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Biochemical and biophysical cues governing glioblastoma (GBM) progression are complex
and dynamic. Tumor blood vessels, often recognized only by their transport functions, are
more deeply involved in this process. Vessels are involved in tumor immune evasion, matrix
alterations and stem cell stimulation, contributing for tumor treatment resistance and
patients’ poor survival. Given blood vessel complex and dynamic nature, they are hardly
represented in conventional GBM monolayered in vitro models. However, other in vitro
approaches, such as three-dimensional (3D) models, incorporating extracellular matrix
(ECM), malignant and stromal cells, and promoting their communication, can resemble
neovascularization, growing blood vessels in a tumor-like microenvironment. These
models mimic GBM physiological architecture and key biochemical and biophysical
environments, allowing the investigation of the impact of vascularization in tumor
progression. For researchers in neuro-oncology field, 3D vascularized GBM models are
of great interest. They are promising tools to evaluate individual driven neovascularization
and identify mediators involved in those processes. Moreover, they may be used to test
potential anti-GBM therapies targeting blood vessels or influenced by them. This reviewwill
discuss the significance of blood vessels in GBM and review novel 3D pre-clinical vascular
models.
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1 INTRODUCTION

Glioblastoma (GBM) is the most frequent, aggressive and lethal primary brain tumor in adults.
According to theWorld Health Organization, it comprises isocitrate dehydrogenase (IDH) wild-type
tumors presenting microvascular proliferation, or necrosis, or mutated telomerase reverse
transcriptase (TERT) gene promoter, or amplified epidermal growth factor receptor (EGFR), or
aberrant number of entire chromosome 7 or 10 (Louis et al., 2021). Although some studies tried to
find a correlation between individuals age, gender or race and GBM higher incidence, this is still
undefined, for what it seems to affect anyone (Shabihkhani et al., 2017; Bohn et al., 2018).

Standard treatment for newly diagnosed GBM cases includes maximal safe surgical resection
followed by radiotherapy plus concomitant and adjuvant oral-administered temozolomide
chemotherapy. However, despite many research and clinical efforts, GBM standard-of-care
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treatment is still associated with a dismal prognosis, with a
median post-diagnosis survival time of less than 2 years (Tan
et al., 2020).

The evolving understanding of cancer biology has evidenced the
complex, dynamic and heterogeneous nature of the tumor
microenvironment (TME). This is particularly the case in GBM,
in which the TME comprises malignant cells with distinct
proliferation, tumorigenicity and therapy resistance profiles, as
well as various stromal cells, such as astrocytes, macrophages/
microglia, neurons, pericytes and endothelial cells (ECs).
Moreover, these cells are embedded in a dynamically remodeled
extracellular matrix (ECM) composed of non-cellular elements,
like collagen, fibronectin and laminin (Behnan et al., 2019). An
emerging body of evidence indicates that each one of these TME
components is involved in GBM onset and progression, thus
contributing to the poor prognosis of the disease.

High vascularization, or hypervascularization, is one of GBM
main features. Rapid tumor growth leads to oxygen and nutrient
increased requirements, which induces new blood vessel
formation and, consequently, tumor high vascularization. Not
only hypervascularization is directly involved in tumor cell
feeding and survival, but it is also closely related to GBM
invasiveness and progression. GBM invasion regulators are
poorly understood but it is established GBM cells can take
different routes to invade the brain, a major obstacle for
complete surgical resection of the tumor (Montana and
Sontheimer, 2011; Seano and Jain, 2020). These routes include
the white matter tracts, the leptomeningeal space, the brain
parenchyma and the vasculature, typically resulting in
proximal and distant brain tumor recurrence (de Gooijer
et al., 2018). Furthermore, several studies report the
involvement of vasculature in a plurality of tumor-supporting
signaling pathways, not simply related to a transport role. Tumor
vasculature seems to communicate with other tumor
components, as infiltrated immune system cells, glioblastoma
stem cells (GSCs) and the ECM, therefore contributing to the
assembly of the TME and driving tumor progression (Orr and
Eberhart, 2015). In turn, these tumor components also promote
vascularization, to favor malignancy (Das and Marsden, 2013).
Hence, there is a current need to develop 1) novel and more
effective therapies targeting the vascularization signaling
pathways, and 2) a comprehensive representation of GBM
biology in vitro, including tumor cells and representative TME
components, to better assess the efficacy of these novel anti-GBM
therapies before proceeding to in vivo models.

Regarding the representation of GBM biology in vitro, three-
dimensional (3D) in vitro models can incorporate various cell
populations and ECM components, exhibiting a more
physiologically relevant architecture compared with
conventional two-dimensional (2D) in vitro models. Also, 3D
models encourage cell-cell and cell-ECM interactions, without
being as complex and expensive as animal models, respecting the
3Rs policy (Ferdowsian and Beck, 2011; Ruiz-Garcia et al., 2020).
Thus, researchers have invested great efforts in the development
of 3D in vitro models as sophisticated and biomimetic tools for
fundamental biology studies and to assess the preliminary efficacy
of newly proposed therapies.

Given that GBM hypervascularity has been associated with
disease invasion, progression and therapy resistance, the
incorporation of vasculature into 3D GBM in vitro models
brings these systems closer to the native biology of the tumor,
representing the complex crosstalk between tumor cells, tumor-
associated blood vessels, and other non-neoplastic TME
components in a more realistic manner. This opens avenues to
study the behavior of the GBM perivascular niche in detail,
understanding how vascular networks contribute to the
aggressiveness and invasive profile of the tumor.

In 2015, Orr et al. summarized the different roles of tumor-
related blood vessels, including the conventional nutrient and
oxygen delivery to tumor cells, but also less conventional roles,
such as the maintenance of a stem cells’ niche and the promotion
of TME immunosuppression (Orr and Eberhart, 2015). More
recently, in 2020 and 2021, Soubéran et al. and Gómez-Oliva
et al., respectively, reviewed established GBM in vitromodels and
their usefulness to study tumor biology and to test new drugs
(Gómez-Oliva et al., 2020; Soubéran and Tchoghandjian, 2020).
Here, we will discuss the roles of blood vessels, specifically in
GBM, how in vitro models have been used to represent the GBM
vascularized tissue and their convenience to better understand
neovascularization processes, find new therapeutic targets, study
the tumor behavior in the perivascular niche, and test the
potential of novel therapies in a biological-like environment.

We will briefly summarize the features of GBM vasculature,
neovascularization processes and the contribution of vasculature
to malignancy. In addition, we will address strategies of in vitro
modelling of the GBM vascularized tissue. First, we will describe
how the vasculature has been incorporated in spherical-, scaffold-
, 3D-bioprinting- and microfluidic-based models. Then, we will
elucidate the significance of this modelling of the tumor’s
perivascular tissue in cancer biology studies and in therapy
screening.

2 GLIOBLASTOMA VASCULAR
COMPARTMENT

In general, human brain vasculature includes a layer of ECs,
connected by cell-cell junctions, its basement membrane, shared
with pericytes and astrocytes’ endfeet, and microglia in the
perivascular space - the known neurovascular unit (Arvanitis
et al., 2020; Guyon et al., 2021). This unit integrates the blood-
brain barrier (BBB), a physiologic structure present in brain
microvessels and capillaries, responsible for cerebral blood
flow regulation (Kane, 2019). By establishing a highly selective,
semi-permeable interface between the peripheral circulation and
the central nervous system, BBB protects the latter from
bloodborne xenobiotics and other potentially harmful
molecules (Daneman and Prat, 2015).

Angiogenesis, firstly described in brain tumors in 1976, is the
main process involved in GBM vascularization (Brem, 1976). As
previously mentioned, the rapid tumor growth, and inherent
need to circumvent the limited diffusion of oxygen and nutrients,
activates tumor cells’ expression and release of pro-angiogenic
factors, such as the vascular-endothelial growth factor (VEGF)
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and basic fibroblast growth factor (bFGF). These molecules
promote ECs’ proliferation and migration signaling cascades,
along with ECM remodeling, leading to the sprout of new
blood vessels from pre-existing ones (Folkman, 1971). The
angiogenic process has such a significant role in GBM survival
and progression, which pushed the approval of anti-angiogenic
strategies to its treatment, including bevacizumab (Avastin®), a
humanized monoclonal antibody, capable of binding VEGF and
hinder angiogenesis (Cohen et al., 2009). Unfortunately, its
clinical benefits are transient, followed by delayed tumor
progression and patient death (de Groot et al., 2010; Gilbert
et al., 2014).

In the last two decades, besides angiogenesis, four other
mechanisms were identified as key in GBM vascularization: 1)
vessel co-option, 2) vasculogenesis, 3) tumor cell
transdifferentiation and 4) vascular mimicry [these
mechanisms were reviewed elsewhere in detail (Hardee and
Zagzag, 2012; Seano and Jain, 2020)]. Briefly, vessel co-option
results from the ability of GBM cells to move towards and along
blood vessels, attaching to their abluminal surface and replacing
astrocytes and pericytes (Zhang et al., 2020). Through vessel co-
option, the tumor ensures its own unlimited access to oxygen and
nutrients, while facilitating invasion in the central nervous system
by vascular routes (Griveau et al., 2018; Seano and Jain, 2020).
Vasculogenesis involves the recruitment of circulating bone
marrow derived cells, the EC progenitors, by the tumor. EC
progenitors are then able to differentiate into ECs and assemble a
primary vascular network in the TME (Lyden et al., 2001; De
Palma et al., 2005). The transdifferentiation process, firstly
reported in 2011 by Soda et al., is the differentiation of GSC
tumor initiating cells overexpressing ETS variant 2 (ETV2),
present in hypoxic tumor areas, into tumor-derived ECs that
start to assemble tubular structures for blood flow (Soda et al.,
2011; Zhao et al., 2018). And, lastly, tubular vasculogenic mimicry
is the process by which GSCs differentiate into mural-like tumor
cells, such as vascular smooth muscle cells or pericytes, to start to
assemble vascular tubular structures for blood flow,
independently of the presence of ECs (El Hallani et al., 2010;
Scully et al., 2012).

Apart from vasculogenesis, all other mechanisms are
independent on pro-angiogenic signals (Leenders et al., 2004;
Yue and Chen, 2005; Soda et al., 2011). For instance, in viral-
vector mediated GBM mouse models, blocking VEGF, bFGF and
the VEGF receptor (VEGF-R) increased the number of
transdifferentiated ECs (Soda et al., 2011). In other words,
VEGF, bFGF and VEGF-R blocking did not prevent
neovascularization because, despite preventing angiogenesis, it
was not able to disturb the transdifferentiation process.

Taking in consideration these mechanisms, it is clear that the
GBM vascular compartment includes not only conventional
neurovascular unit elements, but also tumor-derived ECs
(TDECs) or mural-like tumor cells, as well as multiple
molecular players controlling vascularization, as VEGF, bFGF
or VEGF-R. This partly explains why neovascularization
alternative mechanisms have been suggested as an explanation
for tumor resistance to currently approved anti-angiogenic
therapies (Kuczynski and Reynolds, 2020).

Independently of the underlying process, hypervascularity is
correlated with a worse GBM prognosis and, even though tumor
cells appear to control blood vessels to their benefit, it is described
a multidirectional interplay between vasculature, tumor cells and
other TME elements. As tumor cells and TME adjust and
promote vascularization, the vascular compartment influences
tumor cells’ behavior and shapes the TME to foster disease
progression. Thus, an accurate representation of the multiple
TME elements is essential for fundamental biology studies,
aiming to understand tumorigenesis driving pathways, and for
the development and testing of novel and potentially effective
GBM-targeted therapies. In addition, given the physiological
function of blood vessels and that many approved and under-
development therapies are for intravenous administration, there
is a driving force to shift from static to dynamic tumor
vasculature representations in vitro. The latter may even be
used as a tool for drug distribution studies in pre-clinical research.

3 GLIOBLASTOMA VASCULATURE AND
TUMOR MICROENVIRONMENT:
MECHANISMS GOVERNING TUMOR
INITIATION, GROWTH AND THERAPY
RESPONSE

Growing evidence about tumor-associated vasculature, in
particular concerning astrocytes and ECs, indicates that
these cells provide signaling cues to ensure tumor
progression and survival. In fact, GBM activates astrocytes
into reactive astrocytes, which, in turn, express and release
high levels of cytokines, as interleukin 6 (IL-6) and connective
tissue growth factor (CTGF), known to trigger the activation of
oncogenic factors and to ease tumor invasion (Edwards et al.,
2011). They also stimulate tumor cells’ proliferation through
stromal cell-derived factor 1 (SDF-1) and astrocyte elevated
gene 1 (AEG-1). As a matter of fact, reactive astrocytes-derived
signals are of such importance for tumor survival that AEG-1
inhibition is reported to induce programmed tumor cell death
and reduce the tumor volume in animal models (Zou et al.,
2016).

Endothelin is another major mediator in the crosstalk
between vasculature and tumor cells. Both GBM-associated
ECs and reactive astrocytes overexpress endothelin, whereas
glioma cells express its receptors, endothelin receptor A (ETA)
and endothelin receptor B (ETB). Through binding to ETA or
ETB, endothelin activates the AKT and MAPK signaling
pathways in tumor cells, promoting chemotherapy
resistance (Kim et al., 2015). Also, interestingly, astrocytes
produce and secrete L-glutamine, addressing key tumor
metabolic needs (Guan et al., 2018). Therefore, in general,
blood vessel cells actively participate in the tumorigenesis
process.

On the other hand, recent experimental studies report that
vasculature can be intimately involved in environmental changes
to create an ideal TME. In the following Sections 3.1–3.3, the
communication between GBM blood vessels and GSCs, immune
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system cells and ECM will be described in detail, as well as its
consequences in tumor progression.

3.1 Glioblastoma Vasculature Shelters and
Regulates Glioblastoma Stem Cells
GSCs are among the multiple malignant cellular subpopulations
of GBM. GSCs share some characteristics with neural stem cells,
like being able to self-renewal, express stemness markers (e.g.,
Nestin or Olig2) and undergo multilineage differentiation. They
are known to be intrinsically resistant to radiotherapy and
chemotherapy, contributing to intratumor heterogeneity,
invasion and recurrence after treatment (Liu et al., 2006; Shi
et al., 2018; Mazor et al., 2019; Bhaduri et al., 2020).

The intimate relationships between tumor vasculature and
GSCs have been recognized and studied for more than a decade.
In 2007, Calabrese et al. reported the presence of GSCs around
tumor capillaries in patient samples, which focused the attention
of researchers in the connection between GSCs and blood vessels
(Calabrese et al., 2007). Since then, several studies found that the
narrow interaction between vasculature and GSCs is essential to
support GSCs’ tumor propagating ability. Moreover, GSCs
themselves stimulate blood vessel development, which justify
their residence mostly in perivascular niches (Brooks and
Parrinello, 2017).

Tumor blood vessels and GSCs crosstalk can be established by
direct cell-to-cell contact or the release of soluble factors. For
example, tumor vasculature ECs assist GSCs self-renewal and
maintenance through the expression of Notch ligands, specifically
the jagged canonical Notch ligand 1 (JAG1) and delta like
canonical Notch ligand 4 (DLL4), which interact with the
GSCs Notch receptor (Zhu et al., 2011). In fact, the
knockdown of tumor-associated JAG1 and DLL4 in ECs
compromises GSCs-derived tumor development, which proves
the relevance of Notch signaling in the tumorigenic capacity of
GSCs (Zhu et al., 2011). Nitric oxide (NO) is another important
regulator in this crosstalk (Charles et al., 2010). It is known that
GBM-associated ECs express high levels of endothelial NO
synthase (eNOS). NO released from the endothelial layer was
shown to diffuse into adjacent GSCs, thus regulating the ability of
these cells to form the tumor tissue in vitro and in vivo (Charles
et al., 2010). Similarly, ECs-derived interleukin 8 (IL-8) has also
been suggested as a mediator of GSCs proliferation andmigration
(Infanger et al., 2013). The Sonic hedgehog (Shh) protein is
heavily produced and released from neovascular ECs and
reactive astrocytes. Through binding to its receptor on GSCs
surface, Shh activates the hedgehog pathway, known to maintain
stem cells self-renewal (Becher et al., 2008; Yan et al., 2014). Over
the years, evidence has also shown the involvement of fibroblast
growth factor (FGF) in GSCs maintenance, supported by ECs.
GBM cells in the presence of FGF can acquire a GSC phenotype,
evidencing the contribution of tumor ECs in the maintenance of
GSC pools (Fessler et al., 2015).

In turn, GSCs also contribute to the maintenance and
expansion of the vascular compartment. GSCs can differentiate
into tumor-derived ECs or mural-like ECs, increasing tumor
vascularization (Soda et al., 2011; Scully et al., 2012). Moreover,

GSCs sustain continuous angiogenesis by VEGF secretion (Bao
et al., 2006). Therefore, it seems to be established a self-sustained
positive feedbackmechanism between GSCs and tumor-associated
ECs - GSCs induce EC proliferation and survival, while the latter
expands the perivascular niche, where GSCs reside, and ensure
their maintenance (Figure 1).

GSCs are also present in hypoxic niches, far from perivascular
niches. In the tumor bulk, hypoxia regulates stemness through
hypoxia inducible factor 1-alpha (HIF-1α) and 2-alpha (HIF-2α)
stabilization, an upstream transcription factor of self-renewal,
dedifferentiation and pro-angiogenic genes (Li et al., 2009; Qiang
et al., 2012). The knockdown of HIF-1α or HIF-2α in GSCs results
in the loss of stem cell-like characteristics, affecting the expression
and secretion of VEGF (Li et al., 2009; Méndez et al., 2010).
Overall, this strongly supports the role of GSCs, both from
perivascular and hypoxic niches, in tumor neovascularization.

3.2 Glioblastoma Vasculature Promotes
Tumor Immunosuppressive Environment
As previously described, the GBM microenvironment harbors
both malignant and non-malignant cells, including immune
system cells. Various immune cell types can be found in
different tumors, as regulatory T cells (Treg) or myeloid-
derived suppressor cells (MDSCs) but, particularly in GBM
case, microglia/macrophages are the most frequently present,

FIGURE 1 | Glioblastoma stem cells (GSCs) and endothelial cells (ECs)
communication. The communication is bidirectional and occurs either by
direct cells contact or by paracrine signaling. ECs play a critical role in the
survival and self-renewal of GSCs via jagged canonical Notch ligand 1
(JAG1), delta like canonical Notch ligand 4 (DLL4), nitric oxide (NO), interleukin
8 (IL-8), sonic hedgehog protein (Shh) and fibroblast growth factor pathway
(FGF), among others. In turn, GSCs release vascular endothelial growth factor
(VEGF) promoting ECs proliferation.
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representing about 30–40% of all tumor cell content (Vega et al.,
2008; Shang et al., 2015; Zhang et al., 2016).

In the tumor site, macrophages can undergo different
activation processes, acquiring a wide spectrum of phenotypes,
depending on the surrounding environment (Fu et al., 2020). This
activation is highly complex and dynamic, and evidence indicates
that GBM-associated macrophages (GAMs) maintain a chronic
inflammation in an initial phase, through the release of tumor
necrosis factor alpha (TNFα), IL-6 and interferon gamma (INF-
γ), creating a mutagenic environment favorable to tumor
progression (Cassetta and Pollard, 2018). Then, GAMs
preferentially differentiate into an anti-inflammatory
phenotype (Mantovani et al., 2002). Anti-inflammatory or M2
macrophages also support tumor survival by suppressing anti-
tumor immunity, namely cytotoxic T cells inflammatory
responses (Hambardzumyan et al., 2016).

Tumor cells and tumor vasculature closely regulate GAMs,
from their recruitment to their differentiation, maintenance and
immunosuppressive role. Apparently, glioma cells initiate this
process. They are major sources of SDF-1, glial cell derived
neurotrophic factor (GDNF) and colony stimulating factor 1
(CSF-1), stimulating monocyte diapedesis and differentiation
into M2 macrophages (Wang et al., 2012; Ku et al., 2013;
Pyonteck et al., 2013; Sielska et al., 2013). In addition,
endothelial cells release high levels of IL-6, which induces
macrophage pro-tumoral phenotype, via HIF-2α activation
(Wang et al., 2018). Therefore, GAMs concentrate mainly in
tumors’ perivascular and perinecrotic niches (Zeiner et al., 2019).

Once in the TME, GAMs display a pro-angiogenic profile
(Tamura et al., 2019). In fact, the most important angiogenesis
inducer – VEGFA – is highly expressed by these cells. Also,
GAMs’ enzymes, including matrix metalloproteinase 9 (MMP-9)
and urokinase-type plasminogen activator (uTPA), drive ECM
degradation, whereas other GAMs’ enzymes, such as thymidine
phosphorylase (TP), drive pericyte and EC migration (Hotchkiss
et al., 2003; Piao et al., 2005; Du et al., 2008; Riabov et al., 2014;

Zhu et al., 2017). Therefore, macrophage recruitment and
differentiation contribute to neovascularization and,
consequently, for tumor growth and invasion. Overall, this
suggests that tumor-associated ECs and GAMs support each
other in the TME, and both support tumor growth (Figure 2).

As previously mentioned, GAMs impair cytotoxic T cell anti-
tumor responses. GAMs present high levels of ectonucleotidase
CD39, which cooperates with CD73 generating adenosine and,
consequently, driving T cell immunity suppression (Takenaka
et al., 2019). However, GBM is known as a “cold tumor,”
meaning it presents low levels of T cells. This might happen
because GAMs prevent T cell transmigration and tumor
infiltration by interacting with ECs - pro-angiogenic factors
derived from GAMs lower the expression of adhesion molecules
on the surface of ECs. This mechanism, known as endothelial
anergy, reduces the intercellular levels of adhesion molecule 1
(ICAM-1) and vascular adhesion molecule 1 (VCAM-1), essential
for T cell transmigration and tumor accumulation, thus protecting
the tumor from any potential immune attack (Wang et al., 2021)
(Figure 2).

3.3 Glioblastoma Vasculature Supports
Extracellular Matrix Remodeling,
Contributing to Tumor Onset, Progression
and Continuous Angiogenesis
For a long time, ECM was seen as a purely structural tumor
component. However, since the 1990s, evidence began to emerge
that ECM is closely involved in cellular migration, differentiation,
survival and invasion, contributing to tumor development and
expansion (Bilozur and Hay, 1988; Koochekpour et al., 1995;
Bouterfa et al., 1997). Healthy brain ECM has an absolutely
unique composition, with relatively small amounts of proteins,
as collagen or fibronectin, and greater content of
glycosaminoglycans, such as hyaluronic acid, which may or
may not be bound to proteins, forming proteoglycans (Novak

FIGURE 2 | Glioblastoma-associated macrophages (GAMs) and endothelial cells (ECs) communication. This communication regulates both macrophage
infiltration/polarization in the tumor and ECs behavior. Through interleukin 6 (IL-6), ECs assist macrophages pro-tumoral phenotype while macrophages vascular
endothelial growth factor A (VEGFA), metalloproteinase 9 (MMP9), urokinase-type plasminogen activator (uTPA) and thymidine phosphorylase (TP) drive ECs
proliferation, expansion and lower ECs intracellular adhesion molecule 1 (ICAM) and vascular adhesion molecule 1 (VCAM) levels, lowering their function as entry
points for immune cells into the tumor. In addition, GAMs ectonucleotidase 39 (CD39) and 73 (CD73) convert adenosine triphosphate (ATP) and adenosine
monophosphate (AMP) into adenosine, which leads to T cell dysfunction.
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and Kaye, 2000). This nature provides brain an amorphous soft
structure, termed as perineural net (Mouw et al., 2014).

In contrast to what happens in healthy brain, brain tumors
trigger profound alterations in the amount and deposition of
ECM, its composition (particularly upregulation of collagen,
fibrin and laminins), organization and post-translation
modifications, which lead to the development of a less
amorphous, denser and more rigid structure, necessary for
disease establishment and progression (Belousov et al., 2019).

Both GBM malignant and stromal cells are important for the
above-described ECM remodeling. Through an increased
production of hyaluronic acid, laminin, collagen IV and VI or
fibronectin, these cells create a more compact and denser ECM
(Delpech et al., 1993; Bouterfa et al., 1999; Kawataki et al., 2007;
Mammoto et al., 2013; Henke et al., 2019). In addition, these cells
upregulate receptors and enzymes responsible for cell-matrix
connections, which together with the tumor remodeled ECM,
seems to facilitate tumor invasion, migration, angiogenesis and
overall growth (Henke et al., 2019).

For instance, both tumor and tumor-related ECs are known to
produce laminin α2 to a large extent (Kawataki et al., 2007). On its
own, an increase in ECM laminin content, and consequently, in
tumor matrix density, hampers drug diffusion and radiation
penetration, protecting tumor against multiple treatments
(Henke et al., 2019). In addition, direct contact between
extracellular laminin and its integrin receptors, on GBM cells
and GSC surface, is involved in tumor cell migration and
radiotherapy resistance, respectively (Lathia et al., 2012; Ellert-
Miklaszewska et al., 2020). Therefore, tumor-associated blood
vessels enable tumor proliferation and resistance through their
contribution to ECM abundance and stiffness.

According to previous studies, GBM core and margin stiffness
is about ten times greater than normal brain tissue stiffness (1:
0.1 kPa) (Miroshnikova et al., 2016). Besides creating a physical
barrier, some studies reveal that ECM hardness dictates GBM cell
behavior and angiogenesis. In response to stronger ECM forces,
through mechanosensing and mechanotransduction processes,
GBM cells change their size, shape, signaling pathways and
density. For instance, in vitro studies showed that tumor cell
compactness induces the production of collagen IV and VI, and
the expression of lysyl oxidase, supporting an even greater ECM
stiffness. This compactness, in turn, incites the expression of pro-
angiogenic factors, leading to tumor vascularization (Mammoto
et al., 2013).

As mentioned before, angiogenesis is a two-step process
involving EC activation followed by endothelial cell sprouting,
when ECs proliferate and migrate to assemble new blood vessels.
During migration, ECs recognize and specifically bind to ECM
ligands through integrin receptors, generating the necessary
traction and cytoskeleton reorganization for this movement
(Wang et al., 2005). Also, EC movement requires prior
degradation of the vascular basal membrane and ECM
remodeling through metallo, serine and cysteine proteases.
uTPA, activator of proteolytic enzyme urokinase-type
plasminogen (uTP), MMP9 and cathepsin B are highly
expressed in GBM (Forsyth et al., 1999; Konduri et al., 2001;
Rustamzadeh et al., 2003). ECM breakdown promoted by these

proteases results in release of VEGF, FGF and epidermal growth
factor (EGF), previously bound to ECM, and of matrix
components that become free to interact with GBM cell
integrins and activate MEK and PI3K signaling pathways,
inducing the synthesis and/or activation of pro-angiogenic
molecules (Lakka et al., 2005). Thus, tumor-induced ECM
remodeling works as an angiogenesis activator signal, either by
allowing EC sprouting, or by contributing to EC proliferation.

All these observations imply an obvious and close relationship
between GBM blood vessels, ECM and tumor aggressiveness.
Blood vessels contribute to the formation of regions of remodeled
ECM, therefore promoting tumor proliferation, migration and
invasion; on the other hand, the remodeled ECM supports
continuous angiogenesis (Figure 3).

4 TISSUE ENGINEERING STRATEGIES TO
MODEL GLIOBLASTOMA VASCULARIZED
TISSUE IN VITRO
Over the past years, multiple in vitro and in vivo systems have been
used to study GBM and to test the efficacy of novel treatments.
Among these in vitro systems, monolayer or 2D cell cultures are
classical and well-established approaches, routinely used for the
maintenance and growth of animal or human immortalized cell
lines and patient-derived cells. Immortalized cell lines are easily
manipulated in vitro and quickly reach high cellular densities
under culture conditions, allowing the screening of anti-tumor
drugs with faster and more reproducible outcomes (Gómez-Oliva
et al., 2020). On the other hand, patient-derived primary cultures
take longer time to grow, but they preserve better the tumor
genomic profile and heterogeneity, allowing the investigation of
personalized therapies (Sottoriva et al., 2013; Jacob et al., 2020). For
these reasons, the use of 2D cell cultures in the fields of biomedical
and pharmaceutical research has been preferentially chosen (Ledur
et al., 2017). Nevertheless, there are several caveats regarding these
systems, such as successive cell passages that lead to phenotypic
changes and selection of cells with greater proliferative abilities,
and poor correlation with in vivo cell-cell/cell-ECM interactions
and tumor heterogeneity. Therefore, even if these models are used
as the first tool for preclinical screening, it would be advantageous
to combine them with more powerful and biologically relevant
models (Allen et al., 2016; Gómez-Oliva et al., 2020).

Regarding in vivo models, xenograft, genetically engineered
and viral-vector mediated transduction models, are the most
frequently used GBM pre-clinical models (Miyai et al., 2017;
Hubbard et al., 2018). However, although these systems
generate complex tumors, enabling the screening of drugs in
an individual basis and study of the mechanisms of GBM drug
resistance, they are still far from flawless. Interspecies
differences and the lack of competent immune system limit
their predictive value, while cost, time consumption and ethical
issues limit their applicability (Rangarajan and Weinberg, 2003;
Reduce Refine Replace, 2010).

Thus, there is a current effort to develop 3D sophisticated in vitro
systems able to overcome the aforementioned limitations of in vivo
models and become good complementary models for GBM
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research. Attempts to engineer and improve in vitro models drove
the development of platforms that incorporate specific biochemical
and biophysical TME signals and recapitulate the communication
between tumor cells, surrounding vasculature, stromal cells and
ECM components. In fact, for instance, it has been shown that
angiogenesis occurring in 2D systems is significantly different from
angiogenesis in 3D (Cui et al., 2018). Since it is now widely accepted
that GBM progression, aggressiveness and invasion is highly
dependent on neovascularization, 3D models recapitulating the
vascularized tumor are expected to be valuable tools in
therapeutic targets research and drug screening.

Up next, the progress of vascularized GBM in vitromodels will
be outlined. A brief description of each in vitromodel along with
their principal achievements is presented in Table 1.

4.1 Spherical Models—“Free” or
Matrix-Supported Spheroids
Spheroids are a group of cells that grow together in a spherical,
non-adherent structure. Their multi-dimensional structure
creates better conditions than classic 2D models to replicate
physiologic-like cell-cell and cell-matrix interactions, pH
gradients, oxygen availability and dynamic metabolic demands
of tumors, representing the multiple in vivo tumor regions, from
the senescent core to the proliferative periphery. Furthermore,
several studies comparing tumor cell behavior in 2D and 3D
systems revealed that spheroids better recapitulate the tumor
genetic expression and chemotherapy resistance, often observed
in vivo (Lin and Chang, 2008). From a technical point of view,
they are inexpensive, easy to maintain and to manipulate (Lu and
Stenzel, 2018). Thus, spheroid models have been extensively
investigated and used to mimic human tumors, including GBM.

In the literature, the most frequently reported GBM spheroids
comprise only one human or one mouse cell line and are used to
test the tumor penetration ability and cytotoxic activity of novel
therapies, including cutting-edge nanosystem-based therapies. For
instance, in a recent work, Broekgaarden et al. used human derived
U87MG spheroids and mouse derived F98 spheroids to test the
tumor penetration and radiotherapy effectiveness of surface-
functionalized gold nanoparticles (Broekgaarden et al., 2020).
While these models are advantageous when compared with
monolayered cell cultures, they still lack relevant TME
elements, and do not mimic perivascular regions.

To overcome these weaknesses, other approaches are based on
spheroids assembled with both tumor and endothelial cells,
subsequently incorporated into hydrogels or biofilms made of
Matrigel or human derived ECM components, as collagen,
hyaluronic acid or fibrin. These systems allow better replication of
the natural tumor tissue organization (Pan et al., 2019). Hydrogels
generate a native tumor-like environment, allowing EC sprouting and
tumor cell invasion, critical for brain tumor angiogenesis research
(Rustad et al., 2012). In line with this, spheroids of GBMprimary cells
and EC embedded in ECM gels were recently reported (Table 1)
(McCoy et al., 2019; Tatla et al., 2021b). In these models both EC and
GBM cell migration was observed, which confirms models are
appropriate for angiogenesis and GCS transdifferentiation study
(McCoy et al., 2019; Tatla et al., 2021b). Through biochemical
analysis of their spheroid model, McCoy et al. found that
endothelial cells stimulate GBM cell migration, via IL-8 secretion.
Furthermore, the model developed by McCoy et al. was useful to test
potential GCS transdifferentiation inhibitors (McCoy et al., 2019).

Despite the benefits of these spherical models, they are limited
by lack of the blood flow shear stress, which Plays an important
role in in vivo neovascularization

FIGURE 3 | -Glioblastoma extracellular matrix (ECM) and endothelial cells (ECs) communication drives matrix remodeling and angiogenesis. ECs produce laminin,
collagen and fibronectin increasing ECM density and, consequently, pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), production/release from
tumor cells. Additionally, tumor-derived ECM breaking though cathepsin B, metalloproteinase (MMP9) and urokinase-type plasminogen activator (uTPA) releases
anchored pro-angiogenic factors, as VEGF, fibroblast growth factor pathway (FGF) and epidermal growth factor (EGF), promoting vascular proliferation.
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TABLE 1 | - 3D vascularized glioblastoma in vitro models.

Model type Tumor cells Stromal cells Matrix-like
material

Perfusion
capacity

Accurate BBB
representation?

Main achievements Described applications Main limitations References

Spherical
models

Human glioblastoma
cell line (NCH82) and
patient-derived
glioblastoma cells

HUVECs and human
dermal fibroblasts

Fibrinogen No No, lacks pericytes,
astrocytes, and
microglia cells

Recapitulates tumor-
associated
vascularization

-Study of tumor
vascularization
mechanisms

-Lack of mechanical
stimuli, as blood flow
shear stress

Tatla et al.
(2021a)

Patient-derived
glioblastoma cells

Immortalized human
cerebral
microvascular ECs

Collagen No No, lacks pericytes,
astrocytes, and
microglia cells

Recapitulates
vascular-induced
GCSs invasion

-Screening of tumor
vascularization inhibitors

McCoy et al.
(2019)

3D-brioprinted
models

Patient-derived
glioblastoma cells

HUVECs Glycidyl
methacrylate,
hyaluronic acid
and gelatin
methacrylate

No No, lacks pericytes,
astrocytes, and
microglia cells

Recapitulates tumor
biophysical properties
and its impact on
tumor-associated
vascularization

-Study of ECM impact on
tumor vascularization
mechanisms

-Model developed
limited by the access
to 3D bioprinters
and their inks

Tang et al.
(2021)

Human glioblastoma
cell line (U87)

HUVECs and normal
human lung
fibroblasts

Gelatin, alginate
and fibrinogen

No No, lacks pericytes,
astrocytes, and
microglia cells

Recapitulates tumor-
associated
vascularization and its
impact on tumor cells

-Study of tumor
vascularization
mechanisms

-Downscaling is
hindered by
currently available
equipment’s
resolution

Han et al.
(2020)

-Screening of tumor
inhibitors

Patient-derived
glioblastoma cells

HUVECs Collagen Yes No, lacks pericytes,
astrocytes, and
microglia cells

Recapitulates
vascular-induced
tumor invasion

-Study of tumor invasion
and therapeutic resistance
mechanisms in the
perivascular space

Ozturk et al.
(2020)

Human glioblastoma
cell line (U87)

HUVECs Pig brain
decellularized
ECM and silicone

No No, lacks pericytes,
astrocytes, and
microglia cells

Recapitulates tumor
biophysical properties

-Study of tumor invasion
and therapeutic resistance
mechanisms in the
perivascular space

Yi et al.
(2019)

Glioblastoma-
on-a-chip

Human glioblastoma
cell line (U87)

HUVECs, normal
human lung
fibroblasts and
human placenta
pericytes

Fibrinogen and
collagen

Yes No, lacks astrocytes,
and microglia cells

Recapitulates tumor-
associated
vascularization

-Study of tumor
vascularization
mechanisms

-Limited control over
models’ size and
cells distribution

Kim et al.
(2013)

Human glioblastoma
cell lines (U87, U251,
U373, LN229, T98G)
or patient-derived
glioblastoma cells

HUVECs, normal
human lung
fibroblasts

Fibrinogen and
collagen

Yes No, lacks pericytes,
astrocytes, and
microglia cells

Recapitulates tumor-
associated
vascularization

-Study of tumor
vascularization
mechanisms

- Model developed
limited by the access
to pumps, valves
and other pieces of
equipment
-Difficult scale-up

Amemiya
et al. (2021)

- Screening of tumor
vascularization inhibitors

Adult mice neural stem
cells overexpressing
H-Ras(V12)

HUVECs Collagen No No, lacks pericytes,
astrocytes, and
microglia cells

Recapitulates
vascular-induced
GCSs invasion

-Study of tumor invasion
and migration mechanisms
in the perivascular space

Chonan et al.
(2017)

Patient-derived
glioblastoma cells

HUVECs Fibrinogen and
Matrigel

No No, lacks pericytes,
astrocytes, and
microglia cells

Recapitulates
vascular-induced
GCSs invasion

-Study of tumor
vascularization
mechanisms

Truong et al.
(2019)

- Screening of tumor
vascularization inhibitors

Rat and human
glioblastoma cell lines
(C-6, U251)

- Collagen Yes No, lacks ECs,
pericytes,

Recapitulates both
tumor perivascular
and hypoxic niches

-Study of tumor invasion
and migration mechanisms

Ayuso et al.
(2017)

(Continued on following page)
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Some researchers described the association of homogeneous
tumor spheroids with BBB models using Transwell® systems,
where both are separated by a permeable membrane. For drugs
that need to cross the BBB before tumor internalization, these
models allow BBB permeability and tumor penetration/toxicity
testing in a more biologically relevant manner, but they do not
represent the GBM vascularized tissue (Belhadj et al., 2017;
Marino et al., 2019; Sherman and Rossi, 2019). Nevertheless,
in vitro studies conducted with BBB models co-cultured with
GBM cell monolayers in Transwell® systems showed that tumor
cells drive EC uncontrolled proliferation and disorganization, like
the native focal sites of BBB disruption in GBM scenarios
(Mendes et al., 2015). Therefore, there is the possibility that
these alterations also occur in BBBmodels co-cultured with GBM
spheroids, mimicking tumor and tumor-associated BBB
separately, but more accurately.

4.2 Scaffold-Based Models
Cell cultures supported by biologically relevant matrices can
create scaffold-based in vitro models, that attempt to mimic
tumor biophysical environment. Given the previously
described GBM ECM composition, Matrigel, collagen, fibrin
and hyaluronic acid are the most frequently employed
matrices to produce these models. In fact, studies reported
that scaffold biophysical features, as stiffness, affects GBM
stemness and, consequently, GBM chemotherapy resistance
(Palamà et al., 2018; Xiao et al., 2020). So, these biomaterials
mechanical properties have been manipulated to condition
cellular behavior and create biomimetic models, including
vascularized GBM models. Despite all the efforts made to
capture tumors biophysical environment, this remains a great
challenge. Multiple variables as porosity, polymer concentration,
matrix elasticity must be simultaneously controlled to mimic
natural tumor ECM (Vasudevan et al., 2020).

One of the first materials used as scaffold for in vitromodels was
Matrigel. In 1988, Kubota et al. found that human umbilical vein
endothelial cells (HUVECs) onMatrigel attach andmigrate towards
each other forming long and complete capillary-like structures
when supplemented with bovine calf serum and FGF, or only
short and incomplete structures without any supplementation
(Kubota et al., 1988). Because this capillary-like structures
formation under certain conditions mimics the in vivo
angiogenic process, Matrigel-based tubular networks assays
emerged as useful tools to identify angiogenic signaling cascades
and to assess new anti-angiogenic therapeutics (Benton et al., 2014).

Matrigel has also shown utility in the study of GSC
transdifferentiation into ECs. A tubular network assay with
patient-derived GBM cells cultured on Matrigel was used to
characterize GSCs and verify their vascular development
ability (Ke et al., 2020). In this case, patient cells were able to
transdifferentiate into ECs and further form tubular structures.
Using the same model, researchers also tested drugs capable of
inhibiting this transdifferentiation process (Ke et al., 2020).
Furthermore, patient-derived GBM cells cultured on Matrigel
have also been used to study GBM recurrence and resistance
mechanisms after radiotherapy. Apparently, radiotherapy
enhances TDECs ability to form tubular structures in Matrigel,T
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without increasing their proliferation rate (Deshors et al., 2019).
Therefore, and as mentioned before, the increased vascularization
capacity of TDECs may be one the mechanisms explaining GBM
resistance and recurrence after radiotherapy. Considering these
systems’ power to study angiogenesis, GSC transdifferentiation
and to test novel neovascularization inhibitors, we decided to
include them in this section even though they do not represent
vascularized tumor tissue per se.

4.3 3D-Bioprinted Models
In the last decade, 3D bioprinting emerged has one of the
strategies with greatest potential for in vitro models’
development. In general, this technique consists of bioink
printing, layer-by-layer, allowing the establishment of complex
3D living systems (Han et al., 2020). There are two bioink
subtypes: one includes living cells within an exogenous
biomaterial matrix, both printed simultaneously, and the other
includes only living cells, which are printed within a cast structure
and then produce their own ECM (Dai et al., 2016). In 3D-
bioprinted GBMmodels, only the first bioink type has been used.

Printed cells usually include cancer cell lines or patient-
derived tumor cells, ECs, fibroblasts or immune cells, while
alginate, gelatin, polyethyleneglycol (PEG) methacrylate or
decellularized ECM comprise the models’ matrix. These
models are usually very reproducible and adjustable since their
production is entirely dependent on computer programs and no
human manipulation is directly involved (Tang et al., 2021). In
contrast with 2D cell cultures, 3D-bioprinted models maintain in
vivo stemness properties, gene expression and vascularization
tendency. Furthermore, they allow the manipulation of a specific
factor to study its role in tumor biology (Ruiz-Garcia et al., 2020).

Recently, 3D bioprinting has revealed its applicability and
usefulness in the neuro-oncology field, specifically in the
assembly of GBM in vitro models to study neovascularization.
Both GBM cells and ECs bioprinted within ECM-like materials
sprout, forming tubular structures (Figure 4) (Table 1) (Han et al.,
2020; Tang et al., 2021). Moreover, pro-angiogenic genes expression
and cells’ sprouting is regulated by matrix biophysical properties,
such as stiffness (Tang et al., 2021). Therefore, thesemodelsmimic in
vivo angiogenesis and GSCs transdifferentiation.

In vivo behavior of tumor cells is also maintained in
vascularized bioprinted models, in contrast to what is observed
in other models. In vascularized bioprintedmodels, tumor cells are
more invasive and resistant to therapy, which might be a result of
vascular derived signaling cues (Figure 5) (Table 1) (Yi et al., 2019;
Ozturk et al., 2020). Thereby, these models are useful in drug
research and they may eventually help guiding clinical decisions.

Although none of the developed GBM vascularized models has
been explored to study cell-cell interaction, we believe this is a
potential future application. For instance, Heirinch et al. used a
3D bioprinted GBMmodel to study GBM and immunologic cells
crosstalk (Heinrich et al., 2019).

Microfluidics integration with bioprinting is an emergent
strategy to generate completer and more biomimetic models.
For instance, microfluidic chips can be manufactured and
cultured through 3D-bioptinting, generating more dynamic,
flexible and reproducible systems (Datta et al., 2020).

Other recently reported bioprinted models include GBM cells
and stromal cells other than ECs, as macrophages (Grolman et al.,
2015; Heinrich et al., 2019). These models allow the
communication between different TME cells and the testing of
drugs targeting this intercellular communication. Therefore, in
the future, it is possible for these models to become more
complete, dynamic and closer to the native TME.

Perfusable in vitro models could also be useful to study drug
transport and distribution kinetics, after its inclusion in a
microcirculatory system. In line with this, platforms have
already been designed to mimic drug transport in the
bloodstream and passage through vessel walls, followed by
crossing of the interstitial fluid and entry into tumor cells
(Cao et al., 2019). In the future, it would be interesting if
these types of models could be adapted to represent GBM and
to assess drug distribution after intravenous administration.

4.4 Microfluidic-Based Models
To date, one of the most promising alternatives for in vitro
modeling of vascularized tissue is the use of microfluidic
systems-based models. Microfluidic systems are devices with
networks of micro-channels where liquids can flow in
controlled manners. Usually the channels are made of
biocompatible materials as polydimethylsiloxane (PDMS), PEG
or polystyrene (PS). Their biocompatibility along with other
desirable features, such as easy tunability and cost-effectiveness,
promoted the association of these platforms with tissue
engineering methods to recreate the complex human
physiology—the so called organ-on-a-chip technology (Bhatia
and Ingber, 2014). Compared with spheroids or non-bioprinted
scaffold-based models, microfluidic-based models are less variable
in terms of size and shape (Bhatia and Ingber, 2014). Furthermore,
in these models, cells are exposed to mechanical signals, such as
tension, compression or microvascular blood flow shear stress
(1–10 dyne/cm3), thus offering the possibility to overcome the
limitations of non-perfusable models (Kim et al., 2013).

Similar to other models, organ-on-a-chip technology has been
employed in the establishment of in vitro GBM vascularized
models, useful in studies of fundamental biology, such as tumor-
associated vascularization processes. Usually, different channels
are cultured with tumor cells or ECs, allowing their
communication without direct contact. Through paracrine
communication, tumor cells induce perfusable microvascular
networks development (Table 1) (Kim et al., 2013; Truong
et al., 2019). Thus, enabling neovascularization processes
study. With the incorporation of patient-derived cells,
researchers can study neovascularization processes from an
individual perspective (Figure 6) (Table 1) (Amemiya et al.,
2021). Furthermore, these models are useful for the study of
tumor cells behavior in perivascular niche, namely migration and
invasion towards vascular elements (Table 1) (Ayuso et al., 2017;
Chonan et al., 2017; Truong et al., 2019).

By co-culturing tumor cells and endothelial cells in distinct
channels (Table 1), it was observed tumor cell migration and
invasion towards vascular structures. Furthermore, researchers
identified the SDF-1 signaling pathway as a major contributor for
GSC invasion. Through binding to its receptor, CXCR4,
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endothelial SDF-1 promoted GSC invasion, whereas GSC
treatment with a CXCR4 inhibitor significantly reduced their
invasion (Truong et al., 2019). Therefore, microfluidic-based
models not only are able to recapitulate the typical
architecture of the GBM perivascular niche, but are also
suitable for drug screening purposes, especially to test drugs
that interfere with endothelial-tumor cell communication.

In addition, microfluidic-based models are promising tools to
represent and study GBM hypoxic niches. By blocking the
channels that are feeding tumor cells, it was observed the
migration of tumor cells towards the opposite direction
(Table 1) (Ayuso et al., 2017).

Finally, we would also like to point out that other stromal
elements have been included in microfluidic-based GBMmodels,
bringing them closer to the in vivo tumor. Indeed, Cui et al.
engineered a sophisticated microfluidic system including not only
patient-derived cells and endothelial cells, but also immune cells.
Macrophages and tumor cells incorporated a spheroid while
T cells were circulating in an adjacent channel (Table 1). This
model generated a GBM immunosuppressive heterogeneous
microenvironment since T human cells extravasation and
infiltration was variable between patients and dependent on
tumor-immune-vascular cell crosstalk. Apparently,
macrophages present within the tumor acquired an anti-
inflammatory phenotype, inhibiting T cell extravasation and
infiltration. Nevertheless, T cells were found in most of the
tumors, but they were inactive. Cui et al.’s model also helped
to monitor real-time immune cell activity and response to several
immunotherapies (Cui et al., 2020).

Taking in consideration their applicability, microfluidic-based
models present an unquestionable value in biomedical research.
They can accelerate the identification of novel biomarkers/
therapeutic targets and personalized therapeutic strategies.
However, these systems face same limitations too. There is a
limited control over their size and over the arrangement of
different cell types within the system (Yu et al., 2019). Their
use depends on several other equipment, namely pumps and
valves (Yu et al., 2019). Furthermore, scale-up is difficult. So, in
the future, we believe new and improvedmicrofluidic systems will
emerge to overcome these limitations.

5 DISCUSSION

Rapidly growing tumor cells need additional amounts of oxygen
and nutrients to sustain their metabolism, leading to vascular
proliferation and to the development of an abnormal and
dysfunctional vascular system, which consists of a GBM
characteristic. Despite being aberrant, GBM blood vessels
ensure tumor cell maintenance, contributing to tumor survival
and to its poor prognosis. GBM vascularization mechanisms
involve angiogenesis, vessel co-option, vasculogenesis, vascular
mimicry and transdifferentiation. As each one of them is
activated by different signals, current antiangiogenic therapies
drive a transient vasculature normalization, which is not effective.

In addition to its transport functions, the GBM perivascular
niche also supports GSC self-renewal and invasion, promotes
macrophage activation towards a pro-tumoral phenotype, and

FIGURE 4 | - (A) Confocal images of U87 MG spheroids within a bioprinted vascularized hydrogel. (i) and (ii) white arrows indicate hydrogel vessels invading and
infiltrating into the spheroids. 4,6-diamino-2-phenylindole (DAPI) was used as a cell nuclei marker and platelet endothelial cell adhesion molecule 1 (CD31) was used
as an EC marker. (B) Confocal images of U87 MG spheroids without vascularized hydrogel. The white bar corresponds to a 200 μm length. (C) Area of spheroids
measured with (red) and without (blue) vascularized hydrogel. (D) Height of spheroids measured with (red) and without (blue) vascularized hydrogel. (E) Volume
of spheroids measured with (red) and without (blue) vascularized hydrogel. ** and *** means p value < 0.01, 0.001, respectively, and NS means not significant.
Reproduced with permission from (Han et al., 2020).
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enhances ECM remodeling, which are all key in tumor
progression and invasiveness. Therefore, understanding the
complex communications between tumor vasculature and
other TME elements is critical to find new and relevant
therapeutic targets and to develop effective anti-GBM treatments.

In the last years, major innovations in microscale tissue
engineering technologies enabled a breakthrough in 3D tumor
model assembly, particularly in the development of vascularized

tumor models. 3D models can include various cell populations
and mimic native tumor features, such as oxygen/nutrient
gradients and tumor cell communication with the surrounding
microenvironment. Some of the recently established,
spherical, scaffold or microfluidic-based 3D models can even
resemble neovascularization processes, thus holding the
potential to be a proper tool for the identification of new
therapeutic targets. Moreover, they can be used to test anti-

FIGURE 5 |Glioblastoma (GBM) cells cultured in distinct in vitromodels respond differently to treatment with temozolomide (TMZ). (A) Survival percentage and (B)
overlay of phase contrast and fluorescent images of GBM cells cultured in two-dimensional (2D) monolayer 7, 14 and 21 days following treatment with TMZ (0, 10, 100
and 500 μM). (C) Survival percentage and (D) overlay of phase contrast and fluorescent images of GBM cells cultured in there-dimensional (3D) spheroid in suspension in
a vascularized hydrogel 7, 14 and 21 days following treatment with TMZ (0, 10, 100 and 500 μM). The white bar corresponds to a 500 μm length. (E) GBM cells,
surrounded by endothelial cells (ECs), in the 3D bioprinted system behavior before and after the treatment. The white bar corresponds to a 1 mm length. Reproduced
with permission from (Ozturk et al., 2020).
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tumor drugs in a more physiologically relevant setting, especially
neovascularization inhibitors, accelerating their clinical
translation.

Despite all the advances in 3D vascularized GBMmodels, there
is still room for improvement. In the future, alternative types of
stromal cells, and even autologous stromal cells, might be
incorporated into these models for long-term use and large-
scale drug screening. Moreover, the growing use of 3D models
may lead to the development of more sophisticated techniques that
will allow researchers tomonitor models’ behavior, non-invasively.

Possibly, other strategies as 4D bioprinting, might be used in
these models’ construction. 4D-bioprinting is similar to 3D
bioprinting but incorporates a fourth dimension—time -
through the use of stimuli-responsive biomaterials (Gao et al.,
2016). After printing, these biomaterials respond to external
factors, as temperature, humidity or pH, modifying their shape
(Yang et al., 2019). The purpose is to pre-define systems behavior
through the materials selection generating dynamic constructs
(Gao et al., 2016). 4D bioprinting has already revealed
encouraging results in in vitro production of self-assembled
tubes with highly controlled architecture and diameter and
supporting cell viability (Kirillova et al., 2017). Therefore,
eventually, this technique can be employed in the assembly of
vascularized GBM models and enhance their biologic reliability.
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FIGURE 6 | -Perfusable microvascular network formation in microfluidic devices. (A)Bright field and (B) confocal fluorescent microscopy images of red fluorescent
protein (RFP) expressing human umbilical vein endothelial cells (HUVECs) at days 1, 2, 3, 4 and 5 following culture in amicrofluidic device. The white bar corresponds to a
200 μm length. (C) Time-lapse images of a microfluidic device channel cultivated with HUVECs after injection of fluorescein isothiocyanate (FITC) dextran. (D) Confocal
fluorescent microscopy images amplification after FITC dextran injection. HUVECs and FITC dextran are represented in red and green, respectively. Reproduced
with permission from (Amemiya et al., 2021).
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GLOSSARY

2D two-dimensional

3D three-dimensional

AEG-1 astrocyte elevated gene 1

BBB blood-brain barrier

bFGF basic fibroblast growth factor

CSF-1 colony stimulating factor 1

CTGF connective tissue growth factor

DLL4 delta like canonical Notch ligand 4

EC – endothelial cell

ECM extracellular matrix

EGF epidermal growth factor

EGFR epidermal growth factor receptor

eNOS endotelial nitric oxid synthetase

ETA endothelin receptor A

ETB endothelin receptor B

ETV2 ETS variant 2

FGF fibroblast growth factor

FITC fluorescein isothiocyanate

GAM glioblastoma-associated macrophage

GBM glioblastoma

GSC glioblastoma stem cell

GDNF glial cell derived neurotrophic factor

HIF-1α hypoxia inducible factor 1 alpha

HIF-2α hypoxia inducible factor 2 alpha

HUVEC human umbilical vein endothelial cell

ICAM-1 intracellular adhesion molecule 1

IDH isocitrate dehydrogenase

IL-6 interleukin 6

IL-8 interleukin 8

INF-γ interferon gamma

JAG 1 jagged canonical Notch ligand 1

MDSC myeloid-derived suppressor cells

MMP matrix metalloproteinase

NO nitric oxide

NOS not otherwise specified

PDMS polydimethylsiloxane

PEG polyethyleneglycol

PS polystyrene

SDF-1 stromal derived factor 1

Shh sonic hedgehog

TDEC tumor-derived endothelial cell

TERT telomerase reverse transcriptase

TNFα tumor necrosis factor alpha

TME tumor microenvironment

TP thymidine phosphorylase

Treg regulatory T cells

uTP urokinase-type plasminogen

uTPA

urokinase- type plasminogen activator

VCAM - 1 vascular adhesion molecule 1

VEGF vascular endothelial growth factor

VEGF-R vascular endothelial growth factor receptor
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