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Research and innovation are constant imperatives for the healthcare sector: medicine,

biology and biotechnology support it, and more recently computational and data-driven

disciplines gained relevance to handle the massive amount of data this sector is and

will be generating. To be effective in translational and healthcare industrial research,

big data in the life science domain need to be organized, well annotated, catalogued,

correlated and integrated: the biggest the data silos at hand, the stronger the need for

organization and tidiness. The degree of such organization marks the transition from

data to knowledge for strategic decision making. Medicine is supported by observations

and data and for certain aspects medicine is becoming a data science supported by

clinicians. While medicine defines itself as personalized, quantified (precision med) or

in high-definition, clinicians should be prepared to deal with a world in which Internet

of People paraphrases the Internet of Things paradigm. Integrated use of electronic

health records (EHRs) and quantitative data (both clinical and molecular) is a key process

to develop precision medicine. Health records collection was originally designed for

patient care and billing and/or insurance purposes. The digitization of health records

facilitates and opens up new possibilities for science and research and they should be

now collected and managed with this aim in mind. More data and the ability to efficiently

handle them is a significant advantage not only for clinicians and life science researchers,

but for drugs producers too. In an industrial sector spending increasing efforts on

drug repurposing, attention to efficient methods to unwind the intricacies of the hugely

complex reality of human physiology, such as network based methods and physical

chemistry computational methods, became of paramount importance. Finally, the main

pillars of industrial R&D processes for vaccines, include initial discovery, early—late pre

clinics, pre-industrialization, clinical phases and finally registration—commercialization.

The passage from one step to another is regulated by stringent pass/fail criteria.

Bottlenecks of the R&D process are often represented by animal and human studies,

which could be rationalized by surrogate in vitro assays as well as by predictive molecular

and cellular signatures and models.
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INTRODUCTION

Big Data in Health and Biotechnology

Big data analytics is potentially transformative. There are
companies (such as Amazon, Facebook, or Uber) that thoroughly
based their success on big data and their analysis; others,
particularly in the telecommunication or financial sectors, that
drastically changed their competitive strategies using big data.
Industries and institutions of any sort can expect from the
collection, creation and analysis of big data at least one of
these outcomes: improving effectiveness and performances, thus
increasing revenue; significantly reducing costs of processes;
reducing costly risks such as lack of compliance, and production
or service delivery risks. The pharmaceutical and biomedical
communities are not immune to this process and are facing a
data-driven transformation that need to be actively addressed.
Data scientists usually describe “big data” as data having four
main characteristics, famously known as the “four Vs”: volume,
velocity, veracity, and variety.

Volume refers to data at scale, obtained from many sources
with high number of data points. In the biomedical sciences
next generation sequencing technologies are allowing a constant
increase of data production: samples, tissues and patients are
sequenced and re-sequenced both in bulk (extracting nucleic
acids from whole tissues or cell cultures) and from single cells.
Single cell sequencing also is expected to further skyrocket the
amount of data produced, since, even though at a lower depth,
thousands of cells are going to be analyzed for each tissue or
patient (Poirion et al., 2016; Villani et al., 2017; Wang and Song,
2017; Wu et al., 2017).

Big data domains are those able to store data in the order
of magnitude of Peta to Exabyte. One Exabyte equals 1 billion
Gigabytes, being the Gigabyte the scale in which the current
portable storage cards are measured (our smartphones work
with memories of 16 Gigabytes on average). Storage volumes are
actually much smaller than volumes produced by the acquisition
processes, which globally sum up to the order of zettabytes (the
actual footprint), due to the fact that intermediate data are often
heavily pruned and selected by quality control and data reduction
processes. According to the recorded historical growth rate, the
growth of DNA sequencing (in number of genomes) is almost
twice as fast as predicted by Moore’s Law, i.e., it doubled every 7
months since the first Illumina genome sequences in 2008.

Due to these numbers genomics is comparable to other big
data domains, such as astronomy, physics, and social media
(particularly Twitter and YouTube). Research institutions and
consortia are sequencing genomes at unprecedented rhythms,
collecting genomic data for thousands of individuals, such as
the Genomics England project (Genomics England, 2017) or
Saudi Human Genome Program (Saudi Genome Project Team,
2015). UK’s project alone will sequence 100,000 human genomes
producing more than 20 petabytes of data, but many other
sequencing initiatives on species other than humans will have
a huge impact too. In vegetal kingdom research, pushed by
agricultural applications, thousands to millions of vegetable
varieties, as rice for instance, are also being sequenced (Zhu, 2012;
Li et al., 2014). Moreover, given the central role that genome or

exome sequencing has for personalized medicine it is reasonable
to believe that a significant portion of the world’s population
will be sequenced, dwarfing current estimates of a five orders of
magnitude factor by 2025, thus largely exceeding the growth of
the other big data domain previously cited (Stephens et al., 2015).

Velocity, the second “V,” refers to the infrastructure speed in
efficiently transferring big files. Extreme data volumes require
extreme remedies: for data in the Exabyte scale the traditional
four-wheeled method (truck delivery) is still the fastest and
most secure way (https://aws.amazon.com/snowmobile/). In fact,
uploading 100 petabytes over the internet would take about 30
years with nowadays hi-speed internet. Volume and velocity are
not a big problem for biomedical data yet: computer power
and storage dropped in costs and high volume data are easily
produced and stores within the walls of the same institution.
Data are not constantly transferred back and forth over the
internet (transfers are usually mono directional, i.e., from service
provider to researcher) and bigger volumes are usually shipped
onto physical drives.

The other two “Vs” are more critical: veracity and variety.
Veracity refers to data uncertainty. Biases are intrinsic to
genomic sequencing data and are naturally occurring due to
error rates, experimental batch effects, different statistical models
applied. Variety is probably the most impacting characteristic of
biomedical data. Data from this domain come in many different
forms, biological data are highly heterogeneous, to this respect
big data also means different signals and detection systems
from the same source. Thus, heterogeneity of biological data is
certainly a challenge but it is also what makes data integration
needed and interesting, along with the technical possibility to
use data to refine data and the consequent possibility to discover
emergent properties and unpredictable results.

On the wave of the always bigger issue of reproducible
research (Iqbal et al., 2016) awareness of the importance of
collecting and organizing data facilitating quick storage and easy
re-processing is spreading to the biological research domain.
Data integration is becoming an independent and horizontal
discipline and is generating a wealth of diverse projects and
resources; here we are going to review some of them (Table 1).

How Data Are Shaping Life Science and
Health
Biomedical sciences are constantly evolving pushed by
technological advances; life, health and disease are investigated
in an increasingly quantitative way. Most laboratory equipment
produces bigger volumes of data than it did in the past, and
data points available in a common lab pile up to quantities
not amenable to traditional processing such as electronic
spreadsheets. Researchers have often to deal with many
different data at different stages of research: experimental
design, samples collection and data gathering and cleaning,
analysis, quantification of experimental results and finally,
interpretation. Biologists, technicians and clinical science
professionals interact almost on a daily basis with analysts,
statisticians, or bioinformaticians and they need to develop a
correct and updated vocabulary and acquire skills up to the
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TABLE 1 | Project and initiatives.

Project Description Reference URL

Genomics England The project will sequence 100,000 genomes from around 70,000

people.

Genomics England, 2017 www.genomicsengland.co.uk/

Saudi Genome Program Mission of the Saudi Genome Project is to identify genetic basis of

disease in the Saudi population utilizing state of the art genome

sequencing and bioinformatics

Saudi Genome Project

Team, 2015

http://shgp.kacst.edu.sa

iPOP The iPOP (Integrated Personal Omics Profiling) study is a

longitudinal study of approximately 100 individuals meant to help

lay a foundation for precision personalized medicine.

Chen et al., 2012; Li et al.,

2017

http://snyderlab.stanford.edu/iPOP.html

Project Baseline Project Baseline is the quest to collect comprehensive health data

and use it as a map and compass, pointing the way to disease

prevention.

Maxmen, 2017 www.projectbaseline.com/

NextGen-Jane (Company) We are developing a product which can help you

understand what your body is trying to tell you and reveal

important information about your health in the privacy of your

home.

Erickson et al., 2014;

Mutch, 2014; Tamaresis

et al., 2014

www.nextgenjane.com/

PMI The PMI Cohort Program is a landmark longitudinal research effort

that aims to engage 1 million or more U.S. participants to improve

our ability to prevent and treat disease based on individual

differences in lifestyle, environment and genetics.

Collins and Varmus, 2015 allofus.nih.gov/

PGP The Personal Genome Project, initiated in 2005, is a vision and

coalition of projects across the world dedicated to creating public

genome, health, and trait data.

Ball et al., 2012 www.personalgenomes.org/

eMERGE eMERGE is a national network organized and funded by the

National Human Genome Research Institute (NHGRI) that

combines DNA biorepositories with electronic medical record

(EMR) systems for large scale, high-throughput genetic research in

support of implementing genomic medicine.

Lemke et al., 2010 https://emerge.mc.vanderbilt.edu/

PheKB A knowledge base for discovering phenotypes from electronic

medical records

Kirby et al., 2016 www.phekb.org/

PheWAS Phenome-wide association studies (PheWAS) analyse many

phenotypes compared to a single genetic variant (or other

attribute).

Denny et al., 2010 phewascatalog.org/

Human disease network In the human disease network each node corresponds to a

disease and its size indicates the number of genes, that are known

to be associated with that disease. Diseases/nodes are connected

to one another if they have associated genes in common.

Goh et al., 2007 https://exploring-data.com/vis/human-

disease-network/

FAIR A curated, informative and educational resource on data and

metadata standards, inter-related to databases and data policies.

Wilkinson et al., 2016 fairsharing.org/

B2DK The Big Data to Knowledge (BD2K) program is a trans-NIH

initiative that to support the research and development of

transformative approaches and tools to maximize and accelerate

the integration of big data and data science into biomedical

research.

Bourne et al., 2015 commonfund.nih.gov/bd2k

Descriptions and web addresses of projects, initiatives or resources cited in the text. Content of the “Description” column is extracted from official websites or publications of each

project/initiative.

task of efficiently collaborate with them. Without necessarily
transforming themselves into bioinformaticians, biomedical
researchers have to make a cultural shift embracing a new
domain of “infobiology” (Brazas et al., 2017). As a consequence,
the many flavors of bioinformatics and computational biology
skills are now a must-have in the technologically advanced
research laboratories or R&D departments: companies and
research institutions, as well as single laboratories, should also
promote and organize computationally skilled personnel (Chang,
2015; Bartlett et al., 2017).

Basic and clinical research is now well aware of the value of
collecting and organizing data in the form of tidy data i.e., a

form that is both easy to read for humans and easy to process for
computers (Wickham, 2014). Research as a whole is more and
more computer assisted and fairly advanced statistical methods
are regularly run through computers, such as machine learning
(ML) methods to classify and discriminate samples through
data. ML is the ensemble of methods giving computers the
ability to learn without being explicitly programmed (Arthur,
1959) and it is considered a subfield of artificial intelligence.
ML can be divided into two more subfields, very useful to
biomedical research: supervised learning, which is used to make
data classification and regressions, and unsupervised learning
which fuels methods for clustering, reduction of dimensionality,
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recommendation. Such methods are nowadays regularly used in
drug discovery and biomarker prioritization.

There is no research branch escaping this data-driven
transformation. Data are equally percolating through—and are
generated by—both traditionally “wet” experimental disciplines
and domains that stemmed from mathematics and computer
science. This is clearly observable in the industrial biotechnology
sector, where traditionally experimental disciplines such
as vaccine development, as well as more computer-driven
disciplines such as network-mediated drug discovery are
heavily influenced by the stream of different kind of data and
the possibility to integrate them. Precision medicine, drug
design/repurposing, and development of vaccines, are only three
of the many domains of biomedical sciences that have quite a
lot to gain from a structured, machine learning assisted and
integrated use of data, either small or big.

MEDICINE, DRUGS, AND VACCINES

From Personalized to High Definition
Medicine
Medicine has always been a clinical science supported by
observations and data, but for certain aspects medicine is
becoming a data science supported by clinicians. Clinicians
should be prepared to handle data collected either horizontally
from a large number of individuals, or vertically from granular,
high resolution, multi-parameters analyses of a single individual
(or few). In both cases all the caveats and challenges of big data
hold (Brazas et al., 2017) and are similar to those encountered
in the Internet of Things (IoT) domain. IoT is described as a
network of electronic devices equipped with software, sensors,
and connectivity used to collect data for many purposes. By
2020 40% of IoT devices will be related to medicine and health
(Dimitrov, 2016 and references 1 and 2 therein) and a huge
number of heterogeneous health data will be available beside the
already complex datasets produced by omics technologies such
as next generation sequencing. This scenario is typical of life
science, where high data heterogeneity is both a challenge and an
opportunity for data integration aimed at obtaining actionable
results exploiting their medical, clinical, predictive values. The
long term aim is to be able to measure everything, inside the
human body and outside it: a recent example is the study
carried out by Mike Snyder’s team in Stanford, in which 250,000
measurements were taken daily from 43 individuals for a total
of almost 2 billion health data points. Monitoring, elaboration
and integration of those data were effectively picking up
infections before they actually happened and helped distinguish
participants with insulin resistance, a precursor for Type 2
diabetes (Li et al., 2017). Other projects by both academia and
the private sector are designed based on the same approach but
on a much larger scale, from thousands to millions of monitored
volunteers (Ball et al., 2012; Maxmen, 2017).

The passage to the new century was marked by the delivery
of the Human Genome (Lander et al., 2001; Venter et al.,
2001): since then data took the lead in biology and medicine.
Medicine gradually acquired new adjectives and characteristics,

such as personalized medicine, precision medicine (Juengst et al.,
2016) and now high definition medicine. The latter is the
ability to assess human health in hi-definition. Since this high
granularity is enabled by many new and diverse technologies
(NGS applications, sensors monitoring personal physiology and
parameters, quantified behavior and lifestyle, advanced imaging)
is common to face today a highly heterogeneous flow of data
requiring big data capabilities to be integrated (Torkamani et al.,
2017).

Multiple and precisemeasures over time in healthy or diseased
individual fits into the “quantified self ” paradigm: the habit of
self-monitoring during normal activities, trainings, or in the
progress of a disease or therapy (Fawcett, 2015). It became more
and more common to compare the self vs. the self (comparing
“you to you”) in a practice of quantified self-knowledge that can
transform disease prevention putting the patient at the center
of the action (Mikk et al., 2017). With a similar transforming
empowerment, a Harvard-MIT startup, NextGen-Jane, aims at
a more efficient prevention of the vast number of women’s
health issues that go undetected. NextGen-Jane analyzes and
digitizes menstrual blood as a rich biological matrix to draw
a large number of informative data from, tackling hormone
levels, fibroids conditions, the vaginal microbiome, fungi or
bacterial infections potentially causing cancer (Erickson et al.,
2014; Mutch, 2014; Tamaresis et al., 2014).

Electronic Health Records
Electronic health records (EHRs) are the digital format of
patients’ health information, either in the context of a
hospitalization or inside a national or regional welfare system.
Integrated use of EHRs and NGS data is a key process to
develop precision medicine. In fact, direct use of NGS data in
the clinical practice is unfeasible, but integration of EHRs into
pipelines able to extract relevant information from analyzed
NGS data would allow to hugely improve clinical outcomes.
Examples of clinical data infrastructures exist and have been
used in the past for different purposes such as investigation
of inherited causes of common diseases (Gulcher et al., 1997)
or use of existing genomic and clinical data to identify genes
related to phenotype and environment (Butte and Kohane, 2006).
More recently the US Precision Medicine Initiative (PMI) begun
planning to integrate genomic and clinical data of a million
of individuals to unveil environmental influences on disease
treatments (Collins and Varmus, 2015), and other initiatives
promoted by hospital networks begun the exploitation of shared
assets such as electronic records and genomic data to implement
a genomic based medicine (Rasmussen-Torvik et al., 2014).

EHRs are mainly designed for clinical (patient care) and
billing/insurance purposes (Jensen et al., 2012), and are not
usually designed with science and research in mind. For this
reason, EHR-based research poses big challenges about bias and
standardization. To this respect, EHRs are similar to any other
large biological dataset suffering of integration weaknesses. As
previouslymentioned, well organized data or even data organized
ab-initio for research are much easier to process with computer
based method such as machine learning. With wide and
standardized adoption of EHRs, millions of clinical data points
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from thousands of individuals become potentially available: these
data are the subject of computational phenotyping (Conway et al.,
2011; Hodapp, 2016; Kim et al., 2017) and the construction of
organized phenome databases. The first issue to solve is therefore
the adoption of an internal, logical and common infrastructure
to implement standards, common annotations, interchangeable
identification numbers. Precise and widely accepted standards
on a smaller number of records are to be preferred over bigger
datasets with incomplete or non-canonical annotations. The
richness of clinical information stored in EHRs lays in its usability
and interoperability, thus the quality and shape of data in the
EHRs has a direct impact on research (Weiskopf and Weng,
2013).

The case of the Electronic Medical Records and Genomics
(eMERGE) Network is a clear example of project spanning
a long period, focusing the first efforts and deliverables on
building the logic and standards to organize data and the
institutions collecting and sharing them (Lemke et al., 2010;
Deleger et al., 2014; Jiang et al., 2015). The primary goal of
the eMERGE is to combine biorepositories with EHR systems
aimed at genomic discovery and implementation of genomic in
the medical practice. As a network of hospitals and research
institutions, eMERGE had to ensure a correct and usable data
infrastructure, then begun to integrate and analyse data (clinical,
phenotypic, genomic) and subsequently delivered integrated
results. Beside many disease-specific research papers published,
two of the most noticeable outcomes impacting research as a
whole are the Phenotype Knowledge Base (PheKB) that can be
used to mine and discover phenotypes from electronic medical
records (Kirby et al., 2016) and the catalog of phenome-wide
association scans (PheWAS) which gathers disease/phenotype to
gene associations obtained by the coupling of genetic data and
EHR data (Denny et al., 2010).

Storage and manipulation of clinical data from millions
of patients will become a challenge in the same way as it
is happening with sequence data. Beside efficient mining and
summarizing methods for better and quicker characterization
and phenotyping, issues of privacy and security should also be
addressed. Better reproducibility, secure data sharing between
collaborating researchers or patient communities and enforced
privacy of EHRs and trusted de-individualized access to EHRs,
are highly desirable goals that can be met with different
technologies. Considered the many issues that data sharing
and privacy pose and technical approaches to address them
(Raychaudhuri and Ray, 2010; Fernández-Alemán et al., 2013;
Omotosho and Emuoyibofarhe, 2014), we like to point at
the fact that, like any data-intensive discipline, biomedical
research is now being considered a subject of choice for
emerging informatics technologies such as block chain. The
block chain, better known as the Bitcoin underlying technology,
is based on distributed ledgers and it is a public, secure and
decentralized database of ordered events or records, called
blocks, that are time-stamped and linked to the previous block.
The public and anonymized transactions are the foundation
for both privacy and traceability, and this logic can be well
adapted to the requirements for privacy, traceability and
trusted sharing imposed by clinical trials (Benchoufi and

Ravaud, 2017) and personal EHRs (Cunningham and Ainsworth,
2017).

Big Data for Systems Pharmacology and
Drug Repurposing
If more data can serve the purpose of a better and a more
effective prevention giving a whole view of the health status, more
data and the ability to handle, prioritize and analyze them faster
can also be a significant advantage for drugs producers, whose
attention is particularly focused on drug repurposing.

How complex is to make a drug? The complexity and length
of the process is directly reflected in the numbers: average time
to develop a drug ranges from 10 to 15 years, and <12% of
drugs entering clinical trials are approved as medicines. Costs
of development, that include cost of failures, surged from 413
million dollars in the 1980s to 2.6 billion dollars in the 2000s,
while industry investments in research passed from 2 billion
dollars to 50 billion dollars in the same period (source FDA).
These figures show how research became less effective, by a
4-fold factor, in channeling its results in drugs development
pipelines, thus the imperative to look for alternative processes.
Repurposing, or repositioning, drugs is the process of finding
new therapeutic indications for existing drugs. A repurposed
drug does not need brand new research processes and already
obtained approval for preclinical phases and/or phase I clinical
trials. Securing FDA approval of a repurposed drug costs only
$40–$80million in total, compared to the average of $1–$2 billion
it takes to develop a new drug (Scannell et al., 2012).

Drug repurposing has been the subject of many
computationally-driven efforts (March-Vila et al., 2017).
Science and pharmaceutical research, are not new to computer
aided research, and they are not new to hyped confidence in
computational methods and failures. Computer assisted drug
discovery, or CADD, was used and welcome by press with
quite enthusiastic tones in the 1980s: the so called rational drug
design seemed to anticipate an industrial revolution (Bartusiak,
1981) that actually did not happen. With these cultural and
historical antibodies, the scientific community should be today
more prepared to better handle and embed computer power
in research and development processes. Today’s computers are
significantly improved in processing power, memory size and in
the software and algorithms they run, and better analyses and
methods, such as free energy perturbation analysis and quantum
mechanics modeling, are available in the field of drug discovery.

Nevertheless, the primary failure of new drug candidates
is due to a very simple fact: that human biology is hugely
complicated. Off-targets or mechanism-based toxicities are the
very common result of unpredictable interactions or processing
and delivery.

Network Based Methods
Network based approaches are used to allow more
comprehensive views of complex systems. Networks are
a convenient way to describe molecular and biochemical
interactions, either experimentally validated or predicted; drugs
and diseases relationships have been also investigated with
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network metrics (Yildirim et al., 2007) or to predict novel targets
for existing drugs (Berger and Iyengar, 2009; Wu et al., 2013).

Networks, which are the description of apparently
unstructured entities that interact each other, can be considered
big data, depending on the number of entities connected and
on their annotated properties. The visually compelling blobs
of a network offered by many graphic displays deliver high
visual impact and serve the purpose to show the complexity
and number of interactions, but precise metrics are needed to
unwind the intricacies of a highly connected network, such
as hierarchies and upstream/downstream effects (activation,
inhibition). Much of these metrics have been developed in the
context of graph theory, and they are generally used as a way of
summarizing the complexity in a convenient way. Some metrics
provide information about individual nodes (the entities in
the network), others about the edges (the connections between
entities). Centrality metrics for instance identify the most
important nodes in a network, those that are most influential,
while the node influence metrics serve to measure the influence
of every node in the network (Dorogovtsev and Mendes, 2013).

In the systems pharmacology domain global drug networks
obtained integrating protein-protein interactions or gene
regulation data with information of many kinds of drugs have
been used to define druggable targets. This is probably the most
general method, able to describe the borders within which to
look for candidate targets. A typical way is to look for hubs,
i.e., highly connected nodes: such nodes are likely to have key
roles in the regulation of multiple biological processes (Jeong
et al., 2000, 2001). Ligands’ chemical similarity is another
property that can be used to define edges between drug targets
(nodes): biochemically important properties enter into play in
the network-mediated discovery process (Hert et al., 2008).

For a narrower focus, disease-gene networks are obtained
adding disease information beside biological datasets and drug
information, to find possible targets for specific therapies.
Proteins which interact with each other are frequently involved
in a common biological process (Luo et al., 2007) or are involved
in a disease process (Goh et al., 2007; Ozgür et al., 2008; Goh and
Choi, 2012): to this end, networks focusing on specific disease
processes have been built and mined for new candidate drug
target (Köhler et al., 2008; Chen et al., 2009).

Instead of focusing on specific pathological domains, another
method that proved useful for drug repositioning was the
introduction of new or refined network metrics, able to capture
the essence of a potential drug target in a more unbiased way.
Traditional metrics relies on the actual topology of described
connectomes, like the shortest path between targets (Lee et al.,
2012; Zhao and Li, 2012) or common targets between drugs
(Daminelli et al., 2012). Such methods are potentially biased
by the known interactomes already described in details in the
literature, thus biased in favor of the most studied genes or
proteins. For this reason, new unsupervised network metrics
have been recently proposed by the Barabasi group, based on the
observation that disease genes preferentially cluster in the same
network neighborhood. Thus, they reasoned, the immediate
vicinity of target proteins to disease modules should have been
a proxy for effectiveness of the drug through the action of

those targets. They introduced a proximity index that quantifies
the topological relationship between drugs and disease proteins
and used it to investigate relationship between drug targets
and disease proteins (Sharma et al., 2015; Guney et al., 2016).
Thousands of drug-disease associations either reported in the
literature or unknown were grouped, for a total of more than 36
thousand associations. Both known and unknown drug-disease
associations were tested with the proximity index method and it
was found that drugs do not target the whole disease modules,
but only a smaller subset of molecules in it. Proximity measure
was also used to find similarity between drugs covering a larger
number of associations than other methods, and to mine for
potential repurposing candidates for rare diseases (Guney et al.,
2016).

Physical Chemistry in Pharmacology
The making of a drug is complex by design. Computational
methods for drug design (Computer aided drug design, or
CADD) belong to two major categories based on molecular
mechanics (MM) or quantum mechanics (QM). The first
methods are essentially used to determine molecular structures
and the potential energies of their conformation and atomic
arrangement. The elementary particle under investigation in
these methods is the atom, taken as a whole, without taking into
account electrons, contribution. On the contrary, methods of the
second class consider the electrons and the systems behavior is
investigated as an ensemble of nuclei and electrons.

As a result, MM describes molecules as atoms which are
bonded each other: not considering electrons motion MM
requires precise and explicit information about bonds and
structure. QM is able to compute systems energy as a function
of electrons and atomic nuclei (not just as a function of
atomic position) and incorporates physical principles such as
quantum entanglement which refers to the correlated interaction
of particles or group of particles providing a quantum view
of the concept of chemical bond (Tapia, 2014). This quality is
particularly useful in the study of interactions of drugs and active
sites of enzymes (Lipkowitz, 1995; Chakraborty and Saha, 2016).

With QM methods it’s possible to calculate crucial system
properties which cannot be achieved by experimental procedures:
vibrational frequencies, equilibrium molecular structure, dipole
moments (Atkins and De Paula, 2006). These properties are
useful in computer models predicting how a particular chemical
compound might interact with a target of interest, for instance
a drug and a pocket of an enzyme involved in a disease. This
is traditionally done by modeling and molecular docking, but
these methods better fit the aim of data reduction when screening
millions of compounds and high reliability of the model is
not strictly requested. Starting from a much lower number of
candidates, i.e., a few hundreds, and needing to shortlist them
to 10, extreme accuracy of the model is a must, and current
techniques are not sufficient. To achieve higher accuracy both
machine learning and QMmethods come into help.

In a recent proof of principle study Ash and Fourches studied
ERK2 kinase, which is a key player in various cancers, and
87 ERK2 ligands in search of new kinase inhibitors. They
incorporated the molecular dynamics results into prediction
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models generated by machine learning and obtained an hyper
predictive computer model using molecular dynamic descriptors
able to discriminate the most potent ERK2 binders (Ash and
Fourches, 2017). The availability of modern computer with high
processing power, especially GPU accelerated computers, allow
even longer simulations for a larger number of proteins.

The concept of “magic bullet” (Strebhardt and Ullrich, 2008),
as drugs binding a single molecular disease target, is probably a
minority case. Since small molecule drugs still account for the
majority of the therapeutics in today’s pharmaceutical market,
finding new targets for them is a highly sought after opportunity,
even if it’s nearly impossible to find small molecules with
no off-target effects. This is mainly due to the fact that the
research attention is traditionally focused on the details and that
investigations are usually not at the genomic scale.

Due to the complexity of protein-ligands interactions a view
at the genomic scale can make the difference: an off target can
turn to be a repurposable drug thanks to the complete change
of genomic context. Thus, being able to maintain attention
to molecular details and to the single biochemical properties
while doing it at a genomic scale is a major challenge of today
pharmacology.

Such a wide view is typical of systems biology approaches, and
it is more commonly exploited with network and interactions
databases. Paolini et al. (2006) analyzed all known drug-target
interactions creating a human pharmacology interaction network
connecting proteins that share one or more chemical binders.
Mestres et al. (2009) integrated seven drug-target interaction
databases and found that drugs interact on average with six
different targets. Quantum mechanics applied to drug discovery
operated in a machine learning context allows to significantly
scale up the process. Even if application of this approach
requires a massive computational effort and ability to handle
and analyse big data, thousands of generics are now scanned for
interactions with computational methods and off targets are new
opportunities as potential new repurposing drugs.

The Making of a Vaccine
Vaccines represent one of the most successful public health
intervention to improve the quality of life and prevent life-
threatening diseases. The eradication of smallpox and the
substantial reduction in the incidence of poliomyelitis, hepatitis,
measles, mumps, diphtheria, tetanus and meningitis have
largely demonstrated that vaccination is a very cost-effective
method for preventing, managing and even eradicating a
disease. It has been estimated that between 2011 and 2020
approximately 20 million deaths were avoided (Kellokumpu-
Lehtinen and Halme, 1990). In the past, the traditional
way of vaccine development was essentially an empirical
method in which microorganisms were cultured, inactivated
and injected in animals and the elicited immune response were
then scrutinized with a number of immunoassays useful to
identify promising vaccine target candidates. The selection of
immunogenic antigens to be included in vaccines resulted after
a long screening process, which was time-consuming, inherently
expensive, and often paralleled by a high burden of failure.
However, it is now well accepted that vaccine development

process is a rather complex workflow that requires integration
of information from multiple and heterogeneous areas and
technologies. They include knowledge on the biology, genomics
and epidemiology of the etiologic agent to be targeted by the
vaccine and its infection mechanism, understanding of the
cell mediated and humoral immune responses elicited during
natural infection and correlated with protective immunity.
Once identified, the biological role of vaccine’s target molecule
should be unraveled. Moreover, other important aspects
that influence vaccine efficacy are related to the mode of
action of typical components of vaccine formulations, like
adjuvants, co-stimulatory molecules or delivery systems. Finally,
considerations on reactogenicity/safety of the vaccines strongly
influence the development process. In the last two decades,
such high level complexity has been addressed by a growing
interest in OMICs and high throughput technologies generating
huge amount of data. Indeed, the recent advancements of
high throughput proteomics, high resolution genomics and
transcriptomics, structural biology, sophisticated bioinformatics
tools combined to multi-parametric cellular immunology
provide important opportunities to improve our understanding
of the molecular mechanisms that underpin vaccine-mediated
protection. Even more powerful are approaches integrating
multiple OMICs, a process also known as systems biology, which
have opened new opportunities for rationalizing vaccine target
identification and for speeding up preclinical vaccines studies.

Concerning the selection of vaccine targets, accumulating
evidence clearly indicate that potential candidates should fall
in more than one of the following categories: (i) Secreted or
membrane associated antigens. This is particularly important
when antibodies are the primary mediators of vaccine-induced
immunity vaccination; (ii) Abundantly expressed; for infectious
diseases vaccine, such expression should be rather constant
throughout the natural lifespan of the pathogen and particularly
during host invasion; (iii) Conserved among epidemiologically
relevant serogroups; (iv) Involved in relevant biological
processes; for pathogens, toxin or virulence factors are preferred
antigens. Approximately 20 years ago, genome sequencing
really transformed vaccinology by allowing vaccine target
selection starting directly from bacterial genome information.
This strategy, termed Reverse Vaccinology (Rappuoli, 2001;
Grandi and Zagursky, 2004), was pioneered by Rappuoli R. and
collaborators who established a real vaccine discovery platform:
the combination of genomics and bioinformatics is applied to
identify the bacterial surface exposed/secreted proteins to be
cloned, purified and tested in surrogate in vitro studies useful
to predict a protective immune response. The approach was
applied for the first time to the development of a vaccine against
Neisseria meningitidis serogroup B (MenB), one of the major
cause of bacterial sepsis and meningitis in children and young
adults. Bexxero, a multicomponent broad coverage vaccine
originated from this study, approved and commercialized
in different countries. Later on, the complementation of
Reverse Vaccinology with proteomics technologies approaches
in different vaccine research programs, such as on Group B
Streptococcus (Maione et al., 2005), Group A Streptococcus (Bensi
et al., 2012), and Chlamydia C. trachomatis (Finco et al., 2011),
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was instrumental to further refine the selection of potential
vaccine candidates and rationalize downstream expensive in vivo
efficacy assays. One interesting study showed that this approach
can also be used for the identification of antigens that stimulate
T cell responses (Finco et al., 2011). In this studies, an initial
bioinformatic selection of the membrane-associated proteins
was combined with protein array screening of human sera from
individuals infected by different virulent serovars to identify the
immunogenic antigens. Moreover, mass spectrometry analysis
was also used for the identification of antigens expressed on the
bacterial surface in different pathogenic serovars, an information
which would improve the likelihood of eliciting broad coverage
immune responses.

More recently, systems biology approaches integrating data
from multiple OMICs and advanced bioinformatics methods
have been successfully employed not only for vaccine antigen
identification but also to predict the specific immune responses
that correlate with protective immunity. This way, the burden of
data to be managed grew up enormously. One essential aspect
that needs to be addressed before starting a vaccine development
program consists in the understanding of the natural infection
mechanisms and the evoked immune responses able to effectively
eliminate the pathogen and induce long lasting protection against
re-infection. Since some pathogens are capable of manipulating
the immune systems, it is important to select vaccine able to
overwhelm these diverting mechanisms. Moreover, of particular
significance are early gene signatures elicited days or even
hours after vaccination that could exploited as novel correlates
of protection or reveal mechanisms that are critical in the
elicitation of the appropriate immune response, and possibly
even optimize the vaccination regimen. A number of studies
addressed these aspects. For instance, a systematic analysis of
published transcriptional profile datasets involving 77 different
host-pathogen interactions allowed to identify, shared host
signatures induced in different cell types in response to different
pathogens, as well as specific responses (Jenner and Young,
2005). The study also described early and late transcriptional
signatures associated to antigen presenting cells during viral or
bacterial infection (Jenner and Young, 2005). Other emblematic
studies are those on influenza vaccines. Immunobiology events
and molecular profiles underlying symptomatic influenza virus
infections and signatures predictive of vaccine immunogenicity
have been recently reviewed (Gomez Lorenzo and Fenton,
2013). Transcriptomics data have been used to describe specific
immune signatures for live attenuated vaccines and trivalent
inactivated flu vaccines (Zhu et al., 2010; Bucasas et al., 2011;
Nakaya et al., 2011). In addition, early gene signatures elicited
upon vaccination with different flu vaccine formulations were
identified (Nakaya et al., 2011). Similar approaches were also
applied on Yellow fever as well as for pathogens causing
major infectious diseases such as Plasmodium falciparum, human
immunodeficiency virus (HIV), Mycobacterium tuberculosis (for
review, Maertzdorf et al., 2015).

Approaches exploiting data fromNext Generation Sequencing
(NGS), quantitative mass spectrometry, novel single cell sorting
technologies offer a unique opportunity to understand the
complex cellular and molecular interplay underlying the

elicitation of B and T cell responses. In addition, mass
cytometry (CyTOF) technologies allow to integratemulti-OMICs
data with phenotypic information from different immune cell
subpopulations. These holistic approaches have been used
to describe the complete B cell repertoire and the T cell
profiles induced in response to infection or vaccination. For
vaccines conferring protective immunity by elicitation pathogen-
specific antibodies, which represent the large majority on all
licensed vaccines, the isolation and characterization of the
antibody repertoire produced by antigen-specific B cells has
acquired a central importance. This process also provides an
accurate overview of the antibody maturation process and can
drive effective strategies aimed at priming B cell precursors
expressing germline encoded antibodies before initiation of
somatic mutations. Moreover, it is instrumental to generate of
functional monoclonal antibodies with therapeutic properties
(Galson et al., 2014) and, in general, to design new vaccines. For
instance, the B cell specific repertoire pattern that is associated
with serum antibody responses to vaccination has been shown for
the tetanus toxoid vaccine (Lavinder et al., 2014). The unraveling
of the B cell repertoire elicited by protective immunization,
combined to single cell sorting of antigen-specific B cells and to
recombinant antibody technologies provide a powerful platform
to generate functionally active recombinant human antibodies
(Rappuoli et al., 2016). Moreover, powerful approaches also
include structural proteomics technologies, such as x-ray
crystallography and cryoelectron microscopy. The integration
of high resolution data generated by these technologies allow
to identify the protective antigen/epitope conformation eliciting
functional antibodies and consequently re-instruct or optimize
the vaccine design process. Relevant findings from this type of
approach have been used for the optimal design of HIV and
Respiratory Syncytial Virus (RSV) vaccine antigens (for review,
Rappuoli et al., 2016). Finally, another interesting example to
scrutinize the characteristic of antibody responses elicited by
vaccination consists in the combination of serum proteomics and
multiple functional / biochemical assays, by which it is possible to
dissect the polyclonal humoral response elicited by vaccination,
as done by Chung et al. for the HIV vaccine (Chung et al., 2015).

A rational development of new vaccines also requires a
thorough understanding of their mode of action. Indeed,
unraveling the interaction network between innate and adaptive
immunity could allow to develop vaccine able to selectively target
desired immune responses with expected less reactogenicity. This
is particularly relevant for most modern vaccines employing
highly purified subunits of pathogens or recombinant antigens
that necessitate the use of adjuvants or appropriate delivery
systems to enhance and prolong the desired immune responses.
Various systems biology approaches were used to understand the
mechanism underlying the specific immune activation induced
by vaccines approved for use in humans (Pulendran, 2014).
More recently, such approaches have been used to study and
compare the mode of action of different adjuvants, leading to
the identification of early molecular signatures rapidly induced
in the blood after vaccination that correlate and predict a
protective immune response, or where associated to a better
vaccine safety (for review, Olafsdottir et al., 2015). A direct
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comparison of different adjuvants, either approved or in clinical
and preclinical development stage, led to the identification of
molecular signatures, pathways and networks shared by them or
otherwise exclusive (Maertzdorf et al., 2015; Olafsdottir et al.,
2016). In addition, studies were also dedicated to understand
cytopathic effects associated to delivery systems based on viral
vectors used for decades for the administration of heterogeneous
antigens, by virtue of their ability to induce effectors CD8T cells,
like attenuated vaccinia virus or poxvirus, and adenovirus (for
review, Maertzdorf et al., 2015).

Beside contributing to the vaccine development process,
computational approaches open the way to investigate the
influence of additional parameters in the responsiveness to
vaccines, such as environmental and lifestyle factors, pre-existing
immune status, chronic infections, metabolism and geographic
localization or other non-canonical factors (Mannick et al.,
2014; Pulendran, 2014; Reese et al., 2016). For instance, pre-
existing immunity, sex, or age related factors were shown to
affect the response to hepatitis B and the influenza vaccine
(Furman et al., 2014; Fourati et al., 2016). Microbiota is also
an important factor influencing immune responses elicited by
vaccination (Walker, 2016). Analysis of these parameters further
amplifies the variety and size of data that should be managed,
integrated and, rationally interpreted to provide new knowledge
in the development process, a move steps toward to personalized
vaccine strategies.

Overall, systems biology approaches integrating big data have
revolutionized vaccinology research and have delivered new tools
to inform and accelerate the research and development process.
Nevertheless, there are still areas that need additional efforts.
This is the case of vaccines for which protective immunity is
not correlated to the elicitation of functional antibodies, but it
is based on antigen specific CD8 and CD8T cells, and different T
lymphocyte subsets, such as malaria, tuberculosis and Chlamydia
infections. One possible reason for this knowledge gap may be
ascribed that, for ethical and pure feasibility reasons, most studies
routinely analyze the immune responses in the blood, whereas
functional T cells mainly reside in the tissues were they exert
their protective functions. For this cases, a rational use of animal
models of infection, when available, could help identify protective
molecular and cellular signatures. In addition, a thorough
exploitation of data from clinical trials represent another area
of future improvement. High throughput technologies should be
complemented to allow modeling of molecular signatures that
could be associated with protective vaccination, thus enabling
to establish robust correlate of protection, to predict vaccine
outcome and to monitor safety. They could take into account
multiple biomarkers, immunological read-outs, as well as lifestyle
and environmental variables parameters possible influencing
vaccination in specific population subsets. A correct integration
and interpretation of data from genetics, transcriptomics,
proteomics, single cell analysis, immunogenicity, toxicology and
efficacy studies could tangibly accelerate vaccine development
at reduced costs, and could re-inform the initial vaccine design
process. To address this objective, an important challenge
consists in harmonizing, processing and analyzing big data
derived from heterogeneous technologies and data sources,

so as to give useful interpretation. Indeed, right from the
start, OMICs approaches were paralleled by the evolution of
bioinformatics tools and databases to support vaccine selection.
They include tools for sequence analysis, antigen topology and
epitope prediction (He et al., 2010a). For instance, Vaxign was
a first web-based vaccine design program based on the Reverse
Vaccinology strategy (He et al., 2010b). Different methods
and databases for storage, mining and interrogation of big
data accumulated from OMICs and from literature annotation,
are in continuous development to support vaccine research.
Collected data include genomics, transcriptomics, proteomics,
metabolomics, functional immunology, as well as information
on protective antigens, DNA vaccines, and many others. Beside
these research-oriented data sources, other relevant vaccine-
related databases collect data from vaccine safety and reports
vaccine adverse events (VAE) from many post-licensure vaccines
(such as the Vaccine Adverse Event Reporting System available
at www.vaers.hhs.gov), and could facilitate the association
between particular adverse events and specific vaccinations.
Other research databases could help overcome bottlenecks in
vaccinology (for review, He, 2014).

CONCLUDING REMARKS

Biomedical data are by definition characterized by high variety
and heterogeneity; the diversity of possible measurements
directly depends on the many levels through which biology
can be investigated. These data-producing biological levels
are genomics, transcriptomics, proteomics (from the side of
more traditional omics), tissues or single cells specificity,
imaging and clinical quantification of a big number of
parameters, often repeated over time. Connected to the
biology there is the phenotypic layer which is the ensemble
of physiologic readouts impacting health status, disease and
individual characteristics. The personal clinical parameters are
also collected and usually stored in EHRs, along with any
other medical treatment information. Traditionally experimental
disciplines, i.e., life science sectors that just few years ago were
relying solely on wet bench work, have been flooded by data,
and almost any laboratory technique has been digitized and
can be quantified numerically. We are constantly producing
and collecting higher volumes of diverse data, thus besides
the 4Vs it is an imperative to add an additional “V”:
value.

Is there actual value in embracing the big data paradigm? Data
are not good data just because of their size, so big data per se are
not a value. The added value is actually present and perceivable
only if simple, comprehensible and possibly new and actionable
information can be extracted from the big mass of data with a
reasonable effort.

Information is actionable in research and in clinics if it
allows to form further hypotheses or take medical decisions,
respectively. In fact, ever increasing data volume and variety
challenge human cognitive capacity and too much data is
not usable for informed decisions. There is a significant gap
between the human cognitive capacity and data availability.
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The decision, or educated guess, by clinical phenotype is a
hallmark of traditional healthcare, but nowadays and future
biomedical sciences need to rely on multiple data, analyzed and
integrated by computational methods, and finally summarized
into smaller annotated pieces of rich information to produce
new actionable knowledge allowing augmented decision-making
capacity (Figure 1).

In this context, data integration assumes a primary
importance for biomedical sciences. We can describe at
least two different scenarios for integration: horizontal and
vertical integration, which are not necessarily happening in a
strictly separated manner.

Horizontal integration (across many data from independent
sources) applies more commonly to basic research and academia.
Public databases and repositories of published datasets are a
gold mine for research and can be used to look for correlations,
confirm hypotheses, validate own results. Integration processes
require computational skills often prerogative of computational
biologists, bioinformaticians or computer scientists, and usually
take a significant part of research time.

Vertical integration (across data produced by a single
organization) is particularly important for pharma industries,
which often produce and handle different kind of data, but have
the difficulty or even impossibility to work with data outside
personal or departmental silos. Difficulties are not of technical
nature only, but can originate from organizational and decisional
issues.

Finally, data collection needs to be curated and quality
controlled and then published and shared in a way that they can
be easily reused and reproduced: the publication of the FAIR
principles (Bourne et al., 2015;Wilkinson et al., 2016) emphasizes
four key aspects that should be a priority for data practices across

FIGURE 1 | Transformation of decision making process. The increasing speed

of data production and their volume and variety, are challenging human

cognitive capacity. Educated guessing as the process of inference when

information is not at hand was quite the norm in the past; today the bottleneck

of human ability to process information can be bypassed if data are correctly

integrated to produce new actionable knowledge, thus augmenting human

cognitive capacity. Decisions by phenotype, which is typical of traditional

healthcare, tends to be replaced by data-driven decisions extending the reach

of medical actions either by efficacy or by speed.

the scientific community: published data should be Findable,
Accessible, Interoperable and Reusable.

In the autumn of 2017 a course at the University of
Washington in Seattle taught by biologist Carl Bergstrom and
information scientist Jevin West quickly filled up to capacity in a
few minutes as soon as the syllabus went public: the running title
of the course was quite irreverently addressing the wrong way
to approach information in the era of big data (Bergstrom and
West, 2017). While the course was designed to teach the ability
to recognize falsehood and weakness in many different domains,
there were specific lectures on big data and scientific publication
bias. One of the message there is that good science should beware
of the so called “big data hubris,” the often implicit assumption
that big data are a substitute for traditional data collection and
analysis: the textbook example is the Google Flu Trends project
(Lazer et al., 2014), which claimed to be able to anticipate seasonal
flu outbreaks just by tracking internet user searches for flu-related
terms: this actually turned out to be a predictor of outbreaks
much less reliable than a simple model of local temperatures.
The scientific community sometimes slips into the problem of
data overfitting which is a common concern in data analysis, i.e.,
when too many parameters are used to match a particular set
of data and following too close the training data (the data set
used to infer the model), thus running the risk to infer models
that are ambiguously artificial. A common clue and warning of
possible overfitting, yet too often disregarded, is the occurrence
of odd correlations, even if it is widely known and accepted that
correlation does not imply causation (Aldrich, 1995).

In the quantifying era we live in, the dream of many analysts
is to reduce every signal to a common metric which would make
them much easier to integrate and compare. The reduction of
physiology to quantitative signals and the ability to measure
biological quantities, somehow allowed a first digitization of the
human being: in this way we can ask and hope to be able to
infer much more about health and disease. But as J. Derridà
stated in his 1967 De la grammatologie: “il n’y a pas de hors-
texte” (there is no outer text). In other words, everything we
receive is interpreted and no matter the effort in peeling off
all the interpretation levels, we cannot be connected to an un-
interpreted reality. We need models to interpret the reality and
models to fit the reality to something that allows forecasting.
Weather, health, biology, behavior and financial markets are
predicted with models relying on data points. The more the
points the better the prediction.

In conclusion, if we want to make biomedical sciences a
productive big data science and precision medicine a reality we
certainly need to address challenges given by technicalities of
computational methods and infrastructure scalability, but we will
need to allow a real and productive data integration focusing on
issues of data governance, policies of data sharing, curation and
standardization.
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