grade serous, mucinous ovarian
carcinomas, ovarian endometrioid and ovarian clear cell carcinomas
(Li et al., 2023) that are thought to develop from benign cysts, often
associated with endometriosis (Hsieh et al., 2023; Saida et al., 2023).
Type I EOCs are less aggressive than type II EOCs, usually
presenting at an early stage of the disease pathogenesis (Jayson
et al., 2014). Type II EOCs are more aggressive high-grade serous
carcinomas and are often diagnosed in the late stage, and are
responsible for the majority of ovarian cancer-related deaths
(Stewart et al., 2019; Babaier and Ghatage, 2020; Grabowska-
Derlatka et al., 2023).

Despite the distinct characteristics and aggressiveness of type I
and type II EOCs, the diagnosis of ovarian cancer remains a
significant challenge (Huang et al., 2023). The symptoms of
ovarian cancer, include abdominal bloating, pelvic or abdominal
pain, difficulty eating, and urinary urgency (Brain et al., 2014).
These early symptoms are non-specific and can be overlooked by
patients through misattribution to other pathologies. This often
results in late medical examination, delaying both diagnosis and
effective treatment (Rampes and Choy, 2022; Huang et al., 2023).
Diagnosis requires a combination of imaging approaches, blood-
based screens, and histopathological studies that require invasive
biopsies or surgeries (Rubin et al., 2020; Sun et al., 2020; Tuncer
et al., 2020). Traditional imaging methods, such as transabdominal
and transvaginal sonography (Miao et al., 2023), computed
tomography (CT) (Kryzhanivska et al., 2023), magnetic
resonance imaging (MRI) (Zhang et al., 2017), positron
emission tomography (PET) (Li et al., 2023), and color doppler
imaging (Wang et al., 2023) are often not sensitive enough to detect
ovarian cancer early or to accurately assess the extent of the disease
(St Lorenz et al., 2023). Additionally, the technical limitations of
these imaging techniques in assessing tumor characteristics and
metastasis can lead to misdiagnosis or inaccurate staging (Suppiah,
2018). Furthermore, the high cost of these diagnostics and the
absence of a well-defined detection point often lead to delays in
diagnosis, further compromising treatment outcomes (Zhang
et al., 2023). Hence there is an urgent need for the development
of more effective diagnostic platforms and strategies.

Biomarkers, which are related to the altered cellular biology that
underpins disease pathogenesis, have become integral to cancer
therapeutics, aiding in various stages of a patient’s diagnostic and
therapeutic process. Looking ahead, biomarkers are expected to be
increasingly utilized in liquid biopsies and multiple samplings to
delve deeper into tumor heterogeneity and identify drug resistance
mechanisms (Louie et al., 2021). Further to this there is a push to
couple these emerging diagnostic tools with therapeutic solutions to
produce theranostic agents capable of assisting the detection,
monitoring and treatment of ovarian cancers.

The conventional management of ovarian cancers involves a
multimodal approach, utilizing surgery, chemotherapy, targeted
therapies and in some cases, immunotherapy (Agyemang et al.,
2022). As illustrated in Figure 1, treatment decisions are informed by
diagnosis and imaging, integrating factors such as disease stage,
histological subtype, patient’s age and overall health, and the
presence of specific molecular markers (Morrison et al., 2012).
Surgery is the cornerstone of ovarian cancer treatment and aims
at removing as much tumor tissue as possible (Morrison et al., 2012),
whilst chemotherapy and in some cases small molecule-based
therapies (Figure 1) are commonly used as neoadjuvant and
adjuvant treatment in conjunction with surgery (Kuroki and
Guntupalli, 2020; Coleridge et al., 2021). Combination therapies,
and the use of intraperitoneal chemotherapy, have shown improved
survival rates in certain patient populations (Pasqual et al., 2023).
Recently, immunotherapy (Figure 1) has become an emerging
treatment option that enables immune cells to recognize and
attack cancer cells (Ou et al., 2023). These therapies are designed
to specifically target molecular alterations present in cancer cells.

Despite advancements in diagnostics, ovarian cancers remain
difficult to treat, with a 5-year survival rate from advanced-stage
disease of only 40% (Yang et al., 2023). Therefore, there is a need for
new and more effective treatments that are tailored to the specific
subclass of each patient’s tumor. Additionally, better methods to
monitor recurrence are required. These needs can potentially be met
by developing efficient personalized medicines and theranostic
agents. Targeting ovarian cancer-specific molecular signatures
could revolutionize ovarian cancer management by improving
platforms for early detection and facilitating the monitoring of
treatment responses (Khetan et al., 2022). Nanomedicines with
high encapsulation capacity for therapeutic and diagnostic agents
(Figure 1) have the potential to address the limited densities of
specific molecular markers expressed on cancer cells and enable
early diagnosis and effective treatment (Pardeshi et al., 2023). The
amalgamation of both therapeutic and diagnostic elements within a
single theranostic agent is increasingly attractive. Agents which
feature these two properties have been established using various
radioisotopes (Figure 1) and currently exist for a variety of cancers
such as neuroblastoma ([131I]metaiodobenzylguanidine) and
thyroid cancer (123I/131I). The theranostic capability to provide
therapeutic benefit whilst reporting on disease status, such as
tumor location and size (Maity et al., 2022) is paramount to the
development of effective treatment strategies for ovarian cancer
(amongst other diseases). This is exemplified by the incorporation of
imaging modalities into targeted drug delivery systems, such as
antibody-drug conjugates (ADCs), which contribute an ability to
visualize the distribution of the ADCs within tumors (Minnix
et al., 2020).

In the field of targeted cancer therapy, several challenges need to
be addressed to enhance the potential of theranostics. The first
challenge is the targeted delivery of theranostic agents with
cytotoxic payloads (conventional chemotherapeutic agents) to
tumor sites (Tsourkas, 2019). The second challenge is the reliance
on the enhanced-permeability-retention (EPR) effect for the
accumulation of systemically administered nanoparticle-based drug
delivery systems within tumor tissue, which is driven by passive
diffusion and facilitated by ‘leaky’ tumor vasculature (Amraee et al.,
2023). The third challenge is the need for active targeting, utilizing
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high-affinity molecules like antibodies, antibody fragments, and
peptides, to achieve targeted drug and theranostic delivery to
ovarian cancer cells (Slastnikova et al., 2018; Todaro et al., 2023).
This approach offers a high degree of cell-specific selectivity and a
pathway for active cellular internalization. However, initial delivery
often relies on the passive targeting of tumors via the EPR effect when
using a nanoparticle system (Anani et al., 2021). The fourth challenge
is the presence of additional biological barriers, such as the
desmoplastic tumor microenvironment and increased interstitial
pressure, which must be overcome to realize truly efficient passive
tumor targeting using nanoparticle delivery systems (Jain, 2012). The
fifth challenge is the need for optimization of nanoparticle size and
stability (circulation time) to progress towards the development of
successful treatment strategies (Nakamura et al., 2016). Lastly, the
incorporation of motifs to target and trigger the active internalization
of these nanoparticles is a promising approach to overcoming the
“binding site barrier” and improve targeted drug delivery (Anani et al.,
2021). However, this also presents a challenge that needs to
be addressed.

Whilst still in the early stages of development, theranostics have
the potential to revolutionize the diagnosis and treatment of ovarian
cancer to address several unmet needs in ovarian cancer care. This
review focuses on recent developments in emerging biomarkers for
ovarian cancer theranostic development. By comprehensively
analyzing studies, clinical trials, and pre-clinical research, we aim
to highlight the feasibility of these biomarkers in bridging the gap
between diagnosis and treatment, ultimately advancing ovarian
cancer management, and improving treatment outcomes.

2 Ovarian cancer diagnosis

The diagnosis of ovarian cancer has seen significant progress,
driven by the integration of biomarkers and advanced imaging
techniques (Li and Wang, 2023). For instance, a combination of
mucin 16 (MUC16 also known as carbohydrate antigen 125 or CA-
125), with pelvic ultrasound achieved a higher specificity for ovarian
cancer detection (Niu et al., 2023), and the synergy of MUC16 and

FIGURE 1
Schematic diagram representing the currently integrated diagnostic, imaging, and therapeutic approaches in ovarian cancer.
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human epididymis protein 4 (HE4) biomarker testing with
transvaginal sonography has contributed to enhanced ovarian
cancer screening (Stewart et al., 2019). These advancements have
reformed our approach to diagnosing ovarian cancer, providing
valuable insights into disease prognosis, and treatment strategies.

With the increasing demand for personalized treatment, the role
of novel biomarkers has the potential to enhance the prediction and
diagnostic approach towards disease control. Numerous studies
have underscored the significance of biomarkers, such as protein
molecules, nucleic acids, and genetic alterations, which are currently
in practice, or in various stages of pre-clinical or clinical
development.

2.1 Implementation of biomarkers in current
clinical practice

There are a variety of biomarkers that are currently utilized in
clinical practice to detect and predict different stages of ovarian
cancer (summarized in Table 1). One of the most notable diagnostic
biomarkers is MUC16 (Ferrer, 2023), which is widely used in
ovarian cancer assessment, however, it has limited use as an
independent endpoint for drug treatment selection (Herzog et al.,
2017). MUC16’s specificity is hampered by its elevation in various
non-cancerous conditions, such as endometriosis, cirrhosis,
menstruation, pregnancy, pelvic inflammation, and uterine
leiomyomata (Atallah et al., 2021). Due to these limitations,
MUC16 as a standalone marker for ovarian cancer detection is
not recommended (Liu et al., 2023). HE4 is another commonly used
ovarian cancer biomarker with comparable sensitivity to
MUC16 when detected in serum (Bilgi Kamaç et al., 2023;
Washington et al., 2023). Moreover, HE4 is resistant to
peritoneal irritation and therefore produces fewer false-positive
findings when used to distinguish between malignant and benign
pelvic masses (Lycke et al., 2021). Various combinations of
biomarkers have shown promise in the development of more
reliable ovarian cancer screening tools, which are also amenable
to early ovarian cancer detection. Notably, OVA1® is a United States
(US) Food and Drug Administration (FDA) approved test, which
includes apolipoprotein A-I (APOA1), transthyretin (TTR),

transferrin (TF), β2-microglobulin (B2M), along with MUC16,
and has demonstrated effectiveness in detecting early-stage
ovarian cancer (Zamanian-Daryoush and DiDonato, 2015).
Additionally, multiplexed magnetic nanoparticle-antibody
conjugates combining MUC16, B2M, and APOA1 achieved high
sensitivity (94%) and specificity (98%) in distinguishing early-stage
ovarian cancer patients from healthy individuals (Pal et al., 2015). In
addition, the combination of TTR and APOA1 with MUC16 and TF
has shown a 96% overall sensitivity for early detection of ovarian
cancer (Nosov et al., 2009).

Folate receptor alpha (FOLR1), which is a
glycosylphosphatidylinositol-anchored glycoprotein has emerged
as a promising biomarker for the detection of ovarian cancer,
exhibiting notable potential and versatility in clinical applications
(Leung et al., 2013; Bax et al., 2023). Serum analysis has revealed
elevated levels of FOLR1 in patients with ovarian cancer compared
to those with benign gynecological conditions and healthy controls
(Zhang et al., 2022). FOLR1 demonstrates considerable diagnostic
value, surpassing the performance of other serum biomarkers. As an
epithelial cell surface receptor, FOLR1 or its components may be
shed into the circulation, making it a viable candidate as a serum
marker for ovarian cancer (Bax et al., 2023). One of the significant
features of FOLR1 is its high binding affinity for folic acid and its
derivatives (Gandidzanwa et al., 2023). In 2022, the US FDA granted
accelerated approval for mirvetuximab soravtansine-gynx (MIRV)
alongside the companion diagnostic device VENTANA FOLR1
(FOLR-2.1) RxDx for the treatment of adult patients with
FOLR1-positive ovarian cancer (Dilawari et al., 2023). The use of
folate-conjugated fluorescent dyes and radiolabels for tumor
imaging is a groundbreaking advancement in ovarian cancer
detection and treatment (Azaïs et al., 2016). These tools not only
provide surgeons with real-time intraoperative imaging guidance,
enhancing surgical precision, but also serve as versatile diagnostic
tools, enabling more accurate and comprehensive tumor
characterization (Hekman et al., 2017; Numasawa et al., 2020;
García de Jalón et al., 2023). This dual functionality significantly
improves the clinical management of ovarian cancer, paving the way
for more personalized and effective treatment strategies.

Several traditional biomarkers have demonstrated significant
potential in theranostics. For instance, TTR is associated with cancer

TABLE 1 Biomarkers in clinical use.

Biomarker Type Source Detected in Application References

APOA1 (ApoA-1) Protein Tissue Plasma Diagnosis, prognosis Stavnes et al. (2014), Pal et al. (2015), Moore
et al. (2019), Reilly et al. (2023)

B2M (β2-microglobulin) Protein Tissue Serum Diagnosis Pal et al. (2015), Reilly et al. (2023)

FOLR1 Receptor Tissue Tissue biopsy Diagnosis, therapy Dilawari et al. (2023), Nwabufo (2023)

HE4 (Human epididymis
protein 4)

Glycoprotein Tissue Serum Prognosis, dual marker with MUC16 Barr et al. (2022), Samborski et al. (2022)

MUC16 (CA-125) Glycoprotein Tissue Serum Diagnosis, prognosis, disease
stabilization, targeted therapy

Zhao et al. (2023b), Luo et al. (2023), Song et al.
(2023)

TF (Transferrin) Protein Blood Serum Diagnosis Ivanova et al. (2022), Reilly et al. (2023)

TTR (Transthyretin) Protein Tissue Serum Diagnosis Clarke et al. (2011), Moore et al. (2019), Reilly
et al. (2023)
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and its presence in ascitic fluid (Gericke et al., 2005). It is a part of
thyroxine-binding globulin and albumin, responsible for
transporting thyroid hormones in the bloodstream and is
involved in vitamin A metabolism. Another biomarker,
APOA1 is a major component of high-density lipoprotein (Kim
et al., 2012; Zamanian-Daryoush and DiDonato, 2015). Higher
APOA1 mRNA levels in pre-chemotherapy effusions from
advanced-stage ovarian cancer patients are observed to be an
independent prognostic marker with longer overall survival (Tuft
Stavnes et al., 2014). B2M is a small, non-glycosylated polypeptide
(Hofbauer et al., 2021) elevated in ovarian cancer and critical to
mediating tumorigenesis, metastasis, and angiogenesis through
various signaling pathways (Sun et al., 2016). B2M elevation is
often associated with increased cell proliferation, making B2M a
valuable biomarker for ovarian cancer diagnosis. However, the
clinical development of TTR, B2M and APOA1 as biomarkers
for ovarian cancer is still ongoing.

2.2 Biomarkers in clinical development

Numerous biomarkers are currently under investigation for the
targeted approach towards early diagnosis and prediction of
different tumor stages of ovarian cancer (summarized in
Table 2). Chitinase-3-like protein 1 (CHI3L1), also known as
YKL-40, is suggested to have potential as a superior marker to
MUC16 for the early diagnosis of EOC (Høgdall et al., 2009; Zou
et al., 2010). CHI3L1 is involved in extracellular matrix degradation
and promotion of angiogenesis through a vascular endothelial
growth factor (VEGF)-independent pathway (Kotowicz et al.,

2017). In vitro studies have revealed its association with VEGF
upregulation and tumor angiogenesis, while animal studies have
demonstrated that inhibiting CHI3L1 leads to reduced angiogenesis,
tumor development, and metastasis (Shao, 2013; Kahramanoğlu
et al., 2018). Recent research has revealed that both neutrophils and
tumor cells can express and release CHI3L1 into the bloodstream,
resulting in elevated serum levels in several cancer types (Zhao et al.,
2020). Kahramanoğlu et al. (2018) suggest that preoperative serum
levels of CHI3L1 in patients with serous EOC were significantly
higher than those with benign ovarian tumors. This finding suggests
that CHI3L1 may serve as a better predictor of ovarian cancer
compared to MUC16, with moderate-to-high sensitivity (80%) and
specificity (70%) when a specific cutoff level is applied
(Kahramanoğlu et al., 2018; Deveci et al., 2019).

Vascular endothelial growth factor receptors (VEGFRs) are a
family of transmembrane tyrosine kinase receptors involved in
signal transduction pathways to control vascular development of
ovarian cancer (Babaei et al., 2023a). VEGFR3 is overexpressed in
ovarian cancer cell lines promoting cell growth (Babaei et al., 2023b)
and has been identified as a biomarker with potential for the
diagnosis and prognosis of ovarian cancer (Klasa-Mazurkiewicz
et al., 2011). Moreover, VEGF is a key mediator of angiogenesis
and plays a significant role in ovarian cancer development by
promoting the recruitment and proliferation of endothelial cells
within the tumor (Liang et al., 2015). Elevated levels of VEGFA are
associated with increased formation of new blood vessels in tumor
tissue, and have become an important factor contributing towards
improved accuracy of ovarian cancer diagnosis (Liang et al., 2015).

Mesothelin (MSLN) is a membrane-bound surface glycoprotein
that has emerged as a promising candidate for ovarian cancer

TABLE 2 Biomarkers in clinical development.

Biomarker Type Source Detected in Application Clinical trial number References

CD24 GPI-anchored
glycosylated protein

Tissue Tissue biopsy Diagnosis, targeted
therapy

NA Wang et al. (2015), Soltész et al.
(2019), Ashihara et al. (2020),
Nagare et al. (2020)

CHI3L1 (YKL40) Protein Tissue Serum Diagnosis, targeted
therapy

NCT00899093, NCT05810701 Kahramanoğlu et al. (2018),
Deveci et al. (2019), Chang et al.
(2022)

FLT4 (VEGFR3) Tyrosine kinase
receptors

Tissue Tissue biopsy Diagnosis, targeted
therapy

NCT05494580 Klasa-Mazurkiewicz et al.
(2011), Babaei et al. (2023b)

KLK6, KLK10 Serine proteases Blood Serum Diagnosis NA Pépin et al. (2011), Koh et al.
(2012), Geng et al. (2017)

MSLN GPI-anchored
Glycoprotein

Tissue Serum Diagnosis, targeted
therapy

NCT00155740 Yildiz et al. (2019), Tegeler et al.
(2022), Weidemann et al.
(2023)

Nectin-2 Glycoprotein Tissue Serum, tissue Diagnosis NCT03667716 Bekes et al. (2019), Zeng et al.
(2021), Sim et al. (2022)

Nectin-4 Glycoprotein Tissue Serum, tissue Diagnosis, targeted
therapy

NCT02091999, NCT04561362 Rogmans et al. (2022)

PSN (Prostasin) GPI-anchored
extracellular serine
protease

Seminal
fluid

Serum Diagnosis NA Tamir et al. (2016), Bastani et al.
(2017)

SLC34A2
(NaPi2B)

Solute carrier
phosphate transport
protein

Tissue Tissue biopsy Diagnosis, targeted
therapy

NCT03319628 Lin et al. (2015), Banerjee et al.
(2018), Nurgalieva et al. (2021),
Banerjee et al. (2023b)
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diagnosis (Rump et al., 2004). Unfortunately, its use is limited as a
standalone target with a sensitivity of only 68%, raising concerns
about its reliability for early detection (Madeira et al., 2016). Despite
its limitations as a standalone marker, MSLN’s potential should not
be overlooked since it could significantly enhance diagnostic
accuracy if used in conjunction with other markers. Moreover, its
potential for targeted theranostic applications could open new
avenues for personalized treatment strategies in ovarian
cancer patients.

Glycosylphosphatidylinositol (GPI) anchored prostasin (PSN) is
a promising marker for ovarian cancer diagnosis with sensitivity and
specificity as high as 92% and 94%, respectively. PSN is a trypsin-like
proteinase known as a channel-activating protease that is linked to
sodium regulation and inhibits cancer cell proliferation and invasion
(Tamir et al., 2016). PSN was first detected within the prostate
(Tamir et al., 2016), and found to be overexpressed in various EOCs
(Ma et al., 2014; xiang et al., 2013). Thus, PSN could serve as a
potential early detection biomarker independently of MUC16.

Cell adhesion molecules of the nectin family (Rogmans et al.,
2022), and the F-actin-binding protein afadin (Hiremath et al.,
2023), form homophilic and heterophilic trans-dimers which
present as useful biomarkers for diagnostic, therapeutic and
potentially theranostic applications (Bekes et al., 2019). Nectins
play a vital role in tumor development, mediating tumorigenesis,
metastasis, and angiogenesis through various signaling pathways
(Boylan et al., 2016). Among the nectins, nectin-2, also known as
CD112 coordinates various cellular functions critical for survival,
proliferation, adhesion, migration, and differentiation (Bekes et al.,
2019). The presence of nectin-4 as a blood-based marker for ovarian
cancer cells implies that it is involved in regulating endothelial
functions, such as migration, proliferation, and invasion (Rogmans
et al., 2022).

CD24 is being studied as a candidate for the future development
of targeted therapeutics (Panagiotou et al., 2022). This GPI-
anchored cell adhesion protein (Tarhriz et al., 2019) is known to
be overexpressed in ovarian cancer (Li et al., 2023), while barely
detected in healthy tissues (Yang et al., 2023). CD24 is notably and
almost universally expressed in EOC, with prevalence ranging from
70 to 100% (Nakamura et al., 2017; Kleinmanns et al., 2020). This
expression pattern highlights its potential as a significant marker in
the context of EOC diagnosis and targeted therapeutic strategies
(Kleinmanns et al., 2020).

Similarly, sodium-dependent phosphate transporter NaPi2b
also known as SLC34A2, a sodium-dependent phosphate
transporter, is overexpressed in high-grade serous ovarian
carcinoma (HGSOC) (Banerjee et al., 2023a). This could be
promising for ovarian cancer detection and could facilitate the
identification of patients who are most likely to benefit from
specific targeted therapies. SLC34A2 is also regulated by PAX8, a
master transcription factor associated with ovarian cancer cell
survival and the development of female reproductive systems,
suggesting that SLC34A2 may play an important role in
tumorigenesis (Bondeson et al., 2022). SLC34A2 typically has
stable expression throughout ovarian cancer disease pathogenesis
and treatment, as evidenced by the consistent SLC34A2 expression
observed in longitudinal tissue samples (Banerjee et al., 2023b).
Utilizing SLC34A2 as a biomarker in ovarian cancer could help to

address the challenges associated with early stage ovarian cancer
diagnosis, which could drastically improve patient outcomes.

Lastly, human tissue kallikreins (KLKs), a family of 15 members,
are expressed in various tissues including the breast, ovary, prostate,
and testis (Koh et al., 2011). KLK6 and KLK10 in particular are
highly expressed in ovarian cancer (Koh et al., 2011). Whilst the
expression of KLKs is not specific enough for detecting disseminated
disease, KLK expression aids in distinguishing ovarian cancer from
other malignancies or non-malignant conditions (Oikonomopoulou
et al., 2006).

2.3 Biomarkers in pre-clinical development

Newly emerging biomarkers for ovarian cancer (summarized in
Table 3) include epithelial cell adhesion molecule (EPCAM),
syndecans, R-spondin, and several G protein-coupled receptors
(GPCRs), including the estrogen receptor GPER1, that are
currently being investigated in pre-clinical studies. EPCAM, also
known as CD326, is expressed in normal human epithelial cells and
most epithelial tumor cells (Ding et al., 2023). EPCAM plays a
crucial role in promoting cell cycle, tumor cell proliferation,
migration and immune evasion in various epithelial cancers (Li
et al., 2023). In ovarian cancer, EPCAM is often highly expressed in
malignant tumors, correlating with poor prognosis (Tayama et al.,
2017). Patients with high EPCAM expression are more likely to be
chemo-resistant and suffer poor survival rates (Ibrahim et al., 2023).
This makes EPCAM a promising biomarker for predicting response
to chemotherapy in ovarian cancer.

Syndecans are integral transmembrane heparan sulfate
proteoglycans involved in organizing cellular signaling processes
at the cell surface (Hillemeyer et al., 2022). Syndecans interact with
cytokines, signaling receptors, proteases, and components of the
extracellular matrix, to control cellular processes such as
proliferation, metastasis, angiogenesis, and inflammation
(Espinoza-Sánchez and Götte, 2020). The upregulation of
syndecan-3 (SDC3), has been demonstrated in various gene
expression datasets, highlighting their utility in identifying the
presence of ovarian cancer and even distinguishing metastatic
lesions. Detecting SDC3 in ovarian cancer tissues can enable
more accurate and early detection of the disease. (Kulbe et al.,
2019; Guo et al., 2022; Hillemeyer et al., 2022).

Several GPCRs are overexpressed in ovarian cancer including
the lysophosphatidic acid receptor (LPAR), C-X-C chemokine
receptor type 4 (CXCR4), follicle-stimulating hormone receptor
(FSHR) and luteinizing hormone/choriogonadotropin receptor
(LHCGR) (Khetan et al., 2022). Lysophosphatidic acid (LPA) was
identified as a major regulatory factor stimulating the expression of
numerous genes associated with angiogenesis and metastasis of
ovarian cancer (Pua et al., 2009). LPA is detected at very high
concentrations in ascitic fluid and can serve as a diagnostic marker
to assess disease progression and metastasis (Yu et al., 2016). LPARs
are overexpressed in ovarian cancer cells and tissues, specifically,
LPAR2 and LPAR3 (Khetan et al., 2022). Chemokines regulate many
cellular processes, including cell migration, proliferation, and
differentiation. Ovarian epithelial carcinoma specifically express
the chemotactic factor C-X-C motif chemokine ligand 12
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(CXCL12) and its receptor CXCR4, which have been identified as
potential prognostic markers (Lim et al., 2023).

Similarly, LGR5 and LGR6 are two members of the leucine rich
repeat (LGR) containing GPCRs family and are expressed on the surface
of ovarian cancer tissues (Schindler et al., 2017). The high expression of
LGR5 and LGR6 mRNA in HGSOCs allows them to be constantly
stimulated by WNT signaling, which leads to uncontrolled cell growth
and tumor development (Wong et al., 2023). R-spondins (RSPOs) are
cysteine-rich secreted glycoproteins that amplify and modulate WNT
signals. RSPOs are the natural ligands that bind specifically to LGR5 and
LGR6, activating the WNT signaling pathway (Wong et al., 2023).
Among the RSPO family, RSPO1 is overexpressed in ovarian cancer
tissues and has potential as a biomarker for diagnosis and targeted
therapy (Liu et al., 2019; LEE et al., 2020).

G protein-coupled estrogen receptor 1 (GPER1 also known as
GPR30) is overexpressed in a variety of tissues, including the ovary,
breast, and endometrium (Smith et al., 2009). GPER1 is involved in
cell growth, proliferation, and differentiation, and has been
identified as a biomarker for ovarian cancer diagnosis and
prognosis, and a potential target for therapeutic intervention (Liu
et al., 2010). Similarly, FSHR and LHCGR are predominantly found
in the ovary and uterus. FSHR interacts with the follicle-stimulating
hormone and is responsible for the upregulation of oncogenic
pathways and increased proliferation of EOC (Bordoloi et al.,
2022) whereas LHCGR interacts with luteinizing hormone and
gonadotrophins, and is necessary for follicular maturation and
ovulation (Kumar and Idicula-Thomas, 2023). Cheung et al.
reported that higher FSHR and LHCGR expression is associated
with early stage, low grade ovarian cancer and the expression is
reduced in HGSOC compared to benign ovarian tumors (Cheung
et al., 2020). This would indicate that these GPCRs have great
potential in playing the role of biomarkers for the detection and
diagnosis of ovarian cancer at several tumor stages.

3 Current trends of novel and emerging
ovarian cancer theranostic targets

Theranostics offer several advantages over conventional
diagnostic and therapeutic approaches, such as improved
accuracy, specificity, sensitivity, efficacy, safety, and
personalization. This section explores some emerging biomarkers,
nanomaterials and small molecules, and their prospects for the
development of theranostic agents that can be used for the
treatment of ovarian cancer (Figure 2).

3.1 MUC16 and MSLN as a novel theranostic
target combination for future ovarian
cancer treatment

Abnormal levels of MUC16 expression have been observed in
99% of ovarian cancer serous carcinomas (Morales-Vásquez et al.,
2016). Binding of MUC16 to MSLN is known to activate the PI3K/
AKT, ERK1/2, and JNK pathways to promote cell survival,
migration, and invasion (Tang et al., 2013; Faust et al., 2022). An
anti-MSLN antibody has been established to reverse these effects,
leading to cell apoptosis (Klampatsa et al., 2021). Like MUC16,
MSLN is over-expressed in ovarian cancer with limited expression in
normal tissues (Weidemann et al., 2023). A soluble proteolytic
fragment of MUC16 was recently shown to specifically bind to
MSLN in an N-linked glycan-dependent mode (Huo et al., 2021).
This interaction promotes cell migration through a mechanism that
reduces the expression of dickkopf-1 (DKK1) whilst activating the
SGK3/FOXO3 pathway. Most importantly, a monoclonal anti-
MSLN antibody has been successfully applied to suppress tumor
growth in a murine ovarian cancer xenograft model (Huo et al.,
2021). MSLN has been further validated as a potential ovarian

TABLE 3 Biomarkers in pre-clinical development.

Biomarker Type Source Detected in Application References

CXCL12 Chemokine protein Tissue Tissue biopsy Diagnosis, targeted therapy Salomonnson et al. (2013), Guo et al. (2014), Mao et al.
(2017)

CXCR4 Protein Tissue Tissue biopsy Diagnosis, prognosis,
targeted therapy

Salomonnson et al. (2013), Guo et al. (2014), Li et al. (2014),
Liu et al. (2014), Lim et al. (2023)

EPCAM Transmembrane
glycoprotein

Tissue Tissue biopsy Diagnosis, targeted therapy Ploeg et al. (2023), van den Brand et al. (2020), Wang et al.
(2022), Zheng et al. (2017)

FSHR Transmembrane
receptor

Tissue Tissue biopsy Diagnosis, prognosis Deuster et al. (2019)

GPER1 Protein Tissue Tissue biopsy Diagnosis Long and Duan (2022)

LGR5/6 Protein Tissue Tissue biopsy Diagnosis, prognosis Yu et al. (2019), LEE et al. (2020), Kim et al. (2022)

LHCGR Transmembrane
receptor

Tissue Tissue biopsy Diagnosis, prognosis,
therapy

Kawai et al. (2018), Zhong et al. (2019)

LPAR2/3 Protein Tissue Tissue biopsy Xiong et al. (2016), Xiong et al. (2017)

LPA Bioactive phospholipid Tissue Serum Diagnosis Ahmadi et al. (2023), Tarannum et al. (2023)

RSPO1 Secreted protein Tissue Serum, tissue
biopsy

Diagnosis, targeted therapy Liu et al. (2019), LEE et al. (2020)

SDC3 Transmembrane
proteins

Tissue Serum, tissue
biopsy

Diagnosis, targeted therapy Hillemeyer et al. (2022)
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cancer target through the engineering of several recombinant
immunotoxins. For example, a chimeric protein (SS1P) was
composed of a MSLN-targeted variable antibody domain (Fv)
fused to a fragment of Pseudomonas exotoxin A (PEA) (Liu
et al., 2020), and several clinical trials have been carried out in
combination with chemotherapeutic agents (NCT04503980,
NCT05963100, NCT04562298, NCT06051695, NCT03692637,
NCT01583686) (Pastan and Hassan, 2014; Santin et al., 2023;
Shanghai Cell Therapy Group Co.,Ltd, 2020; Shen, 2023;
Shanghai East Hospital, 2022; A2 Biotherapeutics Inc, 2023;
Allife Medical Science and Technology Co. and Ltd, 2019;
Rosenberg, 2019). LMB-100 is a variant of SS1P using a
humanized fragment antigen-binding (Fab) region and a 24 kD
PEA fragment instead of the previous 38 kD fragment (the 24 kD
variant lacks a B-cell epitope, evading a non-desired immune
response) (Liu et al., 2022). Finally, MSLN-targeting antibodies

have been labeled with 89Zr (Prantner et al., 2015; Lamberts
et al., 2016) and 64Cu (Kobayashi et al., 2015) demonstrating
significant accumulation in MSLN-expressing tumors, paving the
path towards imaging and therapeutic applications.

The MUC16/MSLN pair is emerging as a promising target for
future cell-based theranostics. A very recent approach, based on the
artificial expression of an engineered receptor in T-cells, used an
extracellular MSLN 296–359 amino acid fragment (MSLN296-359)
fused to an intracellular 4-1BB immune checkpoint molecule and a
CD3ζ signaling fragment via a transmembrane sequence (Zhao et al.,
2023). The intracellular 4-1BB and CD3ζ protein domains were
shown to be activated in T-cells when MSLN296-359 bound
successfully to MUC16 on ovarian cancer cells. This approach was
further combined with a chimeric antigen receptor T (CAR-T) cell to
artificially co-express the same chimeric receptor but with an
extracellular MUC16-targeting single-chain variable fragment

FIGURE 2
Emerging theranostic approaches in ovarian cancer.
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(scFv), instead of the MSLN296-359 fragment. Simultaneous expression
of both receptor constructs was shown to synergistically drive T-cell
mediated ovarian cancer cell killing (Zhao et al., 2023). Given the high
specificity and selectivity ofMUC16 andMSLN as diagnostic markers,
they have very high potential as theranostic targets to diagnose, treat,
and monitor ovarian cancers (Zhao et al., 2023).

3.2 FOLR1 is currently the only fully validated
theranostic ovarian cancer target

MIRV is the first FDA-approved ADC targeting FOLR1 for the
treatment of platinum-resistant ovarian cancer (Matulonis et al.,
2023). In combination with the immunohistochemistry-based
VENTANA FOLR1 (FOLR-2.1) RxDx assay, eligible patients for
FOLR1 targeted treatment can be identified, leading to better
stratified and more effective treatment. Numerous clinical trials
with anti-FOLR1 antibodies are currently ongoing (NCT05870748,
NCT05001282, NCT04274426, NCT05887609) (Banerjee et al.,
2022; AGO Research GmbH, 2023; Elucida Oncology, 2023;
ImmunoGen and Inc, 2023; Sutro Biopharma and Inc, 2023;
Sutro Biopharma and Inc, 2023; University of Colorado and
Denver, 2023). These includes farletuzumab, which demonstrated
anti-tumor activities with significant improvements compared to
standard chemotherapy (Herzog et al., 2023). The ADC MORAb-
202, combining farletuzumab with the small molecule microtubule
inhibitor Eribulin, has also demonstrated anti-cancer efficacy (Sakai
et al., 2021). Additionally, other strategies like CAR-cytokine-
induced killer (CIK) cell therapy targeting FOLR1 have shown
promising results in pre-clinical studies (Zuo et al., 2017). CAR-
CIK cells are engineered to recognize and attack tumor cells that
express FOLR1 and effectively kill ovarian cancer cells in vitro and in
vivo. Moreover, CAR-CIK cells were more potent than CAR-T cells
in killing ovarian cancer cells (Song et al., 2016). TNB-928B is a
novel T-cell engager with enhanced safety and specificity for the
treatment of ovarian cancer. It has a bivalent binding arm for
FOLR1, which allows it to selectively target FOLR1-
overexpressing tumor cells. TNB-928B has been shown to induce
preferential effector T-cell activation, proliferation, and selective
cytotoxic activity on high FOLR1 expressing cells (Avanzino
et al., 2022).

3.3 Potential of miscellaneous biomarker
candidates to advance from clinical
development to theranostic applications

CHI3L1 is implicated in promoting ovarian cancer cell
proliferation, invasion, migration, tumor angiogenesis,
chemoresistance, and has significant potential as a theranostic target
(Shao et al., 2009).While CHI3L1 antibodies have high affinity for EOC
cells, they do not directly induce apoptosis in vivo as a stand-alone
(Chang et al., 2022). However, conjugating the antibodies with a
therapeutic radionuclide Lu-177 complex has been shown to
enhance its stability and anti-tumor efficacy in a mouse xenograft
model. Monitoring of therapeutic responses has been demonstrated
with nanoSPECT/CT® using a diethylene triaminepentaacetic acid
(DTPA) chelating agent.

The nectin-afadin system, recently recognized for its role in
modulating adherens junctions and tight junctions (Samanta and
Almo, 2015), presents a promising avenue for a theranostic
approach. VEGF stimulates nectin-2 expression leading to
indirect regulation of endothelial cells (Bekes et al., 2019). A
chimeric anti-nectin-2 antibody (c12G1) has been conjugated to
a cytotoxic drug to demonstrate significant anti-tumor activity in
ovarian cancer models (Sim et al., 2022). Another family member,
nectin-4, is overexpressed in ovarian cancer tissue (Nabih et al.,
2014) and plays a role in tumor cell proliferation, motility, and
invasion. It also promotes angiogenesis and lymphangiogenesis,
which are essential steps for cancer metastasis (Bekos et al.,
2019). Nectin-4 had a higher sensitivity and specificity compared
to theMUC16 standard biomarker, especially for early-stage ovarian
cancer (Rogmans et al., 2022). Several strategies have been
developed to target and inhibit nectin-4 activity. Enfortumab
vedotin, an FDA approved ADC for the treatment of urothelial
cancer (Tomiyama et al., 2020) has also shown promise in the
treatment of other solid tumors, such as melanoma and breast
cancer (Rosenberg et al., 2019; Shao et al., 2022). Nectin-4 may
also be a promising target for imaging diagnostics and targeted
radionuclide therapy. However, more research is needed to validate
the feasibility and efficacy of nectin-4 targeting in the theranostic
field. One such strategy is to use ADCs, which bind to nectin-4 on
the surface of cancer cells and deliver a cytotoxicity payload directly
to the cells. Another approach to targeting nectin-4 is to use CAR-T
cells, expressing engineered nectin-4-targeting chimeric receptors.
The CAR-T cells are then infused back into the patient, where they
can attack and kill cancer cells that express nectin-4 (Bouleftour
et al., 2022).

Immune checkpoints are regulatory molecules that modulate
immune responses, primarily acting to limit excessive immune
activity and maintain self-tolerance (Brom et al., 2022). Immune
checkpoint inhibitors (ICIs) are small-molecule agents designed to
counteract the inhibitory signals of these checkpoints. By binding to
immune checkpoint molecules, ICIs can improve immune
suppression, thereby enhancing the body’s natural anti-tumor
immune responses (Tan et al., 2022). CD24 functions as an
immune checkpoint in ovarian cancer (Gu et al., 2023), where
cells evade phagocytosis by macrophages through the interaction
of CD24 molecules with the inhibitory receptor sialic acid-binding
immunoglobulin-like lectin 10 (Siglec-10) on tumor-associated
macrophages. This interaction blocks the macrophage’s ability to
engulf cancer cells (Barkal et al., 2019). However, antibody-based
blockade of CD24 or Siglec-10 enhance cancer cell engulfment by
macrophages, reducing tumor growth. The role of the CD24-Siglec-
10 axis on suppression of anti-tumor immunity highlights its
potential as a theranostic target in cancer treatment (Barkal
et al., 2019).

Emerging evidence suggests that patients with high
SLC34A2 levels at diagnosis tend to maintain high expression
throughout their disease, emphasizing the value of timely
biomarker testing (Banerjee et al., 2023b). SLC34A2 levels can be
assessed using immunohistochemistry-based diagnostic assays;
whereby patients with high expression can be directed toward
anti-SLC34A2 ADC therapy (Kiyamova et al., 2011; Nurgalieva
et al., 2021). Such ADCs are monoclonal antibodies directed
against SLC34A2, linked to cytotoxic payloads. Upon binding to
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the tumor antigen, these ADCs are internalized to release their
cytotoxic payload with high specificity into tumor cells expressing
SLC34A2. This selectivity diminishes off-target toxicity which is a
drawback to many conventional chemotherapies.

3.4 Assessment of experimental biomarkers
as future theranostic targets

Several bispecific antibodies such as Catumaxomab,
MT110 and M701 have been designed to simultaneously bind
EPCAM and CD3, to induce a specific T-cell-mediated immune
response against ovarian cancer cells (Li et al., 2023). Another
bispecific antibody (CD73xEPCAM) binds to ovarian cancer cell
surfaces in an EPCAM-directed manner and indirectly triggers
anticancer T-cell activity in the tumor vicinity. The immune-
boosting mechanism is mediated through selective antibody
binding to CD73, thereby inhibiting its enzymatic activity, and
preventing the conversion of adenosine monophosphate into
immunosuppressive adenosine. CD73xEPCAM creates an
immune suppressed environment around the tumor,
facilitating cancer cell eradication (Ploeg et al., 2023). These
findings highlight a promising strategy to use the CD73-
adenosine immune checkpoint to prevent ovarian cancer cells
from evading the immune system.

CXCR4 is a key contributor to cancer cell proliferation,
migration, and invasion (Shi et al., 2020). LPA has been shown
to enhance the expression of CXCR4 and its cognate ligand CXCL12
(Wang et al., 2014). Moreover, many cancer tissues also express high
levels of LPA receptors (LPARs), most prominently LPAR2 and 3
(Bhattacharjee et al., 2023). The combination of LPAR and CXCR4-
targeted therapies could also benefit from the development of a
theranostic approach. Identifying patients with elevated LPA/LPAR
levels and overactive CXCR4-CXCL12 signaling could provide a
basis for the establishment of personalized treatments and disease
monitoring strategies (Wang et al., 2014). The utilization of LPAR
and CXCR4 in ovarian cancer showcases a favorable approach in
both diagnosis and targeted therapy (Lim et al., 2023). Targeted
interventions can disrupt LPAR and CXCR4 mediated systems and
inhibit tumor growth and metastasis (Wang et al., 2014). This
personalized approach involves administering therapies that
specifically target the LPA-CXCR4 axis, potentially improving
treatment efficacy and patient outcomes (Geraldo et al., 2021).

WNT signaling is a complex pathway that regulates many
important cellular processes, including stem cell function, cell
fate determination, tumorigenesis, and tumor progression (LEE
et al., 2020). Various secreted WNT antagonists, such as the
Cerberus protein, WNT inhibitory factor 1, secreted frizzled-
related protein (SFRP), and DKK families, help regulate this
pathway (Shizhuo et al., 2009). LGRs interact with RSPOs, which
modulates the activity of ubiquitin ligases RNF43 and ZNRF3,
enhancing WNT signaling in HGSOC (LEE et al., 2020). HGSOC
exhibits an elevated expression of LGR5, LGR6, and RSPO1,
pointing towards the RSPO1/LGR6 axis as a potential driver of
increased WNT signaling. This axis may lead to uncovering
novel therapeutic targets in the fight against ovarian cancer (Liu
et al., 2019; LEE et al., 2020; Wong et al., 2023). Recent findings
have revealed overexpression of DKK1 in ovarian cancer and

inhibition of WNT signaling (Wei et al., 2020). However,
DKK1 inhibition may not affect tumor growth in all ovarian
cancer cases, but its overexpression alters anti-tumor immune
populations within the tumor microenvironment, suggesting
that it may be a new therapeutic target in EOC, especially
when used in combination with immune-modulatory therapy
(Betella et al., 2020). Developing theranostic approaches that
capitalize on DKK1 and RSPO1 as therapeutic targets may pave
the way for personalized treatment strategies tailored to the
unique molecular profiles of ovarian cancer patients (Wang and
Zhang, 2011; Klotz et al., 2022).

Signal transducer and activator of transcription 3 (STAT3) is
another important transcription factor that regulates proliferation,
survival, metastasis and invasion of ovarian cancer (Seo et al., 2023).
From a diagnostic perspective, molecular profiling techniques can be
employed to assess the activation status of the STAT3 pathway in
ovarian cancer patients. This profiling includes the analysis of
activated forms of STAT3 (Y705 phospho-STAT3) and the
expression levels of downstream targets associated with cancer
cell proliferation and survival. These molecular markers serve as
diagnostic indicators, helping identify patients with persistent
STAT3 activation who are suitable candidates for targeted
therapy (Standing et al., 2023). From a therapeutic perspective,
the novel small molecule LLL12B has emerged as a potent inhibitor
of the STAT3 pathway in human ovarian cancer cells. LLL12B
effectively suppresses STAT3 phosphorylation and downregulates
the expression of downstream targets (Zhang et al., 2021). Beyond
that, Napabucasin a STAT3 inhibitor, has demonstrated antitumor
activity by inducing cell cycle arrest which triggers autophagy. This
holds the potential to terminate cancer cell proliferation and survival
(Liu et al., 2021).

The protein tyrosine phosphatase type IVA member 3
(PTP4A3 or PRL-3), is a dual-specificity phosphatase, with
elevated expression in ovarian cancer (Mayinuer et al., 2013).
PTP4A3 plays a critical role in dephosphorylating signaling
molecules, such as SHP-2 phosphatase and p38 kinase (Lazo
et al., 2023). Specifically, it is involved in a feed-forward loop
with STAT3 (Lazo et al., 2023). The PTP4A phosphatase
inhibitor, JMS-053 treatment reduces Y705 phospho-STAT3 in
ovarian cancer cells. Inhibiting PTP4A3 with JMS-053 can
potentially hinder the activation of STAT3. Furthermore, JMS-
053 treatment rapidly increases the phosphorylation status of
SHP-2 phosphatase and p38 kinase signaling which leads to
cancer cell death. This highlights the potential therapeutic
relevance of targeting PTP4A3 for ovarian cancer treatment.
Monitoring PTP4A3 expression levels and
STAT3 phosphorylation status in tumor tissues could be
implemented to indicate personalized phosphatase inhibitor
treatment for ovarian cancer (Lazo et al., 2023).

4 Nanoparticles: a platform for the
incorporation of diagnostic and
therapeutic elements

Nanomedicine has become a prominent solution tomany cancer
drug delivery strategies (Bhardwaj et al., 2023; Huang et al., 2023;
Zhang et al., 2023). The use of specific ligands and responsive
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functionalities on nano-systems allows them to engage with targets
and to release payloads at intended locations (Ray et al., 2017).
Therapeutic nanocarriers can be comprised of liposomes, micelles,
dendrimers, hydrogels, quantum dots, carbon-based nanocarriers
(such as carbon nanotubes and bucky balls), and inorganic
nanoparticles (i.e., silica, gold, iron oxide, and titanium dioxide
based particles) (Alshawwa et al., 2022). These nanocarriers can also
function as sensors, including magneto-resistive, electrical, and
electrochemical sensors (Yang et al., 2022). Compared to
traditional antibody-tracer conjugates, nanomaterial-based
biosensors can offer superior sensitivity and selectivity due to
their large surface area to volume, high conductivity, high
electrocatalytic activity, and fast electron transfer rate (Eissa
et al., 2022) that allow for more efficient and accurate detection
of biological events, and enhanced sensitivity and selectivity,
addressing the limitations of existing diagnostic methods
(Foroozandeh et al., 2023; Rajaie et al., 2023).

Diagnostic approaches utilizing nano-sensors are presently
being developed with responsivity to specific ovarian cancer
biomarkers (Büyüktiryaki et al., 2017). Specific recognition can
be achieved through the conjugation of aptamers or antibodies
on the nanoparticle surface (Dhas et al., 2023). Responsive
imaging agents can change properties upon interacting with
cancer cells or responding to treatment (Sharma et al., 2017;
Song et al., 2022). Nanoparticles can be developed to be suitable
for multimodal imaging, which allows for the combination of
imaging modalities, such as MRI, positron emission tomography
(PET), and fluorescence imaging. Doing so can provide
comprehensive real-time monitoring and information about
tumor location, size, and response to treatment (Dougherty et al.,
2015; Williams et al., 2018).

Nanotechnology based systems can be modified with additional
combinatorial modalities such as drug encapsulation (Suardi et al.,
2020), stimuli-responsive moieties (Guo et al., 2020; Zhang et al.,
2020), chemical conjugation (Taheri-Ledari et al., 2022), surface
tethered prodrugs (Song et al., 2019), and tracer agents (Asgari et al.,
2021). Thus, nano-systems offer significant scope for the
development of theranostics (Xue et al., 2021; Kashyap et al.,
2023). Targeted drug delivery systems are useful vehicles for
combining modalities to develop theranostic platforms, such as
incorporating fluorescent dyes or magnetic nanoparticles into
nanocarriers. Ideally these nanocarriers would be engineered to
specifically target ovarian cancer cells or biomarkers by
furnishing them with ligands that bind to overexpressed ovarian
cancer receptors, ensuring selective drug delivery (Chen et al., 2014).
For instance, redox-sensitive polymeric micelles containing
paclitaxel have been used in the treatment of chemotherapy-
resistant ovarian cancer (Mutlu-Agardan et al., 2020). These
micelles have the potential for further refinement, enabling the
incorporation of imaging probes, thus serving a dual role in both
the diagnosis and treatment of ovarian cancer (Han et al., 2019;
Zhang et al., 2023). Additionally, their visibility may be enhanced
through the introduction of a radioactive isotope like fluorine-18
(18F), which could facilitate their tracking via PET imaging (Francis
and Wuest, 2021). This capability may be instrumental in verifying
their precise journey within the body, ensuring they reach the
intended tumor site. Such redox-sensitive polymeric micelles
deliver paclitaxel directly to the tumor site. In this instance

paclitaxel was conjugated to a hydrophilic polymer through a
disulfide linkage, forming amphiphilic unimers which assembled
into stable micelles. Once within the intracellular environment these
linkages are cleaved by reducing agents, such as glutathione, to
disrupt the micelle and release the free drug, which elicits a potent
cancer-killing effect (Mutlu-Agardan et al., 2020). Nanoparticles
that are engineered to target ovarian cancer stem cells could be
further enhanced by incorporation of imaging and therapeutic
agents. For instance, nanoparticles could be loaded with
chemotherapy drugs, such as doxorubicin, and an imaging probe,
like gadolinium-DTPA (Gd-DTPA). The utilization of Gd-DTPA as
an imaging probe holds the promise of making these nanoparticles
visible through MRI (Deng et al., 2022; Margalik et al., 2022). This
approach facilitates the tracking of nanoparticle distribution within
the body, ensuring the precise location of the tumor.

An effective nano-treatment for ovarian cancer should be able to
carry tailored therapeutic agents (such as chemotherapeutic drugs or
siRNAs) that are specifically designed based on the patient’s specific
ovarian cancer subtype and drug sensitivity (Giordo et al., 2022).
The therapeutic agents should be released precisely at the tumor site,
potentially with the help of responsive particles, sparing healthy
tissues from cytotoxic effects. Incorporating specific targeting
ligands to facilitate sub-type specific uptake of identified cancer
cells would enable these systems to provide a viable platform for a
personalized medicinal strategy (Liang et al., 2023). The detectability
of many nanoparticle systems is particularly beneficial to the
development of theranostic approaches (Shahriari et al., 2023).
To ensure successful clinical translation, pre-clinical studies and
clinical trials are necessary to evaluate the safety and efficacy of
theranostic nano-systems (Zhang et al., 2022). These
multifunctional nano-systems have the potential to revolutionize
ovarian cancer management by enabling earlier diagnosis,
personalized treatment regimens, and continuous monitoring of
therapeutic responses (Farran et al., 2020).

5 Challenges and future perspectives

The inter- and intra-patient heterogeneity of ovarian cancers
and their associated biocomplexity pose significant challenges to the
development of theranostics. These differences are mainly driven by
genetic mutations, epigenetic changes, and environmental
influences (Corvigno et al., 2016; de Witte et al., 2020). Tumour
heterogeneity can make it difficult to accurately diagnose a specific
type of cancer. Personalized treatment needs to be implemented and
will heavily depend on the availability of sufficiently accurate
biomarkers. The ultimate goal will be to predict how different
cancer cells will respond to an ever-increasing selection of
available pharmaceuticals. Whilst initial treatment might appear
successful, the risk of recurrence through resistant cancer cells does
remain. Refined theranostic approaches are most suitable to address
these problems through accurate diagnosis, tailored treatment, and
continued monitoring.

Accelerated and dedicated research into the identification of
viable ovarian cancer biomarkers is required to progress clinical
implementation. To bring emerging biomarkers into clinical
practice, particularly with respect to developing theranostics
requires rigorous validation of data from large and diverse
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patient populations. To achieve this standardization of
biomarker testing would be essential to ensure consistent and
reliable technologies across different healthcare facilities. The
lack of clear regulatory guidelines and safety standards is a major
challenge for the development of theranostic agents. To date,
only very few theranostic agents have been approved by
regulatory agencies such as the FDA (MIRV for instance).
The regulatory approval process for theranostic agents is very
time-consuming, because they need to be evaluated both for
safety and efficacy, as well as diagnostic accuracy (Perera and
Morris, 2022). However, to address this new guidance
documents and clinical trial designs that are specifically
tailored to consider theranostic agents have been developed
(Singh et al., 2020).

Despite each of the challenges facing the emergence of new
theranostic agents for ovarian cancer, the future of biomarker-
driven theranostics hold great potential. Technological
advancement and the identification and incorporation of critical
biomarkers and targeting factors are likely to address many of these
limitations. The integration of multi-omics approaches, which
combine data from genomics, transcriptomics, proteomics, and
metabolomics to provide a comprehensive view of the disease
and reveal novel biomarkers is likely to rapidly advance this field
and requires significant research investment (Clifford et al., 2018;
Honar et al., 2023).

The integration of real-world data, such as patient outcomes and
electronic health records, provides insights beyond clinical trials,
revealing how treatments perform in diverse patient populations
with comorbidities. Global collaboration among researchers,
clinicians, regulators, and industry is essential for the rapid
development and implementation of biomarker-driven
theranostics. Sharing data, expertise, and resources globally can
accelerate progress and improve ovarian cancer patient outcomes.
Artificial intelligence (AI) and machine learning approaches and
prominent data screening and modelling strategies which have
contributed to the advancement of cancer research (Escudero
Sanchez et al., 2023). Advanced algorithms have been developed
to analyze large datasets, identify subtle patterns and predict patient
outcomes with remarkable accuracy (Lu et al., 2020; Liu Y. et al.,
2023; Yao et al., 2023; Zhan et al., 2023). These AI-powered models
can help clinicians make more informed and personalized treatment
decisions. For example, AI can be used to predict the success of
immunotherapies based on the expression of extracellular matrix
proteins (Geng et al., 2023). Further advancement of AI and
machine learning approaches implemented within this field of
research could lead to more effective and personalized
immunotherapy treatments, amongst other diagnostic,
therapeutic and theranostic solutions.

Despite challenges in incorporating emerging biomarkers into
clinical practice for ovarian cancer theranostics, ongoing research
and technological advancements are converging to enable the
development of viable diagnostics, therapeutics, and their
combined utility in theranostics. Research guided by the growing

knowledge of key biomolecular targets in this field shall not only
revolutionize ovarian cancer diagnostics, allowing for earlier critical
detection but also develop the field of tumor specific personalised
therapies. This is of critical importance to ovarian cancer,
particularly due to the heterogenic nature of the disease. Further
the advancement of nanomedicine provides a strong basis for the
development of highly specialised multimodal particles, which will
not only benefit diagnostics and drug delivery but also allow for the
combination of these features to develop revolutionary theranostic
technologies which are highly versatile and tailorable to personalised
conditions. The prospects of this field are bright, and the convergent
efforts of researchers, clinicians, regulators, and industry shall
rapidly transform the ovarian cancer care landscape in the
coming decade.
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