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Astronauts have flown to space for decades, but the effects of spaceflight on human health
have not been fully clarified yet. Several pathologies have only been detected after it has
become customary for astronauts to spend months rather than days in space and with the
advance of inflight monitoring. Examples include the neuro-ocular spaceflight associated
syndrome, changes to the brain’s white matter, and, more recently, altered cerebral blood
flow and related hypercoagulability. This review outlines spaceflight-induced brain
disorders in astronauts and putative contributing factors. It next presents ongoing and
upcoming studies of the BBB onboard space platforms. Finally, it describes how the space
environment can be harnessed for improving drug-delivery across the BBB for humans
both in space and on Earth.
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1 INTRODUCTION

Space is considered to be the last frontier of human health and a contributor to medical innovation
(Alwood et al., 2017; Cinelli and Russomano, 2021). Important environmental factors endured by
space travelers include microgravity, exposure to space radiation, hostile or close environments,
isolation, confinement, and distance from Earth (Patel et al., 2020). These conditions affect
virtually every system in the human body, including the brain and the vasculature. Risk depends on
the type and the duration of flight, and is expected to be considerably higher during missions
beyond Low Earth Orbit (LEO) (Eyal and Derendorf, 2019; Stepanek et al., 2019). Two key features
of the spaceflight-associated physiological changes are particularly relevant for medical research
and development: accelerated aging and disease processes, and their reversibility (or lack thereof)
upon return to Earth. At the molecular and cellular level, the microgravity of space can alter the
physico-chemical properties of protein crystals, membranes and cells. Such alterations may be
harnessed for better understanding of the structure of BBB receptors and therapeutic proteins,
engineering of 3D constructs of the neurovascular unit, and designing new drug formulations
(Amselem, 2019; Ryder et al., 2020).

Blood-brain interfaces (the BBB and the blood-cerebrospinal fluid barrier, BCSFB)maintain brain
homeostasis by controlling the influx and efflux of compounds and cells from the brain. Within the
neurovascular unit, microvascular endothelial cells form the major barrier between the circulation
and the brain. The microvascular endothelial cells of the brain are non-fenestrated and are sealed
together with tight-junction proteins. Uptake transporters and membrane receptors enable the
cerebral uptake of essential compounds and medications whereas efflux transporters protect the
brain against potentially noxious compounds. Enveloping pericytes and astrocytic endfeet aid in
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maintaining the BBB integrity and function. Neuronal input and
demand further interact with those cells and regulate the cerebral
capillary network (Eyal et al., 2009; Han et al., 2017; Lochhead
et al., 2020).

Due to the unique features of the BBB, drug delivery for the
treatment of neurological diseases and brain disorders remains a
major challenge. The BBB prevents the brain uptake of most
drugs, with the exception of small hydrophilic compounds with a
mass lower than 150 Da and highly hydrophobic compounds
with a mass lower than 400–600 Da that can cross the BBB by
passive diffusion (Santaguida et al., 2006; Cecchelli et al., 2007;
Morofuji and Nakagawa, 2020). Hence, drug treatment of
neurological diseases such as Parkinson’s and Alzheimer’s
diseases, or their delivery to cerebral sanctuaries of tumor cells
and viruses, is challenging. Accordingly, finding new approaches
for drug delivery across the BBB is crucial, particularly for
macromolecules such as monoclonal antibodies (mAb)
(Santaguida et al., 2006; Banks, 2016; McInerney et al., 2017;
Han, 2021; Omidi et al., 2021; Parakh et al., 2021; Terstappen
et al., 2021; Pan and Nicolazzo, 2022). Current approaches are
aimed at increasing paracellular and transcellular BBB
permeability, e.g., by opening of tight junctions, enhancing
transcytosis, and inhibition of active efflux (Han, 2021). In
this context, the spaceflight environment can be disruptive,
offering yet unexplored opportunities to improve drug delivery
to the brain.

2 EFFECTS OF SPACEFLIGHT ON THE
BRAIN

Spaceflights, beginning with the short-duration Apollo era
missions, were associated with decrements in operational
capabilities, including altered driving performance. Changes
were recorded across neurological domains, including
cognition, sensation, movement, and coordination (Roy-
O’Reilly et al., 2021). More recently, the NASA Twins Study
demonstrated significantly reduced cognitive performance after
340 days of spaceflight as compared to preflight values (Garrett-
Bakelman et al., 2019). The reports on reduced performance after
long space missions have been supported by findings from
neuroimaging studies, which provided evidence for alterations
in the structure and positioning of the brain and in its ventricles
(Roy-O’Reilly et al., 2021). Changes were observed in the CSF
volume, along with ventricular expansion and upward shifts of
the brain (Roberts et al., 2017; Van Ombergen et al., 2019; Jillings
et al., 2020). For instance, one magnetic resonance imaging (MRI)
study in 11 cosmonauts whose average mission duration was
169 days identified mean increases of 13.3 and 10.4% in the
volumes of the lateral and the third ventricles, respectively
(Van Ombergen et al., 2019). Cerebral fluid accumulation
might be involved in the etiology of cerebral disorders in
space. For example, locally elevated CSF sheath pressures in
the orbital subarachnoid space have been linked to the ocular
changes that occur during prolonged spaceflight, known as
spaceflight-associated neuro-ocular syndrome (SANS) (Lee
et al., 2017). Other findings include decreases in frontal and

temporal gray matter volumes and changes in white matter
volume (Koppelmans et al., 2016; Roberts et al., 2017; Van
Ombergen et al., 2018; Van Ombergen et al., 2019; Jillings
et al., 2020). Periventricular white matter hyperintensities
(WMH), observed in astronauts after prolonged spaceflight
(Alperin et al., 2017), have been associated with declines in
cognitive and motor performance in healthy aging (Vernooij
et al., 2009; Seidler et al., 2010). The rate of spaceflight-associated
white matter changes was estimated at 1.5–2.5% per year,
approximately 2-fold faster than that in a large subject sample
with a mean age of 50 years (Lee et al., 2019). However, in
astronauts these changes were limited to regions near the
ventricles and partially reversed by 1 month after landing
(Alperin et al., 2017). The urgent need in better understanding
of the physiology of the brain barriers in space is arguably best
demonstrated by recent event of blood clot in the internal jugular
vein of an astronaut in space (Auñón-Chancellor et al., 2020)
along with jugular venous blood flow stasis in additional
astronauts (Marshall-Goebel et al., 2019). The next sections
will describe the effects of individual factors encountered in
spaceflight on the BBB, followed by presenting the current
knowledge obtained from real spaceflights.

3 RADIATION AND THE BLOOD-BRAIN
BARRIER

The vasculature is particularly susceptible to radiation
(Chancellor et al., 2014), and irradiation of the brain has long
been shown to cause damage to the neurovascular unit. For
instance, in patients with supratentorial glioblastoma radiation
enhanced the accumulation of a gadolinium (Gd)-based contrast
agent in the brain parenchyma, likely by damaging the BBB (Lim
et al., 2018). In mice, irradiation with doses of 5–200 Gy
decreased the endothelial cell number by up to 15% compared
with the pre-treatment values (Ljubimova et al., 1991). In rats,
gamma radiation (60 Gy) caused leakage of horse-radish
peroxidase, with severe loss of the capillary network (Rubin
et al., 1994). A lower dose (4.5 Gy) increased the extravasation
of [3H]alpha-aminoisobutyric acid and [14C]sucrose (Diserbo
et al., 2002). Treating mice with an anti-tumor necrosis factor
(TNF) monoclonal antibody was associated with attenuated
radiation-induced BBB dysfunction, astrocyte activation, and
leukocyte adhesion suggesting a role for TNF in these
processes (Wilson et al., 2009). The exposure in those studies
overestimate the radiation dose of most space missions. For
instance, Mercury and Gemini crews were exposed over their
missions to a total dose in the range of 0.05–2.31 mGy (except for
Gemini X where the total dose was 6.18–7.79 mGy), Apollo XIV
astronauts received ~11 mGy, and Mir 01–23 cosmonauts were
exposed to up to 93 mGy (Maalouf et al., 2011). The predicted
average galactic cosmic rays (GCR) absorbed dose rate during a
mission to Mars is 0.45 mGy/day (Simonsen and Zeitlin, 2017). A
similar phenomenon on missions outside of LEO might yield
dose rates of up to 100 mGy/h and 500 mGy/h inside a space
vehicle and during an extravehicular activity, respectively
(Chancellor et al., 2014).
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Radiation leads to cellular damage by both direct and indirect
pathways. Direct pathways involve ionization of DNA, RNA,
proteins and lipids. Indirect damage results from generation of
reactive oxygen species (Fauquette et al., 2012; Chancellor et al.,
2021). Radiation damage can lead to necrosis, apoptosis,
autophagy, or senescence (Allen and Limoli, 2022).
Specifically in brain capillary endothelial cells, radiation
resulted in reduced expression of the tight junctional protein
zonula occludens (ZO)-1 (Fauquette et al., 2012), formation of
actin stress fibers (Fauquette et al., 2012), and increased lipid
peroxidation, in association with glutathione depletion
(Mertsch et al., 2001). In addition, a post-mortem analysis of
normal tissue from patients treated with radiation therapy for
glioblastoma demonstrated depletion of pericytes in necrotic
tissue even in the normal brain, despite the absence of
morphological changes to the vasculature (Lee et al., 2018).
In mice, heavy-ion irradiation of the brain activated microglia
and induced inflammation in the hippocampus (Encinas et al.,
2008) and the dentate subgranular zone (Rola et al., 2005),
although the involvement of the BBB in the inflammatory
processes has not been reported.

4 HYPERCAPNIA AND THE BLOOD-BRAIN
BARRIER

The mean levels of carbon dioxide on the International Space
Station (ISS) can be approximately ten-fold than those in
Earth’s atmosphere (3.4 mmHg vs 0.3 mm Hg at standard
pressure). Hypercapnia elevates cerebral blood flow and
intracranial pressure, with increased risk of headache for
every 1 mmHg increase in carbon dioxide levels (Law et al.,
2014). More than 60 years ago, exposure of rabbits to 10%
carbon dioxide in oxygen has been shown to cause vascular
damage and increased the cerebral permeability of trypan blue
(Clemedson et al., 1956). Later studies demonstrated
hypercapnia-induced increases in the permeability of the
BBB to other molecules, including lactate (Knudsen et al.,
1991) and albumin (Cutler and Barlow, 1966; Hochwald et al.,
1973). More recently, studies in rodents demonstrated that
hypercapnia exacerbates hypoxemia-induced increases in BBB
permeability (Liu et al., 2020) and reduces the expression of
the tight junctional proteins zonula occludens (ZO)-1,
occludin, and claudin-5 (Ding et al., 2020).

5MICROGRAVITY AND THE BLOOD-BRAIN
BARRIER

While there is a vast literature on spaceflight-induced alterations in
endothelial cells of non-cerebral origin, much less in know about
endothelial cells that consist the BBB. Many in vitro studies applied
simulated microgravity to model the physiological changes that
occur in space, although there is a gap between the levels of
gravity obtained during simulation and the microgravity of space
(10−2–10−3 g for ground simulators and parabolic flights, versus
10−5–10−6 onboard the ISS). Accordingly, these studies usually

mimic many, but not all the physiological changes that occur in
space (Amselem, 2019). Briefly, true and simulated weightlessness
conditions caused dysregulation of motility and adhesion to
substrates of endothelial cells which were isolated from peripheral
blood vessels, e.g., the aorta and umbilical veins (Infanger et al., 2006;
Grimm et al., 2009). Other changes involved the cytoskeleton,
extracellular matrix, mitochondrial distribution, angiogenic
response, apoptosis, cell growth, and cell cycle regulation (da
Silveira et al., 2020; Dittrich et al., 2018; Maier et al., 2015;
Morbidelli et al., 2005; Barravecchia et al., 2021; Crawford-Young,
2006; Grenon et al., 2013; Janmaleki et al., 2016; Kapitonova et al.,
2013; Kapitonova et al., 2012; Wehland et al., 2013). In human
umbilical vein endothelial cells (HUVEC), microgravity increased
the permeability tofluorescein isothiocyanate (FITC)-tagged dextran
(Shi et al., 2022) and promoted activation of inflammatory reactions
with a shift towards senescence (Versari et al., 2013).

A modeling analysis which was published in 2007 predicted
that higher steady-state intracranial pressure, together with
reduced blood colloid osmotic pressure, would reduce BBB
integrity (Lakin et al., 2007). Studies which tested this
hypothesis were published only a decade later. Bellone et al.
evaluated cerebral effects of simulated gravity (by tail
suspension), chronic exposure to low-dose gamma radiation (a
total dose of 0.04 Gy), or a combination of both (Bellone et al.,
2016). After 3 weeks of simulated microgravity, but not gamma
radiation, mice displayed increased exploratory and risk-taking
behavior as compared to controls without differences in the
outcomes of cognitive tests. The combination of simulated
microgravity and radiation, but not each factor alone, was
associated with a significant change in aquaporin-4 (AQP4), a
water channel protein concentrated at perivascular astrocyte
membranes. AQP4 levels, which are elevated when the BBB is
compromised, are critically involved in the formation and
dissolution of cerebral edema (Amiry-Moghaddam et al., 2003;
Frydenlund et al., 2006), suggesting a role for BBB dysfunction in
the observed behavioral changes. In another rat study, 21 days of
tail suspension resulted in inflammatory cellular infiltration and
nuclear pyknosis in the cortex (Yan et al., 2021). Transmission
electron microscopy demonstrated a widened intercellular space
of endothelial cells, swollen pericytes, and unclear mitochondria
cristae. Expression of the tight junction proteins claudin-5, VE-
cadherin, and β-catenin decreased by half or more, without a
change in occludin and ZO-1 expression. A proteomic analysis
discovered 554 differentially expressed proteins, which were
mainly enriched in those regulating the cell-cell junction and
cell-extracellular matrix biological pathways. Simulated
microgravity additionally induced apoptosis and oxidative
stress injury, as well as changes in actin cytoskeleton, which is
important for cell adhesion. Compared to the control group, the
content of Evans blue and Texas red-dextran in the brain was
significantly increased, by 31% and 37.2%, respectively, indicating
higher BBB permeability. The study also demonstrated that the
Ras-related C3 botulinum toxin substrate 1 (Rac1)/Wiskott-
Aldrich syndrome protein family verprolin-homologous
protein 2 (Wave2)/actin-related protein 3 (Arp3) signaling
pathway could be an important contributor to the observed
BBB disruption under simulated microgravity.
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Taken together, these studies support disorders of cerebral small
vessels as one mechanism that could explain the above-mentioned
WMH observed in astronauts. On Earth, dynamic contrast-
enhanced (DCE) MRI study in 201 patients found that BBB
leakage and interstitial fluid volume were higher in WMH than
normal-appearing white matter, and that BBB leakage in WMH
predicted declining cognition at 1 year (Wardlaw et al., 2017). In
another DCE–MRI study, the leakage volume of the WMH was
significantly larger in patients with cerebral small vessel disease
compared with controls. The authors suggested that in those
patients, subtle BBB leakage and extravasation of blood
components may cause brain tissue damage and exacerbate local
vascular changes (Zhang et al., 2017). More recently, BBB leakage at
baseline in patients with cerebral small vessel disease was associated
with a change in parenchymal diffusivity (a quantitative marker of
microstructural tissue condition) in proximity of theWMH. That is,
BBB impairmentmight play an early role in subsequent whitematter
degeneration (Kerkhofs et al., 2021).

In contrast to microgravity, the hypergravity experienced by space
travelers is transient (during launch and, to a greater extent, during
return to Earth). Inmice, centrifugation at 2 g for 1 or 50 days, but not
short exposure to hypergravity (5 g, as during landing) resulted in
immunoglobulin G extravasation into the hippocampal parenchyma.
These findings imply that the duration of hypergravity might bemore
important than its intensity. The authors suggested that centrifugation
may serve as means for opening the BBB, although this is less likely to
occur in the clinical setting (Dubayle et al., 2020).

A ground-based spaceflightmodel is parabolic flight, which yields
alternating brief periods of microgravity as described above and
hypergravity (1.8 g). In volunteers who participated in such a flight,
blood flow in the vertebral artery increased during gravitational
transitions from micro-to hypergravity, along with reduction in
nitric oxide (indicating elevated free radicals) and increased glio-
vascular glial fibrillary acidic protein (GFAP) and S100B. The latter is
a 10 kDa protein expressed in glia and Schwann cells whose plasma
levels may be elevated after trauma without brain injury (Hier et al.,
2021). No change was observed in biomarkers of neuronal-axonal
damage (neuron-specific enolase, neurofilament light-chain -NFL,
ubiquitin carboxy-terminal hydrolase L1 and tau). These findings
provided a first indication for the presence of cerebral markers in
systemic circulation as an outcome of gravitational transitions,
indicating minor BBB damage. The suggested etiology was
hyperperfusion, together with oxidative stress (Bailey et al., 2020).

Silvani et al. (2021) developed an innovative hybrid in vitro
vascularized glioblastoma-on-a-chip model. Under simulated
microgravity conditions, the system demonstrated a significant
cell morphological and mechanotransduction response,
representing a tool for investigating cancer mechanobiology
and the blood-tumor barrier.

6 EFFECTS OF SPACEFLIGHT ON THE
BLOOD-BRAIN BARRIER

Only one published study evaluated spaceflight-associated BBB
changes in a preclinical model in real microgravity (Mao et al.,
2020). In that study, 35 days of spaceflight increased the

expression of hippocampal AQP4 in the mouse brain,
supporting the above-mentioned combined effect of
microgravity and radiation in mice (Bellone et al., 2016).
Other changes included increased expression of platelet
endothelial cell adhesion molecule-1 (PECAM-1) and
decreased ZO-1 expression, indicating a disturbance of BBB
integrity. The proposed contributors to these changes were
chronic mild inflammation and oxidative damage.

A pilot study tracked the concentrations in plasma of brain-
specific proteins before and after spaceflight. The study was
conducted in 5 male cosmonauts (mean age, 49.2 years) who
spent almost a year in space. Blood samples were collected
20 days before launch and post-flight (1 day, 1 week, and
21–25 days after landing). The samples were analyzed by a
single-molecule array immunoassay for five biomarkers of brain
damage: NFL, GFAP, total tau, and two amyloid-beta proteins.
Plasma levels of three of the biomarkers—NFL, GFAP and the
amyloid beta protein Aß40—were significantly higher after the
cosmonauts returned from the ISS, partially overlapping with the
results obtained following a parabolic flight (Bailey et al., 2020).
The timing of peak values varied across individuals, but the trends
of elevated biomarkers were consistent across the five participants.
High levels of these biomarkers have been associated with potential
axonal disintegration process (NFL) and astrocytic activation
(GFAP), suggesting that different components of the brain
parenchyma are affected by microgravity (zu Eulenburg et al.,
2021). However, the changes in brain function could not be
distinguished from BBB disruption during spaceflight or
landing. It is hoped the future investigations will clarify the
cause for the elevated brain markers in plasma.

The last mission to the ISS investigating the behavior of
human BBB in space so far was launched in April 2022
(AXIOM-1), as a part of Rakia mission (Ramon Foundation
and Israel Space Agency). Among the experiments performed by
Israel’s second space traveler, Eytan Stibbe, was a study led by Dr.
Itzik Cooper which analyzes the effects of microgravity on
vascular function in the brain (Table 1).

Krishnamurthy and colleagues suggested that altered activity
of transporters at the BCSFB with subsequent increase in osmotic
load of the cerebrospinal fluid may contribute to the spaceflight-
associated hydrocephalus (Krishnamurthy et al., 2021). However,
given the absence of information on transporter activity at blood-
brain barriers in space, this has yet to be investigated. Data on
these transporters are urgently required, because transport across
brain barriers not only modifies osmotic load, but also controls
the distribution of essential compounds, drugs and other
xenobiotics between blood, brain, and the CSF. For instance,
downregulation of BBB uptake carriers for glucose and amino
acids may deprive the brain of these compounds. On the other
hand, reduced functionality of the efflux transporters
P-glycoprotein (P-gp) and the breast cancer resistance protein
(BCRP) at the BBB can enhance the cerebral distribution of
substrate drugs, thus increasing their therapeutic effects, CNS
toxicity, or both (Lee et al., 2001; Eyal et al., 2009; Nicolazzo and
Katneni, 2009; Han et al., 2017). Examples of P-gp substrate
medications which are available onboard the ISS include non-
sedating antihistamines, which might become sedative in the
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absence of effective P-gp-mediated efflux, and calcium channel
blockers (Eyal and Derendorf, 2019; Eyal, 2020).

7 SPACEFLIGHT AND DRUG DELIVERY
ACROSS THE BLOOD-BRAIN BARRIER

Because spaceflight accelerates aging and tissue degeneration,
treatments for preventing microgravity-induced
pathophysiological changes have been adapted to diminish
age-dependent diseases. One example is the development of
the drug denosumab, aimed to prevent loss of bone mass,
whose development gained from findings in rodents flown
onboard the ISS (Amselem, 2019). Similarly, the space
conditions may potentially unveil novel BBB pathways which
may be targeted by drug delivery platforms. A study by the
pharmaceutical company Emulate conducted on the ISS using an
Organ-on-Chip approach (PI: Dr. Chris Hinojosa) analyzed the
effect of space-related stressors on the BBB. The brain-chip
consisted of neurons and vascular endothelial cells in a micro-
engineered environment (Keeter, 2018) (Table 1). The results are
hoped to provide insight into the relationship between
inflammation and brain function, as well as the effectiveness
of anti-inflammatory drugs in maintaining BBB integrity, for a
better understanding of neurodegenerative diseases. Emulate also
participated in a more recent SpaceX CRS-24 mission to examine
the effects of microgravity on the BBB (Table 1).

Three-dimensional cell cultures in microgravity yield
improved 3D structures and allow for a more precise
appreciation of the role the biophysical constraints play in
shaping cell phenotypes and functions (Amselem, 2019).
Therefore, understanding microgravity effects can help
improve tissue-engineering techniques on Earth. For instance,
under simulated weightlessness conditions (but not at 1 g),
endothelial EA.hy926 cells formed tube-like structures that

resemble vascular intimas, even without scaffolds (Infanger
et al., 2006; Grimm et al., 2009). Similarly, the lack of
convection and sedimentation in space improved the quality
of protein crystals (Giulianotti and Low, 2019), allowing better
understanding of the 3D structure of BBB-traversing mAbs (or
other proteins) and mAb-receptor interactions (e.g., mAb
interactions with the transferrin receptor) (Amselem, 2019;
Giulianotti and Low, 2019; Mullard, 2021). This could be
utilized to improve drug delivery across the BBB. The use of
spaceflight for developing nanofornulations has been recently
reviewed and is beyond the scope of this manuscript (Grover
et al., 2020).

8 LIMITATIONS OF CURRENT STUDIES
AND FUTURE OPPORTUNITIES

A limitation inherent to most spaceflight studies is the small
number of patients or samples. On the other hand, ground-
based simulations do not capture all aspects of the stressor
encountered in space. One example is the above-mentioned tail-
suspension test which maintains the pressure of visceral organs on
vasculature along with several other dissimilarities to the space
environment. A major limitation of many radiation studies is the
use of mono-energetic radiation sources, particularly gamma-
exposure, which are dissimilar to radiation exposures for
astronaut crews. In addition, all the above mentioned
spaceflight studies were conducted in LEO. Thus, it is difficult
to estimate how and to what extent space radiation would affect
human tissues in deep space, beyond the protective shield of the
Van Allen radiation belts (Chancellor et al., 2018; Chancellor et al.,
2021). For instance, if intense space radiation increases the
penetration of blood-borne proteins into the brain, the results
may be seizures. Current and future research platforms are being
further developed to improve researcher accessibility to space thus

TABLE 1 | Blood-brain barrier-associated experiments conducted onboard the International Space Station.

Experiment PI Launch/Start
date

Landing/End
date

References

Rodent Research-9 (RR-9), including three Space
Biology investigations, among which effects of long-
duration spaceflight on cerebral vascular function and
structure. SpaceX’s 12th commercial resupply
services (CRS-12) mission.

Delp, Michael; Mao, Xiao Wen;
Willey, Jeffrey S. (United States)

14 August
2017

17 September
2017

Mao et al. (2020)

Organs-on-Chips as a Platform for Studying Effects of
Microgravity on Human Physiology: Blood-Brain
Barrier-Chip in Health and Disease (SpaceX CRS-17
mission)

Hinojosa, Christopher Emulate,
Inc. (United States)

May 4, 2019 June 3, 2019 (Keeter, (2018); Giulianotti and Low, (2019);
Low and Giulianotti, (2019); NASA, (2022))

The effects of microgravity on the blood-brain barrier
(SpaceX CRS-24 mission)

Hinojosa, Christopher Emulate,
Inc. (United States)

December 21,
2021

January 24,
2022

ISS National Laboratory, (2021) Mission
completed. Results not published yet

Human BBB in space Cooper, Itzik April 8, 2022 April 25, 2022 Eng.rakiamission, (2021)

The effect of space flight and exposure to microgravity
on BBB as a potential platform for treating Alzheimer’s
Disease. Axiom Space’s Ax-1 mission first private
astronaut mission to the space station

Sheba Medical Center, Tel Aviv Mission completed. Results not
published yet
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overcoming the limitations associated with ground simulations.
These include privately-owned space stations, satellites carrying
remote-controlled laboratories (e.g., SpacePharma’s DIDO
satellites) and reusable uncrewed mini shuttles, such as the
European Space Agency’s Space RIDER and Sierra Nevada
Corporation’s Dream Chaser.

9 DISCUSSION

Spaceflight-induced BBB disruption may be associated with the
penetration of harmful compounds into the brain and,
consequently, potential brain damage. Although the same
situation might enhance cerebral drug distribution in space
travelers, enhancing both therapeutic and adverse cerebral
drug effects, this assumption has yet to be tested. Clearly,
any attempt to improve (or avoid) drug delivery across the
BBB during spaceflight should consider other physiological
changes that may affect systemic pharmacokinetics and
pharmacodynamics (Kast et al., 2017; Eyal and Derendorf,
2019; Eyal, 2020; Dello Russo et al., 2022). At the same time,
spaceflight offers new opportunities for drug discovery and
development. A major benefit of the space environment is
finding new biological pathways and drug targets, given that
endothelial cells are particularly sensitive to the lack of gravity
and radiation.

By definition, treating diseases in astronauts in space implies
repurposing, because it cannot be assumed that disease processes
are identical on Earth and in space. The need to repurpose drugs
for space applications may stimulate research that would yield
benefits for patients with brain diseases on Earth. Another
advantage is production of 3D tissue constructs of higher
quality than under 1 g conditions. Such constructs of
endothelial cells could be used for both research and
repairment of impaired BBB in patients with cerebrovascular
diseases. Moreover, protein crystallization in microgravity can
help improve the design of novel antibody-based therapies which
target the brain. Hence, the benefits of pharmaceutical research
under spaceflight conditions extend well beyond treating
astronauts in space; insights gained from such studies can help
improve the pharmaceutical care of humans on Earth.
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