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Drug delivery across the blood–brain barrier (BBB) has several challenges, especially
toward targeting neurological diseases, due to tight and selective barrier function of the
BBB. Several structural and functional components of this barrier contribute to restricting
drug entry, such as interendothelial tight junctions (TJs), efflux transporters, drug-
metabolizing enzymes, and crosstalk between the cells of the neurovascular unit.
Among different strategies to overcome BBB resistance to therapeutic drug delivery,
the use of extracellular vesicles (EVs) gained attention in recent years. This review
discusses the BBB structural and functional resistance, as well as potential avenues to
overcome this challenge using EVs as drug delivery vehicles into the brain.
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1 THE BLOOD–BRAIN BARRIER

The blood–brain barrier (BBB) represents a microvascular interface between the circulatory system
and the extracellular space of the brain (Toborek et al., 2005; Palmer and Alavijeh 2013; Osborne
et al., 2020; Naranjo et al. 2021). The primary roles of this physical andmetabolic entity are regulating
central nervous system (CNS) homeostasis and providing the brain with a unique protection against
endogenous and foreign agents (Weiss et al., 2009). Multiple cell types are interconnected at the
endothelial cell lining of brain microvessels, which represent the anatomical site of the BBB. In terms
of length, the BBB is the largest brain barrier, measuring approximately 650 km, and a surface of
10–20 m2. Certain substances such as water, oxygen, and small lipids from the bloodstream cross the
BBB by transcellular pathways or a paracellular pathway. The transcellular pathway includes a
variety of mechanisms such as passive diffusion, receptor-mediated transport, and transcytosis. For
the paracellular pathway, ions and solutes use concentration gradients to pass the BBB by passive
diffusion (Dong, 2018). Although the BBB protects the brain’s homeostasis, it may also interfere with
therapeutic drug delivery into the CNS. This BBB resistance may occur via several mechanisms
involving different structural and functional aspects of the BBB.

1.1 The Neurovascular Unit
Solute filtration at the BBB is a highly selective process that involves multiple cell types. The cells that
play a role in the integrity of the BBB are collectively known as the neurovascular unit (NVU)
(Abbott and Friedman, 2012). The primary component of the NVU is the brain microvascular
endothelial cell (BMEC), which is a flat, sheet-like cell that forms the single-cell layer wall of brain
microvessels (Kadry et al., 2020). BMECs and peripheral endothelial cells have similar functions,
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such as regulating exchanges between the bloodstream and other
surrounding cells. However, endothelial cells assembling the
microvascular lining of the BBB lack fenestrations or small
breaches in the outer membrane. They also have tight
intercellular junctions. As a result, diffusion of proteins and
small molecules is highly limited (Cohen et al., 2001;
Stamatovic et al., 2008; Campos-Bedolla et al., 2014; Kadry
et al., 2020; Walter et al., 2021). Both peripheral and brain
endothelial cells have substantial proinflammatory properties
(Toborek et al., 1995; Andras et al., 2005).

Astrocytes, a glial cell type, also play a critical role in the
formation of the BBB. Astrocytes present projections known as
astrocytic end-feet that extend to the walls of the blood vessels of
the BBB (Kubotera et al., 2019). Working jointly, astrocytes and
BMECs mediate signals that prompt the formation of TJs and
other cell adhesion molecules necessary to fortify BBB integrity
(Abbott and Friedman, 2012).

Pericytes, embedded between the parenchyma and external
lamina of the BMEC, are also part of the NVU. These cells are
susceptible to injury and viral infections (Nakagawa et al., 2012;
Bertrand et al., 2019). They are separated from the parenchyma
by the basal lamina, a thin layer that also interposes between the
pericyte and endothelial cells (Bergers and Song, 2005). Pericytes
have several functions; they are thought to limit angiogenesis and
provide microvascular stability by inhibiting the growth of
capillaries. Pericytes also possess contractile functions, which
regulate capillary diameter. Effectively, the size of the diameter
will have an impact on oxygen and nutrient diffusion (Kadry
et al., 2020).

Surrounding neurons remain closely associated with
capillaries and connect with astrocytic endfeet in the vicinity
of the BBB. In addition to controlling blood flow and
microvascular permeability, neurons regulate angiogenesis by
releasing factors that stimulate growth of new blood vessels.
Furthermore, neurons assist in the synthesis and localization
of tight junction molecules in brain endothelial cell culture
(Savettieri et al., 2000).

1.2 Accessory Cells of the Blood–Brain
Barrier
Cells that also play a role in BBB integrity are microglia (Kovac
et al., 2009), leukocytes (Engelhardt 2006), and, according to
some reports, surrounding neurons of the NVU (Sonar and Lal,
2018). They typically induce an inflammatory response to stress,
infection, and other altercations in the brain. Microglial cells
facilitate the inflammatory response after chronic and acute
central nervous system disorders, including Alzheimer’s
disease (AD) and Parkinson’s disease. They work in
conjunction with the neurovascular unit and function in BBB-
sensor homeostasis, so any disturbance within the brain causes
BBB dysfunction and neuroinflammation.

1.3 Interendothelial Junctions of the
Blood–Brain Barrier
The unregulated passage of polar molecules, toxins, and other
substances between blood and brain is highly limited. It is

FIGURE 1 | EV uptake via receptor-mediated endocytosis (clathrin-dependent). The ligand–receptor complex triggers a signaling cascade, which causes clathrin
molecules to home in the surrounding area of the cell membrane. The following step is the formation of a clathrin-coated vesicle. The cargo-containing vesicle may be
directed toward the lysosome for degradation or can be recycled into endosomes.
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primarily regulated by interendothelial junctions composed of
protein complexes of tight junctions (TJ), adherence junctions
(AJ), and gap junctions (GJ) (Komarova et al. 2017; Dong, 2018).
TJs are transmembrane protein complexes that prohibit the
interendothelial flux of solutes and ions (Hartsock and Nelson,
2008). AJs are linked to intracellular actin filaments of ECs and
mainly initiate and stabilize cell–cell adhesion. Both AJs and TJs
are intermembrane structures that function as seals to
paracellular pathways of BMECs. Thus, the decrease in the
integrity of these protein complexes results in inflammation,
edema, and neuropathologies. Lastly, GJs are intercellular
channels that direct electric and chemical communication
between BMECs. Like TJs, GJs also regulate cell–cell transfer
of ions and small molecules (Goodenough and Paul, 2009).

1.4 Efflux Transporters
An intact BBB is crucial for normal brain functions. Protecting
the brain from potentially harmful endogenous and exogenous
substances are physiological components such as efflux
transporters and drug metabolizing enzymes. Efflux
transporters of the BBB, such as P-glycoprotein (P-gp)
(Cordon-Cardo et al., 1989), breast cancer resistance protein
(BCRP) (Eisenblatter and Galla, 2002), and organic anion-
transporting polypeptide (OATP) (Gao et al., 2000), are drug
transporter proteins expressed at the luminal and abluminal
BMEC membranes. P-gp and BCRP are specific membrane
transporters known as multidrug resistance pumps. The role
of these transporters is to detoxify the BMECs by actively
pumping out compounds, such as xenobiotics, back into the
blood stream (Kadry et al., 2020). P-gp can actively transport
various compounds out of the cell by using ATP. Transported
drugs, however, increase the enzymatic activity of ATPase by
several folds. Due to their hydrophobic nature, most drugs will
travel from the cytosol to the inner leaflet of the pump located in
the lipid bilayer. Once inside, ATP must bind to the interior
nucleotide-binding domains causing P-gp to undergo a dramatic
conformational change that extrudes the drug to extracellular
space. In a study involving Pgp inhibition in a rodent model, it
was shown that knockout of one of the two genes that express P-gp
in rodents (mdr1a) can increase drug penetration up to 100-fold but
can sometimes lead to toxic consequences (Loscher and Potschka,
2005). Administration of P-gp inhibitors (e.g., PSC833 and
GF120918) could also enhance brain entry of anticancer
therapeutics (Loscher and Potschka, 2005). These data
demonstrate that efflux pumps at the BBB level have a major
role in the BBB resistance to therapeutic intervention.

1.5 Drug Metabolizing Enzymes of the
Blood–Brain Barrier
Solute clearance is further enhanced by the presence of drug-
metabolizing cytochrome P450 (CYP450) enzymes, a super-
family of enzymes that are classified as monooxygenases.
Located in the endoplasmic reticulum or within mitochondrial
membranes of BMECs, CYP450 enzymes are responsible for the
metabolism of xenobiotics and endogenous compounds, such as
fatty acids in the brain microvascular area (Ghersi-Egea et al.,

1994; Zanger and Schwab 2013). This group of enzymes can also
cause oxidation of a large group of drugs, including antiepileptic
drugs (Kadry et al., 2020).

2 OVERCOMING BLOOD–BRAIN BARRIER
RESISTANCE: EXTRACELLULAR
VESICLE-MEDIATED DELIVERY INTO THE
BRAIN

The integrated defense systems of the BBB impose a major
challenge for effective drug delivery and the treatment of
many brain diseases (Banks, 2016). Over the past decade,
multiple strategies to improve drug delivery across the BBB
are focused on noninvasive techniques. One of the most
effective solutions to improve delivery efficiency relies on the
use of extracellular vesicles (EVs).

2.1 Extracellular Vesicles
EVs are membrane vesicles from cellular origin that contain a
lipid bilayer with a uniquely interactive surface area that can
establish contact with surrounding cells and molecules of the
extracellular microenvironment (Ratajczak et al., 2006; Zwi-
Dantsis et al., 2020). The surface diameter of EVs expands
from 20 nm to as large as 10 μm. The mean diameter is
approximately 30–150 nm (Subedi et al., 2019). Additional
morphological characteristics of EVs, such as shape, are less
versatile. They are round but can take on an elongated
appearance that is not energetically favorable; therefore, it is
only temporary or reversible (Zabeo et al., 2017). The general EV
properties are presented in Table 1. The biological properties of
EVs have been subject of several publications from our laboratory
(Andras et al., 2017; András et al., 2020a; Cho et al., 2021). We
also characterized the proteome of EVs derived from brain
endothelial cells (András et al., 2020b). EVs have three main
subtypes: microvesicles (MVs), exosomes (EXOs), and apoptotic
bodies (Borges, Reis, and Schor 2013; Yanez-Mo et al., 2015;
Zaborowski et al., 2015; Yu et al., 2019). MVs are released from
the cell surface via budding mechanisms and attach to other cells
where they may have surface–surface interactions (Ratajczak
et al., 2006). They contain adhesion molecules, such as
integrins, that can influence the diffusion of vesicles. Different
proteins and lipids are involved in the vesicle trafficking
processes, which in turn influence membrane curvature and
rigidity (Skog et al., 2008).

A specific pool of vesicles is generated after the disassembly of
apoptotic cells. These membrane-surrounded fragments are
referred to as apoptotic bodies. Initially, it was believed that
the primary role of vesicles pertaining to this category was
harboring cellular debris of disassembled cells, and occurred
spontaneously (Wickman et al., 2012; Xu et al., 2019). It is
now becoming increasingly clear that these vesicles play a
larger role in cellular apoptosis and, in fact, contain a wide
variety of components such as micronuclei, chromatin
remnants, cytosol portions, degraded proteins, DNA
fragments, and intact organelles (Ma et al., 2021). Brain
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endothelial cell death may occur in both physiological and
pathological conditions. In a study on zebrafish larvae, some
brain endothelial cell apoptosis could be attributed to remodeling
of the brain vasculature (Zhang et al., 2018). Another study
reported that the increased presence of acid sphingomyelinase

in old mice prompted apoptosis in brain endothelial cells (Park
et al., 2018). In pathological conditions such as stroke, rapid and
also late endothelial cell death was demonstrated (Zille et al.,
2019). Programmed brain endothelial cell death can be correlated
to low perfusion in capillaries (Park et al., 2018). Therefore,

FIGURE 2 | EV uptake via receptor-mediated endocytosis involving lipid rafts and caveolae (clathrin-independent). 1) Upon binding to the cell surface, EXOs travel
along the endothelial plasma membrane toward the caveolae invaginations, where they are maintained through ICAM-1 ligand-LFA1 receptor interactions. 2) Fission of
the caveolae from the membrane, mediated by the GTPase dynamin, then generates the cytosolic caveolar vesicle. 3) Caveosome is formed and does not undergo
lysosomal degradation, and, therefore, may be advantageous for EXOs carrying cargo highly sensitive to enzymes.

TABLE 1 | Summary of EV Properties (modified from Lee et al., 2012).

Classification Characteristic Biomarker References

Microvesicles
(MVs)

Heterogenous population Markers include annexin A1 and A2 Cocucci, Racchetti, and
Meldolesi (2009)

Size: 50–1000 nm Jeppesen et al. (2019)

Exosomes (EXOs) Homogenous population Markers include CD9, CD63, Alix, flotillin-1, MHC class I, MHC class II, constitutive
HSC70/HSP73, inducible HSP70/HSP72, and actin

Mayers and Audhya (2012)
Size: 40–150 nm Mathivanan et al. (2012)

Record et al. (2011)
Kowal et al. (2016)

Ectosomes Neutrophil- or monocyte-
derived MVs

— Sadallah, Eken, and Schifferli
(2011)

Size: 50–200 nm

Apoptotic bodies Size: 50–2000 nm Markers include caspase-2,3,7,8,9; annexin-V; nucleosomal DNA; cytokeratins;
externalized phosphatidylserine; Apo-1/Fas; Fas ligand; p53; phospho-p53;
p21wafi; and pH2AX

Elmore (2007)
Cytoplasm with tightly packed
organelles

Stolzing and Grune (2004)
Ward et al. (2008)
Masvekar et al. (2019)

EVs (general) Size: variable Markers include Kowal et al. (2016)
Small EVs (<150 nm): Tsg101, ADAM10, and EHD4
Large EVs (>150 nm): GP96 and other ER-associated proteins
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apoptotic bodies resulting from these processes may profoundly
impact the surrounding cells of the neurovascular unit.

Smaller vesicles, such as exosomes (EXOs), are produced by
multiple vesicular endosomes that undergo invagination,
resulting in their release into the intraluminal or extracellular
space of the cell. Exosomes act as shuttle vectors or signal
transducers that can deliver specific biological information and
mediate nearby or long-distance intercellular communication.
Furthermore, EXOs and other EV subtypes are non-cytotoxic and
exhibit a low immunogenic profile. These characteristics place
them as promising candidates for the next generation of
nanomedicine for both diagnostic and therapeutic purposes
(Alvarez-Erviti et al., 2011; Jang et al., 2013; Yang et al., 2015;
Khongkow et al., 2019).

Throughout the article, we will use the terms EVs
(extracellular vesicles in general), EXOs (exosomes), MVs
(microvesicles), and apoptotic bodies.

2.2 Extracellular Vesicle Transport and
Uptake
EVs can cross the BBB from the blood into the brain and from the
brain into the blood. True BBB transendothelial transport of
vesicles in both directions and quantitative uptake of EVs was
presented in a highly cited paper (Banks et al., 2020). According
to the calculations presented in this study, all EXOs crossed the
BBB with an influx rate from 0.044 µL/g-min to 0.524 µL/g-min
(Banks et al., 2020). While the routes embarked by EVs remain
unclear, there is evidence that EVs may cross the BBB using a
variety of mechanisms depending on their origins. The
mechanisms employed for this crossing are likely to involve
endocytic and transcytotic pathways, such as adsorptive
transcytosis (Jarmalaviciute and Pivoriunas, 2016; Banks et al.,
2020). The available evidence that EXOs indeed cross the BBB
primarily by transcytotic mechanisms suggests that there may be
some connections between the mechanisms of pathways used by
immune cells, infectious agents such as viruses, some large
proteins, as well as nanoparticles for crossing the BBB
(Vorbrodt and Trowbridge, 1991; Banks et al., 2012). Their
convergence with viral pathways has been reviewed,
summarizing how herpesviruses can merge with MVs
pathways. Some proteins that are utilized for EXOs production
by herpesviruses serve as functional release agents. The
convergence of these pathways could explain the observation
of virus-like particles, which could potentially be EXOs
containing viral proteins or nucleic acids (Wurdinger et al.,
2012). In addition, CD46 and mannose-6-phosphate (M6P)
may also be involved in the EV crossing the BBB (Banks
et al., 2020). Confocal microscopy showed that EXOs are
internalized by brain endothelial cells through endocytosis,
colocalize with endosomes, in effect primarily utilizing the
transcellular route of crossing (Chen et al., 2016).

Receptor-mediated endocytosis via brain endothelial cells may
be categorized into clathrin-mediated and non-clathrin-mediated
(El-Sayed and Harashima, 2013). A proposed mechanism of
clathrin-dependent-receptor-mediated endocytosis of EVs
(Figure 1) is a ligand-receptor interaction between C-type

lectin and its receptor (Hao et al., 2007). Many C-type lectins
participate in receptor-mediated endocytosis to transport soluble
bound ligands to lysosomes (Cummings and McEver, 2015).
Lectins are glycoprotein-bound receptor domains that interact
with and bind to carbohydrates and glycan moieties. Among the
functions of this broad subset of proteins is cell-to-cell
communication, adhesion, and intracellular transport. Three
categories of lectins exist, all that have been linked to EVs.
They are as follows: transmembrane lectins and selectins,
transmembrane sialic acid-binding immunoglobulin-like lectins
(SIGLECS), and galectins found in the cytosol (Gonda et al.,
2019). Selectins, however, are the best-known lectin type found to
regulate the uptake of EXOs and other EVs (Johannes et al.,
2016). C-type lectin receptors have been identified on both
dendritic cells and brain endothelial cells. Using antibodies
that bind to cellular C-type lectin receptors, it was
demonstrated that the internalization of macrophage-derived
EXOs occurs via the interaction between C-type lectin and its
receptor (Hao et al., 2007). The interaction of selectins and C-type
lectins with EXOs suggests an emerging area of research into the
intercellular communication that enhances immune cell–antigen
recognition and movement (Gonda et al., 2019). The
ligand–receptor complex triggers a signaling cascade, which
causes clathrin molecules to home in the surrounding area of
the cell membrane. Additional stabilizing factors then pull in the
lipid bilayer, allowing entry of the C-type lectin ligand into the
cytosol. The following step is the formation of a clathrin-coated
vesicle because of the invagination of the membrane (Kaksonen
and Roux, 2018). The fate of the cargo-containing vesicle
ultimately depends on the content it delivers. For example, a
cargo with a pH of 4–5 is directed toward the lysosome, where the
membrane is degraded, freeing its content. Vesicles can also be
recycled into endosomes and repurposed to trigger signals within
the cell or in surrounding ones (El-Sayed and Harashima, 2013).

Conversely, clathrin-independent endocytosis takes place in
lipid rafts that are enriched in caveolin, which play important
roles as vesicle traffic mediators and signal transducers (Zhong
et al., 2008). The rafts are small, fluid domains of the lipid bilayer
composed of sphingolipids and cholesterol connected to
phospholipids and membrane-associated proteins. The
essential membrane proteins include: 1) proteins attached to
glycosylphosphatidylinositol-anchored proteins (GPI-AP) that
are inserted in the outer leaflet of the membrane, 2) proteins
attached to the inner leaflet of the membrane, and 3)
transmembrane proteins that have a cytoplasmic domain in
addition to an outer domain that is exposed on the cell
surface (Simons and Ikonen, 1997; El-Sayed and Harashima,
2013). In endothelial cells, caveolae-mediated endocytosis takes
place in lipid rafts that are enriched in caveolin and the resulting
vesicles are stabilized by cavin. Scission of the vesicles from the
cell membrane takes place via the action of dynamin (El-Sayed
and Harashima, 2013). A study (Segura et al., 2005) demonstrated
a possible mechanism of uptake for dendritic cell (DC) derived
EXOs into B lymphocytes. Specifically, a decrease in DC-EXO
uptake was observed after a blockage of intercellular adhesion
molecule 1 (ICAM-1), a surface glycoprotein expressed on DC-
EXO membranes, and its corresponding cell surface receptor,
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lymphocyte function-associated antigen 1 (LFA-1) (Walling and
Kim, 2018), suggesting the involvement of these molecules in EV
uptake (Figure 2).

Characterized by its uptake at a smaller scale,
micropinocytosis occurs when an intracellular vacuole of size
less than 0.2 µm (Anzinger et al., 2010) forms from the
invagination of the plasma membrane. EXOs interact with the
surface of the recipient cell via surface receptor molecules and
ligands (Muthu et al., 2021), and micropinocytosis plays an
important role in internalizing EXOs on the cell surface.
Interestingly, micropinocytosis is being seen to play a larger
role in LDL uptake (Anzinger et al., 2010), where it accounts
for 40% of LDL uptake. In addition, it was demonstrated in a
zebrafish model that nanoparticles were able to cross the BBB
with the aid of micropinocytosis uptake (Zhao et al., 2020).
Hence, EXOs encapsulating nanoparticles can pave routes
toward nanoparticle drug delivery across the BBB via
micropinocytosis uptake.

In a recent paper, high-resolution electron microscopy
imaging of the BBB in vitro revealed nanovesicles bound to
the brain endothelial plasma membrane surface. These
membrane-bound vesicles appeared to impact the formation of
thin nanotubes in the paracellular space between the brain
endothelial cells. These nanotubes may have a crucial role in
the paracellular space alignment and sealing (Mentor and Fisher
2021). We can speculate that EVs may cross the BBB in
pathological conditions when the BBB permeability is
increased via the altered paracellular pathway involving these
nanovesicles.

2.3 Targeting of Extracellular Vesicles for
Drug Delivery
EVs can carry versatile cargo loads, including both hydrophilic
and hydrophobic drugs, nucleic acids like miRNA, siRNA, and
recombinant proteins, or even solid-state nanoparticles.
Substantial effort has concentrated on developing EXOs as a
drug delivery system as they possess the ability to undergo
modification to improve delivery capacity and targeting
specificity of nanomaterials. An initial report demonstrated
EXO-mediated delivery of siRNA to the mouse brain by
intravenous injection (Alvarez-Erviti et al., 2011). This was
achieved by genetically modifying EV-producing cells to
produce a targeting fusion protein, followed by loading the
EVs with the siRNA cargo. The fusion protein was composed
of Lamp2b, a surface protein found in the membrane of EXOs,
and rabies virus glycoprotein (RVG), a neuronal cell-targeted
protein.

Phosphatidylserine (PS), one of the most common
phospholipids and abundantly found on the surface of EVs
(Pirisinu et al., 2020), is a key player in decreasing EV time in
circulation (Miyanishi et al., 2007). Along with its receptor,
phosphatidylserine receptor (PSR), the PS–PSR complex serves
as a surface marker and is recognized by phagocytes as apoptotic
cells (Hoffmann et al., 2005). Based on this, EVs could be
potentially targeted to phagocytes and used for therapeutic
purposes. For example, EVs carrying this marker and a drug

could be engulfed by brain macrophages thus having a potential
for targeting HIV reservoirs in the brain. When EXOs secreted by
primary oligodendrocytes were exposed to liposomes containing
PS (Fitzner et al., 2011), their uptake via macropinocytosis was
reduced. This was due to competition with the liposomes
containing PS, underscoring a role of PS in EV uptake.
Additionally, it was demonstrated that EXO-PS can facilitate
the recognition and internalization of neuronal EXOs by
microglia (Yuyama et al., 2012).

EVs may have a potential as delivery vehicles or tracking tools
in pathological conditions. In vitro work investigating the
interactions between EXOs and brain endothelial cells under
conditions that mimic the healthy and inflamed BBB in vivo
demonstrated that their transport involved endocytotic processes
(Chen et al., 2016). Transwell assays revealed that luciferase-
carrying EXOs can cross a brain endothelial monolayer under
stroke-like, tumor necrosis factor alpha activated inflamed
conditions but not under normal conditions. Confocal
microscopy demonstrated that EXOs are internalized by brain
endothelial cells through endocytosis, colocalize with endosomes,
in effect primarily utilizing the transcellular route of crossing
(Chen et al., 2016).

Extracellular vesicle-mediated repair of damaged endothelial
cells in an amyotrophic lateral sclerosis (ALS) in vitro model was
demonstrated recently. Human bone marrow endothelial
progenitor cell-derived EVs ameliorated mouse brain
endothelial damage, and this effect appeared to be mediated
via EV uptake into the endothelial cells (Garbuzova-Davis
et al., 2020).

Moreover, EVs derived from rat brain endothelial cells in
combination with tissue plasminogen activator (tPA) were
reported to have a beneficial effect on stroke outcomes by
reducing neurovascular damage. These EVs improved BBB
integrity, reduced infarct volume, and improved neurological
outcomes in rats. Ultrastructural data from TEM images
clearly showed that intravenously administered EVs crossed
the BBB and were internalized by astrocytes and injured
neurons (Li et al., 2021). A recent study also demonstrated
that EXOs can play a protective role when delivering specific
toxic viral proteins into the brain. In a study engineering EXOs
containing HIV-1 Tat (EXO-Tat), Tat neurotoxicity was greatly
reduced both in vitro and in vivo (Tang et al., 2020). EXO-Tat
could reactivate latent HIV-1 infection but neurotoxicity was
inhibited by eliminating Tat’s ability to penetrate the neuronal
cell membrane.

2.3.1 Intranasal Delivery of Extracellular Vesicles
EV drug delivery via the intranasal administration is gaining
popularity due to its ability to easily bypass the BBB and retain
itself at sites of injury better than the intravenous route. Two
cranial nerves, olfactory and trigeminal, innervate the nasal cavity
and provide direct access to the brain (Hanson and Frey, 2008).
More specifically, drug administration via the intranasal route is
narrowed down to intracellular and extracellular pathways
(Crowe et al., 2018). In the intracellular pathway, the drug is
engulfed via endocytosis by olfactory sensory cells, migrates via
axonal transport, and is exocytosed in the olfactory bulb of the
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brain. In the extracellular pathway, the drug translocates through
the tight TJs of the nasal epithelium into the lamina propria,
travels externally along axons via bulk processes into the CNS.

This route of delivery was explored in successful treatment of
brain inflammation induced by administration of
lipopolysaccharide, myelin oligodendrocyte glycoprotein
(MOG)-induced experimental autoimmune encephalitis (EAE)
and in glioma-26 tumor model (Zhuang et al., 2011). Specifically,
antioxidant curcumin was encapsulated in EXOs and delivered
via the intranasal route. Intranasal drug delivery via EXOs was
also applied toward rectifying spinal cord injury (SCI) (Guo et al.,
2019). SCI results in limited axonal growth and function due to
the adult central nervous system neuron’s maladaptive ability to
regenerate from injury. In addition, SCI ensues major
inflammation, myelin-associated inhibitors, glial components,
and major blood loss. While attempts to correct spinal cord
damage via permissive substrate grafting have proven to be
ineffective (Griffin and Bradke, 2020), mesenchymal stem cell-
derived EXOs (MSC-EXO) loaded with PTEN-siRNA were
employed for intranasal administration to target spinal cord
lesions. The PTEN gene normally functions as a tumor
suppressor gene. The results indicated that EXOs migrated to
the injured T10 spinal segment, suggesting a possibility of novel
therapeutic approaches.

2.3.2 Extracellular Vesicles and the Choroid Plexus
The choroid plexus is characterized by its ability to secrete the
majority of the central nervous system’s cerebrospinal fluid
(CSF), which presents potential in emerging methods of drug
delivery. Injection of drugs from the bloodstream is transferred to
the CSF across the choroid plexus, while in the BBB or brain
capillary endothelium, drug is transferred into the interstitial
fluid (ISF) from the blood, due to different endothelial/epithelial
barriers (Pardridge 2011). The blood–CSF barrier is formed by
TJs of the ependymal epithelium lining the ventricles. The
choroid plexus contains many capillaries, but they are leaky
allowing for large volume flow in the brain as opposed to the
capillaries with TJs found within the BBB (Abbott, 2004). When
comparing brain penetration of drugs to CSF penetration, CLogD
is used to measure lipophilicity of certain compounds (Abbott
et al., 2018). It turned out that brain penetration increases as
drugs become more lipid-soluble (increased CLogD), but CSF
penetration significantly decreases with more lipid-soluble drugs
(Abbott et al., 2018). The reason is that the aqueous CSF is less
favorable for lipophylic compounds than the brain, where the
compounds directly meet the lipid cell membranes. In reference
to efflux transporters, such as P-glycoprotein, uptake of substrates
for this transporter is generally closer at any given CLogD in wild-
type mice that contain the P-glycoprotein transporter (Abbott
et al., 2018). In the KO mice where P-glycoprotein is missing,
brain entry is increased because the drug is not effluxed back to
blood. Therefore, the presence of any compound in CSF cannot
be a true measure of its brain level, especially for lipophilic drugs
that interact with efflux transporters (Abbott et al., 2018).

Regarding the role of the choroid plexus in the EV-mediated
brain pathologies, it was previously reported that peripheral
inflammation evoked increased choroid plexus epithelial cell-

derived EVs release at the blood–cerebrospinal fluid (CSF)
interface into the CSF (Balusu et al., 2016). Later, the same
group studied choroid plexus-mediated EV release in AD
pathogenesis. They observed increased EV levels in the CSF of
young transgenic APP/PS1 mice which correlated with high
amyloid beta (Aβ) CSF levels. If they injected Aβ oligomers
into the brain ventricles of wild-type mice, a significant
increase of EVs in the CSF occurred and these EVs originated
from the choroid plexus (Vandendriessche et al., 2021). Recently,
it was also demonstrated that choroid plexus and CSF EVs might
play a role in the pathogenesis of Niemann–Pick type C disease.
Specifically, in NPC1−/−mice, enlarged CSF-EVs were observed.
It turned out that EVs derived from NPC1−/− choroid plexus
explants could induce typical brain pathology like microgliosis
and astrogliosis (Van Hoecke et al., 2021).

2.3.3 Extracellular Vesicle-Based Brain Cancer
Therapy
Several EV-based therapeutic strategies have been employed in
experimental treatment of primary brain tumors, such as
glioblastoma multiforme (GBM). Temozolomide (TMZ), an
alkylating agent used as a first-line adjuvant drug, is at the
frontline of GBM treatment; however, not all forms of GBM
are sensitive to this drug. Because microRNA-9 (miR-9) is highly
expressed in GBM cells that are resistant to TMZ, a strategy has
been explored to deliver anti-miR-9 to TMZ-resistant GBM cells.
This approach successfully sensitized the GBM cells to TMZ
(Munoz et al., 2013).

Another miR, miR-146b, has also been explored as a potential
contributor toward GBM cancer therapy. MiR-146b can inhibit
glioma cell invasion, migration, viability, and expression of EGFR
(Katakowski et al., 2013). In this context, bone marrow stromal cell-
derived EXOs were tested to serve as a vehicle for miR-146b delivery
into GBM cells. Administration of EXOs loaded with miR-146b via
intra-tumor injection resulted in a significant reduction in 9 L
glioma xenograft growth in a rat model (Katakowski et al., 2013).

2.3.4 Combined Extracellular Vesicle-Nanoparticle
Delivery Into the Brain
Inorganic nanoparticles have an overall higher delivery efficiency
compared with nanomaterials from organic origin. This is
expected due to the vast range of tunable properties that
inorganic nanoparticles possess, such as size, controlled release
mechanisms, or active targeting (Patra et al., 2018). To improve
the clinical translation of nanomedicine as an effective treatment
for neurological diseases, it is important to consider these
properties. The delivery efficiency of nanoparticles exhibiting
neutral zeta potentials tends to be higher than that of
nanoparticles with positive or negative zeta potentials. For a
nanoparticle to efficiently reach the targeted tumor site, it
must selectively interact with tumor cells while avoiding
interaction with other cell types. If the designed nanoparticles
exhibit a negative zeta potential charge, they may be repelled from
the negatively charged tumor cell membrane, for example.
Conversely, designing a positively charged surface for
nanoparticles may allow for better interaction with the tumor
cells, but may increase interaction with unwanted cell types
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(Gumustas et al., 2017). Furthermore, delivery methods, such as
active targeting and passive targeting, are also considered. In
passive targeting, nanoparticles take advantage of the enhanced
permeability retention (EPR) effect, where they cross the tumor
vascular membrane through intercellular gaps and undergo a
longer retention period due to the impaired lymphatic drainage of
the tumor (Shi et al., 2020). Alternatively, active targeting is a
more efficient targeting method, which relies on attaching
targeting ligands to the surface of nanoparticles. This method
potentially reduces delivery time of nanoparticles, which
decreases the risk of potential phagocytosis from immunogenic
cells and enhances binding specificity, since the ligands in the
nanoparticle surface are functionalized to target the
corresponding receptors in the tumor site (Attia et al., 2019).

Similar approaches using EVs in combination with nanoparticles
can be applied to the field of brain cancer. For example, EVs can be
genetically modified to produce a fusion protein containing gelonin,
a cancer targeting protein (Cheng et al., 2018). Following this
modification, EVs can be loaded with nanoparticles such as iron
oxide, gold nanoparticles, or zinc oxide. Iron is used in various
magnetic applications because it contains four unpaired electrons in
its d orbital that contribute to its magnetic potential. However, it is
commonly used in the form of iron oxide because it is more stable
than pure iron. Iron oxide is also biocompatible and was considered
nontoxic to the human body, facilitating its use in biomedical
applications (Teja and Koh 2009). However, iron oxide
nanoparticles can also have some toxic effects involving oxidative
stress (Mahmoudi et al., 2012; Soenen et al., 2012). When
administered intranasally, they evoked oxidative stress and
microglial activation in the olfactory bulb, hippocampus, and
striatum (Kumari et al., 2013). In a rat model, these iron oxide
nanoparticles induced oxidative stress, inflammation, and apoptosis
in neurons (Kim et al., 2013). Once iron oxide is delivered to the
cancer cell, it can inducemagnetic hyperthermia or it can serve other
purposes, such as magnetic resonance imaging (MRI) and
photodynamic therapy (Estelrich and Busquets, 2018). Loaded
inside EVs, gold nanoparticles can also serve as agents of
magnetic resonance imaging (Khongkow et al., 2019). Zinc oxide
nanoparticles encapsulated inside EVs can also be efficiently
internalized by cancer cells, and particularly, may trigger
apoptosis (Bai et al., 2017).

3 CHALLENGES OF USING
EXTRACELLULAR VESICLES FOR BRAIN
DRUG DELIVERY
Despite described advantages that expand EVs’ potential clinical
use in cancer and CNS diseases, EV-mediated drug delivery
methods are still at early stages and there are many obstacles
yet to overcome. For example, achieving a large-scale production
of EVs for clinical use is challenging. This process is affected by
limited resources and requires cell culturing, followed by EV
isolation, which potentially causes issues with vesicle purification.
EVs have a complex structure as revealed by proteomic, RNA seq,
and lipidomic studies, which is difficult to control, and they have
the ability to manipulate cell microenvironment. For example, EVs

derived from GBM cells can change the angiogenic phenotype in
brain endothelial cells, increase the proliferation of GBM cells
within the surrounding area, and increase tumor growth as a result
of vesicle internalization. Specifically, these EVs contain angiogenic
proteins, such as angiogenin, FGFα, IL-6, IL-8, TIMP-1, VEGF, and
TIMP-2, and thus stimulate tumor vascularization promoting
tumor growth. The presence of low pH levels in germinating
tumors may facilitate lysis of EVs, leading to increased
bioavailability of intravesicular proteins. In addition,
angiogenesis-promoting proteins, such as angiogenin, require
membrane transport to exert their biological activity, which
could be also facilitated by EVs. Therefore, tumor-derived EVs
may potentially also serve as a targeted product delivery vehicle,
carrying multiple components, including mRNA, miRNA, and
proteins, to communicate genetic information and signaling
proteins to cells within proximity (Skog et al., 2008).

Another important factor to consider is the EV half-life in
different biological compartments. EV blood levels reflect a balance
between secretion and clearance rates (Matsumoto et al., 2020).
After intravenous administration of EVs in a mouse model, EVs
had an estimated half-life of 30min and most EVs were cleared in
6 h (Lai et al., 2014). When crossing the BBB from the blood into
the brain, EV clearance from the blood occurred rapidly
(1.51–7.29min) or slowly, independent of the EVs origin. These
clearance patterns reached a prolonged steady state indicative of
uptake by the periphery and exchange between the circulation and
the peripheral tissues (Banks et al., 2020).

4 CONCLUSION

Although its functional and structural integrity is vital in
maintaining the homeostasis of the brain microenvironment,
the BBB compromises the effectiveness of many CNS
treatments. Among the explored strategies to overcome this
challenge, EVs are becoming increasingly promising candidates
to cross or bypass the BBB by their innate capability to act as
efficient drug delivery vehicles alone or in combination with
nanoparticles. Nevertheless, several obstacles in using EVs for
drug delivery remain to be addressed, including a large-scale
production of EVs for clinical use or the biological impact of their
cargo, which originates from the parent cells.
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