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The global pandemic of coronavirus disease 2019 (COVID-19) is caused by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists despite

the progress of vaccination and increased natural immunity. SARS-CoV-2 is

associated not only with pneumonia and acute respiratory distress, but also with

many symptoms related to the central nervous system (CNS), including loss of

the sense of taste and smell, headache, convulsions, visual disturbances, and

impaired consciousness. In addition, the virus has been implicated in CNS

diseases such as cerebral hemorrhage, cerebral infarction, and encephalitis.

SARS-CoV-2 binds to the receptor angiotensin-converting enzyme 2 (ACE2),

which is used by the virus as a cell entry receptor. Although the mechanism by

which SARS-CoV-2 enters the brain is still unclear, the possibility of direct entry

through the olfactory nerve tract and entry into the brain through the blood-

brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) via blood

circulation is indicated. The BBB likely serves as a site of entry for SARS-

CoV-2 into the brain, and possibly contributes to the CNS symptoms of

COVID-19 due to its dysfunction as a result of SARS-CoV-2 infection. The

present reviewwill focus on the effects of COVID-19 on the CNS, particularly on

the BBB related cells involved.
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1 Introduction

Coronavirus disease 2019 (COVID-19) is a widespread pandemic caused by the

highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that

has not been eradicated despite much time and vaccination progress. Many variants have

been reported, and a variety of symptoms observed, often focusing on respiratory

dysfunction, but it has also been shown to cause disorder in many other organs. Most

patients with COVID-19 present mild to moderate symptoms, with the most common

symptoms occurring as fever, upper respiratory tract symptoms such as dry cough and

sore throat and headache, although some who are infected can remain asymptomatic.

However, only a small percentage of cases progress to severe stages, leading to severe

pneumonia, multiorgan dysfunction, and in the worst cases, death (Huang et al., 2020;

Pascarella et al., 2020; Shi et al., 2020). An early review of data from the pandemic showed
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that approximately 5% of COVID-19 patients had severe

symptoms, such as acute respiratory distress syndrome

(ARDS) and multiorgan-dysfunction (Wiersinga et al., 2020;

Rahman et al., 2021), and the mortality was estimated to be

around 0.15%–1.63%, with a median of 0.27% ((Ioannidis 2020;

AuthorAnonymous, 2021).

Neurological symptoms in COVID-19 patients have been

noted since the early days of the disease. Common neurological

symptoms include headache, vomiting and dizziness, in addition

to a characteristic loss of the senses of taste and smell (Menni

et al., 2020; Wang et al., 2020). Interestingly, even in the absence

of typical symptoms of COVID-19, SARS-CoV-2 can cause

neurological disorders such as encephalitis, Guillain-Barré

syndrome and seizures (Karadaş, Öztürk, and Sonkaya 2020;

Nalleballe et al., 2020; Johansson et al., 2021). In severe cases,

acute cerebrovascular disorders and impaired consciousness have

been reported (Mao et al., 2020). The severity of COVID-19 has

been implicated in the increased risk of subsequent neurological

and psychiatric outcomes, involving mechanisms such as direct

brain damage associated with viral entry into the CNS and

induction of BBB dysfunction, as well as the neural effects of

the immune response, inflammation, and hypercoagulability

(Shehata et al., 2021; Taquet et al., 2021). This review

summarizes the understanding of CNS dysfunction from the

viewpoint of the blood-brain barrier (BBB) with SARS-CoV-

2 infection and COVID-19.

2 Characteristics of SARS-COV-2

Many human coronaviruses cause respiratory diseases; some

are endemic and among the causes of the common cold, whereas

others, such as SARS-CoV and MERS-CoV, have caused serious

epidemics with high mortality rates. SARS-CoV-2, like SARS-

CoV and MERS-CoV, was likely first transmitted to humans via

exposure to an infected animal, although all three can pass from

human-to-human. The main structure of SARS-CoV-2 is

composed of four proteins, Spike (S), Envelop (E),

Nucleocapsid (N), and Membrane (M). The S protein plays

the major role in cell binding and invasion (Kumar and Al

Khodor 2020; Wu et al., 2020). The S protein is a transmembrane

protein with spike-like projections and is characterized by two

extracellular subunits S1 and S2; the S1 subunit facilitates

receptor-binding, and the S2 subunit mediates membrane

fusion and internalization of the virion (Du et al., 2009). The

S protein promotes viral attachment to angiotensin-converting

enzyme 2 (ACE2), thus fusing with the membrane and allowing

the virus to enter the cell. SARS-CoV-2 closely resembles SARS-

CoV virus that also causes severe acute respiratory syndrome

(SARS), but several mutations in the receptor-binding region

(RBD) of the S1 protein have greatly enhanced the binding

affinity of the SARS-CoV-2 virus to ACE2. Such differences

can be the basis for the high infectivity of COVID-19 (Angeletti

et al., 2020; Tai et al., 2020). The S protein entry into target cells

requires protein priming with cellular proteases, which has been

shown to be mediated by the cellular transmembrane serine

protease 2 (TMPRSS2) (Glowacka et al., 2011; Hoffmann et al.,

2020). SARS-CoV-2 mainly infects cells in the respiratory tract,

but infection of the CNS has also been observed and the

mechanism has become clarified (3). Quantification of the

virus in patients who died from COVID-19 indicated the

neurotropic potential of the virus (Matschke et al., 2020;

Puelles et al., 2020; Solomon et al., 2020; Serrano et al., 2021),

and other evidence has been presented from cells, organoid

models, and animals. Primary human brain endothelial cells

were shown to be productively infected with SARS-CoV-2 by

expressing ACE2 via lentivirus transduction (Nascimento Conde

et al., 2020). Experiments on 3D human brain organoids similarly

show that SARS-CoV-2 can enter the cells and have the potential

neurotoxic effect (Ramani et al., 2020; Song et al., 2021). Several

experiments using animal models, mainly mice, also indicate

evidence for viral entry into the brain. Infection models using

transgenic mice such as hACE and Hfh4-ACE2 mice have shown

evidence for the presence of viral RNA in the brain (Menachery

et al., 2016; Bao et al., 2020; Dinnon et al., 2020; Dong et al.,

2022). Studies of non-human primate infection models in Rhesus

macaques and African green monkeys similarly detected viral

RNA in the brain, while pathological findings of

neuroinflammation, microhemorrhage, and neuronal damage

were obtained, suggesting that SARS-CoV-2 infection of the

CNS may cause some of its neurological symptoms (Rutkai

et al., 2022).

2.1 SARS-CoV-2 entry into the central
nervous system via the olfactory pathway

Clinical symptoms, such as olfactory disorders, and

experimental data suggest that SARS-CoV-2 may invade the

CNS via the olfactory sensory neurons, although it is also likely

that the virus crosses the BBB and enters the CNS. As for SARS-

CoV-2 entry into the CNS via olfactory neurons, it has been

posited that the virus can travel along their axons into the

olfactory bulbs and beyond to other parts of the brain

(Bougakov, Podell, and Goldberg 2021; Burks et al., 2021).

The pathway of axonal transport through the olfactory nerve

begins with infection of the olfactory epithelial cells via

ACE2 receptors and spreads to the CNS by traversing

synapses shared between olfactory neurons and neurons in

the olfactory bulb (OB). Data from RNA mapping of the

olfactory nerve tract to the CNS region of SARS-CoV-

2 infection from human autopsy material

confirms viral amplification along the olfactory nerve tract

(Meinhardt et al., 2021). Neuropilin-1 (NRP-1) is a

multifunctional transmembrane receptor that affects

development of axons and is suggested to contribute to the

Frontiers in Drug Delivery frontiersin.org02

Fujimoto et al. 10.3389/fddev.2022.1073815

https://www.frontiersin.org/journals/drug-delivery
https://www.frontiersin.org
https://doi.org/10.3389/fddev.2022.1073815


entry of SARS-CoV-2 into the brain via the olfactory epithelium

(Perez-Miller et al., 2021). NRP-1 increases the infectivity of

viruses in olfactory epithelial cells, and the high expression of

NRP-1 in the olfactory epithelium of COVID-19 patients

suggests that NRP-1 plays an important role in the entry of

viruses through the olfactory pathway (Cantuti-Castelvetri et al.,

2020). However, several studies have been presented that provide

limited support for this pathway of viral entry. A kinetics study of

S1 uptake by brain found that the olfactory rate was much lower

than the rate of transport across the BBB(Rhea et al., 2021). Also,

when SARS-CoV-2 is detected in olfactory neurons, it is mostly

present in immature neurons, which lack the axonal projections

necessary to transport the virus to the brain. Therefore, it is

controversial whether the olfactory route is the main pathway by

which SARS-CoV-2 enters the brain (Butowt et al., 2021; Zhang,

Lee, et al., 2021).

2.2 SARS-CoV-2 and the blood-brain
barrier/blood-cerebrospinal fluid barrier

Another promising route of SARS-CoV-2 entry into the

brain is via the hematogenous route, crossing the BBB and/or

blood-cerebrospinal fluid barrier (BCSFB). The interactions

between SARS-CoV-2 and the BBB are multifactorial in that

the virus may cross the BBB, infect brain endothelial cells, or alter

functions of the BBB, with data suggesting that several receptors

and signaling cascades are involved (Torices et al., 2021; Haidar

et al., 2022; Krasemann et al., 2022). The BBB is primarily

composed of brain endothelial cells, which are closely

associated with other cells such as the pericytes and astrocytes

that support the BBB endothelial phenotype. Brain endothelial

cells express tight junction proteins that inhibit the diffusion of

substances between cells, and a low number of pinocytic vesicles

that prevents transcellular diffusion. Thus, viruses that can enter

the CNS via the BBB must do so either by being transported via

processes such as adsorptive transcytosis, or by altering BBB

properties which then permits their direct entry (Erickson et al.,

2021). The BCSFB, formed from epithelial cells of the choroid

plexus, is also a barrier separating the central and peripheral

systems and is considered a potential entry route of SARS-CoV-

2. Experiments evaluating the neurotropism of the virus using an

organoid model of choroid plexus epithelial cells showed that

SARS-CoV-2 selectively infects choroid plexus epithelial cells

and also disrupts BCSFB (Pellegrini et al., 2020). However, SARS-

CoV-2 is variably detected by PCR in CSF samples from COVID-

19 patients, including those with neurological symptoms (Jarius

et al., 2022), indicating that most of the virus may be sequestered

in the brain tissue. Since CNS entry via the BCSFB would first

require SARS-CoV-2 to enter the CSF, it is controversial to

consider the BCSFB as the main entry route.

Several studies have focused on the S protein, the main

component of the virus, and its interactions with the BBB. In

early experiments using 2D static and 3D microfluidic in vitro

BBB models to verify the relation between the BBB and the

proteins that compose SARS-CoV-2, including S protein, showed

that those proteins disrupt the integrity of the barrier function of

the BBB (Buzhdygan et al., 2020). However, the dosage of S

protein used in the study are variable, with some higher than S

protein concentrations typically detected in blood (Ogata et al.,

2020), they range from 0 to 25 ng/ml and in most cases less than

1 ng/ml, so careful consideration is needed. Experiments that

injected intravenously radioiodinated S1 protein showed that

S1 is taken up into the brain much better in comparison to the

intranasal route. This shows that S1 readily crosses the BBB, and

additional studies suggest the mechanism involved is adsorptive

transcytosis (Rhea et al., 2021). The same study also found that

inflammation induced by bacterial lipopolysaccharide (LPS)

caused some minor leakage of S1 across the BBB, but did not

alter the transport mechanism which accounted for most of the

S1 entry into brain. In mouse and hamster models that are

permissive to SARS-CoV-2 infection, the virus caused no obvious

ultrastructural or expression change in BBB tight junction

proteins but altered the basement membrane and caused

Evans blue dye leakage into the brain, indicating that there

was BBB disruption. The virus infected brain endothelial cells,

upregulated inflammatory cytokine expression, and crossed the

BBB in vitro, although it caused only a moderate amount of

paracellular disruption in hamster endothelial cells, suggesting

that the virus crossed the BBB via transcellular mechanism s and

without causing paracellular leakage (Zhang, Zhou, et al., 2021).

Therefore, SARS-CoV-2 likely exerts effects on the BBB via its

direct interactions with brain endothelial cells and indirectly

through the immune system. However, it should be carefully

considered that SARS-CoV-2 have low replication capacity in

brain endothelial cells without inflammatory conditions or

overexpression of ACE2 (Constant et al., 2021; Schimmel

et al., 2021). Evidence supports that both the virus and its

spike proteins can cross the BBB and enter the brain. Effects

of S1 and SARS-CoV-2 on BBB as mediated through other types

of brain cells are ongoing.

2.2.1 Interaction of SARS-CoV-2 and brain
endothelial cells

Brain endothelial cells are thought to play an important role

in SARS-CoV-2 invasion because they face circulatory dynamics

and express receptors associated with viral invasion, such as

ACE2 and TMPRSS2 (Baig et al., 2020). SARS-CoV-2 infects

endothelial cells via ACE2 receptors without apparent the BBB

disruption and enters the brain, simultaneously, it is suggested

that SARS-CoV-2 infection causes endotheliitis in several organs,

which leads to the BBB dysfunction and enables the virus to enter

the brain directly (Varga et al., 2020). That human brain

endothelial cells express ACE2 is supported by experiments

using primary human brain endothelial cells and the hCMEC/

D3 cell line, which also showed that SARS-CoV-2 can infect and
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proliferate in brain endothelial cells (Buzhdygan et al., 2020;

Zhang, Zhou, et al., 2021). Interestingly, the results of these

studies showed that SARS-CoV-2 infection of brain endothelial

cells did not cause any gross phenotypic alterations and did not

affect tight junction protein integrity. The host protein nuclear

factor (NF)-κB essential modulator (NEMO), which is involved

in signalling cascades that regulate the transcription of numerous

genes, regulates cell viability, and SARS-CoV-2 caused NEMO

cleavage and cell apoptosis in brain endothelial cells, leading to

possible vulnerability of the BBB (Wenzel et al., 2021).

Several studies suggest that the interactions of brain

endothelial cells and SARS-CoV-2 could be increased with

certain comorbid conditions. Cerebral ischemia, smoking, and

diabetes have been shown to enhance ACE2 receptor

expression in brain endothelial cells, supporting that these

factors could potentially increase the ability of SARS-CoV-2 to

infect or cross brain endothelial cells and thus increase the risk

of COVID-19-associated neurological sequalae (Choi et al.,

2020). Hypoxia was also shown to modulate expression of

ACE2 and TMPRSS2 in human brain endothelial cells,

suggesting involvement of endothelial damage caused by

SARS-CoV-2 (Imperio et al., 2021). The results suggest that

COVID-19 could be implicated in the induction of

inflammation and apoptosis of brain endothelial cells

involved in enhanced thrombus formation in patients with

severe COVID-19 (Pons et al., 2020), which may cause

cerebrovascular disease. Beta-secretase 1 (BACE1), an

aspartic acid protease, is a transmembrane protein that can

contribute to the loss of integrity of the BBB (Cheng et al.,

2014). SARS-CoV-2 increased BACE1 in brain endothelial

cells, resulting in decreased expression of tight junction

proteins and accumulation of senescence-associatedβ-gal
and p21, which are involved in cellular senescence. These

results support the possibility that SARS-CoV-2 causes BBB

vulnerability and senescence of brain endothelial vascular cells

resulting in cerebrovascular disease (Choi et al., 2022).

2.2.2 Interaction of SARS-CoV-2 and the
bloodbrain barrier related cells

Astrocytes have an important role in the induction and

maintenance of the BBB phenotype and are anatomically close

to brain endothelial cells. Several studies indicate that astrocytes

can be infected by SARS-CoV-2. Of the samples that showed

pathological signs of brain damage in autopsy patients with

COVID-19, particularly in astrocytes, lesions from viral

replication were observed (Crunfli et al., 2022). The same

study also found that the susceptibility to infection via NRP-1

was shown in human astrocytes derived from neural stem cells,

emphasizing the possibility that astrocytes may contribute to

CNS infection Plasma biomarker testing of patients with

COVID-19 showed increased glial fibrillary acidic protein

(GFAP), a marker of astrocyte activity and damage (Kanberg

et al., 2020). This finding is significant in severe COVID-19

patients and could be involved in the development of brain

disorders in these patients. In the data investigating gene

expression in astrocytes after SARS-CoV-2 infection,

subpopulations of astrocytes were identified in which the

expression of genes involved in inflammation and

neurotoxicity, such as IFITM3, GFAP, and CHI3L1, were

upregulated, and dysregulation of genes supporting

neurotransmission was also observed (Yang et al., 2021).

Additionally, infection and viral replication induced in human

astrocytes from SARS-CoV-2 exposure was confirmed,

indicating extensive inflammation and cytokine secretion.

Interestingly, the ACE2 receptor was not identified in these

astrocytes, suggesting that other invasion factors, DPP4 and

CD147, are closely involved (Andrews et al., 2022). Brain

pericytes surround blood vessels and play an important role

in maintaining the BBB, including vessel maturation and

stabilization, neuroprotection and repair in the event of

damage. ACE2 has been shown to be abundantly expressed in

platelet-derived growth factor receptor (PDGFR) β perivascular

cells, which consist mainly of pericytes, and has been implicated

in possible SARS-CoV-2 infection. Infection of pericytes in

COVID-19 patients was associated with perivascular

inflammation and fibrinogen leakage, suggesting that the

integrity of the BBB is compromised (Bocci et al., 2021). S

protein exposure increased ACE2 expression and triggered an

inflammatory response in pericytes Additional evidence

indicates that hypoxia enhances S protein related effects on

brain pericytes, and that SARS-CoV-2 can cause vascular-

mediated brain damage (Khaddaj-Mallat et al., 2021).

Microglia are immune cells that respond to infection and have

a wide range of functions, including activation of astrocytes and

regulation of neurons. Microglia clustered prominently around

blood vessels in COVID-19 patients, suggesting that they induce

neuroinflammation (Schwabenland et al., 2021). Microglia, as

well as astrocytes, showed subpopulations associated with

COVID-19, showing increased levels of several genes involved

in neuroinflammation (Yang et al., 2021).

3 Discussion

Since the early stages of the COVID-19 pandemic,

neurological symptoms such as loss of sense of smell and taste

have been noted, and many studies have focused on that aspect.

Neurological complications are particularly common in severely

ill COVID-19 patients, and residual effects are observed even

after symptoms have abated (Helms et al., 2020). Serious brain

disorders such as cerebral infarction, encephalitis, acute toxic

encephalopathy, and epileptic seizures have also been reported in

many cases (Roy et al., 2021). Recent studies have reported Long-

COVID syndrome and identified several neurological signs,

notably brain fog, suggesting neuroinflammation is involved

(Theoharides et al., 2021). This could be related to damage to
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brain endothelial cells caused by S protein and to the induction of

inflammation and autoimmune reactions (Theoharides 2022).

These many accumulated reports suggest that the CNS is

affected by COVID-19, and there have been various

discussions regarding the mechanism, but no clear evidence

has been presented. This review focused on the neurotropism

of SARS-CoV-2, particularly with respect to its ability to cross

the BBB and infect brain endothelial cells, astrocytes, and

pericytes. Numerous papers indicate that the BBB is involved

in COVID-19 infection of the CNS and that SARS-CoV-

2 alters the homeostatic functions of the BBB. Therefore,

the BBB is an ideal target for drug development aimed at

preventing or facilitating recovery from neurological damage

and disease caused by SARS-CoV-2.
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