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Rhetorical Figure Detection:
Chiasmus, Epanaphora, Epiphora
Marie Dubremetz* and Joakim Nivre

Department of Linguistics and Philology, Uppsala University, Uppsala, Sweden

Rhetorical figures are valuable linguistic data for literary analysis. In this article, we

target the detection of three rhetorical figures that belong to the family of repetitive

figures: chiasmus (I go where I please, and I please where I go.), epanaphora also

called anaphora (“Poor old European Commission! Poor old European Council.”) and

epiphora (“This house is mine. This car is mine. You are mine.”). Detecting repetition

of words is easy for a computer but detecting only the ones provoking a rhetorical

effect is difficult because of many accidental and irrelevant repetitions. For all figures,

we train a log-linear classifier on a corpus of political debates. The corpus is only

very partially annotated, but we nevertheless obtain good results, with more than 50%

precision for all figures. We then apply our models to totally different genres and perform

a comparative analysis, by comparing corpora of fiction, science and quotes. Thanks to

the automatic detection of rhetorical figures, we discover that chiasmus is more likely to

appear in the scientific context whereas epanaphora and epiphora are more common in

fiction.

Keywords: rhetorical device, antimetabole, chiasmus, epiphora, epanaphora, repetitive figures, computational

stylistics

1. INTRODUCTION

Computer science and literature have different cultures (Hammond et al., 2013). Despite that fact,
they have something in common: literature and discourse analysis, like the hard sciences, are in
need of data. A literature or discourse analyst need data to support their interpretation of a text.
These data are not picked randomly: they must be based on well-chosen parts of the text. One of
the aspects that may be studied by the analyst are the figures of speech (Pasanek and Sculley, 2008).
Figures of speech are known in computational linguistics for the challenge they represent, but only
a small subset of them has been recurrently studied in the computational linguistics community,
for instance sarcasm and metaphor (Dunn, 2013).

However, there are many more figures of speech besides sarcasm and metaphor. A recently
compiled ontology lists more than 70 of them (Kelly et al., 2010). Among them we distinguish a
category called the figures of repetition. The figures of repetitions are a family of figures. They can
involve repetition of any linguistic element, from sound, as in rhyme, to concept and ideas, as in
pleonasm and tautology. In this article we will focus only on figures involving repetition of words:
chiasmus, epanaphora, epiphora.

The chiasmus of words, also called antimetabole, is defined as the repetition of a pair of words
in reverse order. It is called “chiasmus” after the Greek letter χ because of the cross this letter
symbolizes (see Figure 1).
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FIGURE 1 | Schema of a chiasmus.

Epanaphora1 is defined as the repetition of a word or a group
of words at the beginning of successive sequences of language,
where sequences can be defined in different ways. One can talk
about epanaphora of chapters, lines, clauses or phrases. In this
paper, we limit the scope to epanaphora of sentences, exemplified
in Example 1.

(1) I am an actor.
I am a writer.
I am a producer.
I am a director.
I am a magician.

At the opposite end, epiphora2 is the figure of speech of repetition
at the end of a sequence (see Example 2).

(2) I’m so gullible.
I’m so damn gullible.
And I am so sick of me being gullible.

As for epanaphora, one can talk about epiphora of chapters, lines,
clauses or phrases but we limit also the scope to epiphora of
sentences, exemplified in Example 2.

We see different reasons why natural language processing
should pay attention to figures of speech in general and to
figures of repetition in particular. First, it may be useful for
literary analysis: tools for supporting studies of literature exist
but mostly belong to textometry. Thus, they mainly identify word
frequency and some syntactic patterns, not figures of speech.
Second, as shown in Dubremetz and Nivre (2015) those figures
playing on repetition of words can be rare, or even extremely
rare (sometimes only one figure is to be found in several hundred
pages of books). Such rareness is a challenge for our discipline.
NLP is accustomed to treating common linguistic phenomena
(multiword expressions, anaphora, named entities), for which
statistical models work well. We will see that chiasmus (and
epanaphora/epiphora to a lesser extent) is a needle in the haystack
problem. Thus we have a double-fold challenge: wemust not only
perform well at classifying the majority of spurious instances but
above all perform well in finding the rare genuine cases.

1In rhetorics, epanaphora is better known under the competing term anaphora.
However, in computational linguistics, the term anaphora can be ambiguous as it
refers as well to a referential pattern. For the sake of clarity, we will only use the
term epanaphora.
2Epiphora is also known under the term epistrophe, but for consistency with
epanaphora we will only use the term epiphora.

The notion of a repetitive figure is vague. Dictionaries of
stylistics tend to quote the same prototypical examples, which is
not helpful when trying to capture the linguistic variety of them.
The purpose of the linguists is to define each repetitive figure
compared to other figures (for instance chiasmus as opposed
to parallelism). To the best of our knowledge there is no pure
linguistic study that tries to distinguish between, for instance,
chiasmus and non-figure repetitions. In traditional linguistics,
as opposed to computational linguistics, rhetorics is taken for
granted. Linguistics has to answer only one question: Which
figure is instantiated by this piece of rhetoric? Computational
linguistics now has to answer not only this question but also the
question of whether a piece of text is a piece of rhetoric in the first
place. Repetition of words is an extremely banal phenomenon
and we want to select only repetitions that constitute a figure of
speech i.e., “a use of language that creates a literary effect3” or “an
expression, [...] using words in an [...] unusual manner to add
vividness, beauty, etc.” (Neufeldt and Guralnik, 1997).

Gawryjolek (2009) was the first to address the automated
detection of repetitive figures and of chiasmus in particular.
Following the general definition of the figure, he proposed to
extract every repetition of words that appear in a criss-cross
pattern. His research shows that this pattern is extremely frequent
while true chiasmi are rare. To give an idea of the rarity, in
Dubremetz and Nivre (2015) we give the example of River
War by Winston Churchill, a book consisting of 150,000 words,
with 66,000 examples of criss-cross patterns but only one real
chiasmus4. Hromada (2011) then proposed to add a feature
constraint to the detection: he drastically reduced the number
of false positives by requiring three pairs of words repeated in
reverse order without any variation in the intervening material.
However, in the example of Churchill’s book, this also removes
the one real example and the user is left with nothing else
than a totally empty output. Finally, in Dubremetz and Nivre
(2015) we built on the intuition of Hromada (2011) and added
features to the detection of chiasmus, but in a different way.
We observed that chiasmus, like metaphor (Dunn, 2013), can be
seen as a graded phenomenon with prototypical examples and
controversial/borderline cases. Thus, chiasmus detection should
not be a binary classification task. Instead, we argue that a
chiasmus detector should extract criss-cross patterns and rank
them from prototypical chiasmi to less and less likely instances
(Dubremetz and Nivre, 2015).

A serious methodological problem for the evaluation of
chiasmus detection is the massive concentration of false positives
(about 66,000 of them for only one true positive in 150,000
words). Such a low ratio makes the constitution of an
exhaustively annotated corpus extremely time consuming and
repetitive.

Because of lack of data, we tuned our features manually in
Dubremetz and Nivre (2015, 2016). Those features included
stopwords, conjunction detection, punctuation, position,

3Definition of “rhetorical device” given by Princeton wordnet: https://wordnet.
princeton.edu/
4Ambition stirs imagination nearly as much as imagination excites ambition.
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similarity of n-gram context, and syntactic role identity5. We
could evaluate the hand-tuned system by average precision but it
was only in Dubremetz and Nivre (2017) that we could make use
of the annotations produced in earlier work to train a classifier
using logistic regression. The latter system will be described in
more detail in the experiments on chiasmus in section 3.

Epanaphora and epiphora have received even less interest
from computational linguists. Actually, only one study on
detection exists and it focuses on epanaphora. Strommer (2011)
is the first to have applied machine learning to repetitive figures
of speech. His underlying aim is to use epanaphora as a metric
of genre. For this task, his detection needs to be as precise
and exhaustive as possible. Thus, Strommer (2011) starts from
a broader definition of epanaphora than we do: he accepts that
some epanaphora could have sentence gaps as in Example 3.

(3) I feltmoody and irritable.
I felt squished inside, I felt like standing in a field and
twirling in circles [...].
Is it the driver’s license?
I felt overwhelmed by it tonight.

This definition is acceptable, but makes the task even more
complicated. Strommer reports technical difficulties mainly
in getting enough annotations. Despite these difficulties, he
describes some features useful for epanaphora and among them,
some of them easy to transpose or use on epiphora detection as
well. Those are the number of sentences, the presence of “strong”
punctuation marks (! and ?) and the length of sentences (shorter
than 10 words).

Epanaphora and epiphora thus have not attracted as much
attention from computational linguists as chiasmus. Nevertheless
the progress made on chiasmus through the very recent years
might benefit the research on epanaphora and epiphora as well.
And if so, this would support the idea that detecting figures of
speech is possible even with the limited human resources that
generally apply to figures of speech in general.

In this article, we will reuse the model introduced in
Dubremetz and Nivre (2017) for the detection of chiasmus
and generalize it to epanaphora and epiphora. We will start
by presenting a generic approach to rhetorical figure detection,
conceptualizing detection as a ranking task and giving a
general characterization of evaluation methods, models and
candidate extraction (section 2). We then present three concrete
instantiations of this approach for, respectively, chiasmus,
epanaphora and epiphora, trained and evaluated on data from
Europarl (Koehn, 2005). The study on chiasmus, presented in
section 3, has been previously published in Dubremetz and Nivre
(2017), but the study on epanaphora and epiphora, in section 4,
is original work presented for the first time. Finally, we will apply
the three detectors in a case study on genre analysis, comparing
the frequency of different figures in scientific titles, fiction titles,
and quotations (section 5).

5For a full description and justification of all features the reader can refer to
Dubremetz and Nivre (2015, 2016)

2. A GENERIC APPROACH TO
RHETORICAL FIGURE DETECTION

Before addressing specific figures, we need to answer four
questions common to any detection of repetitive figures. What
is the task we are trying to solve? How do we evaluate the
performance? What type of model do we use? How do we extract
the candidates?

2.1. The Task
Even if someone could design the perfect detector that would
output all and only the repetitions provoking a rhetorical figure, it
is not certain that this would be the ideal system. As we observed
in Dubremetz and Nivre (2015), chiasmus, like metaphor
(Dunn, 2013), can be seen as a graded phenomenon with
prototypical examples and controversial/borderline cases such as
Examples 4, 5, 6.

(4) It is just as contrived to automatically allocate Taiwan to
China as it was to allocate China’s territory to Taiwan in
the past.

(5) “We have more to tell you than you have for us,” said Phelps,
reseating himself upon the couch.

(6) I know that every word is true, for you have hardly said a
word which I did not know.

Thus, chiasmus detection needs not to be seen as a binary
classification task. Instead, we argue that a chiasmus detector
should extract criss-cross patterns and rank them from
prototypical chiasmi to less and less likely instances. We believe
this is true for other figures like epanaphora and epiphora
as well. Indeed, it is easy to label as True the repetitions in
successive sentences when those sentences are numerous, short
and/or contain powerful repeated words as in Example 7. It is
easy as well to label as False an instance that contains a single
repetition, involves long sentences and rather neutral words like
Example 8. However, there are also many cases in between that
share properties of both true and false instances and that we
cannot sharply place in one or the other category like Example 9.

(7) I consider this as a disgrace!
This is a disgrace!
A disgrace!

(8) We can accept the principle of prohibiting the exportation
of Category 1 and Category 2material.
We can agree to the principle of refrigeration of raw
Category 3material.

(9) So you want to give them a national State.
This is precisely what they need: another Syrian or Yemeni
national State, a State of whatever kind; they need a national
State.
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The fact that controversial cases, like Examples 4 and 9, exist
is not surprising and is not necessarily a problem in literature.
Hammond et al. (2013) underlines that literature study is
nourished by the plurality of interpretations of texts. The fact
that Examples 4 and 9 can be interpreted as either a rhetorical
figure or a non-figure repetition is interesting for a literature
analyst. Thus, eliminating those examples would be an arbitrary
choice made by the machine that would not help the plurality of
interpretation desired by the humans. And, if overused, a detector
with only a binary output could even create a bias toward the
machine that would normalize the interpretation made out of
repetition of words.

To solve this issue and make an effective detector that gives
complete control to the literature analyst, we decide to see the
task not as a binary task but as a ranking task. The machine
should give all the instances of repetitions but in a sorted
manner: from very prototypical true instances (like Example 7)
to less and less likely instances. Thus the user would benefit
from the help of the machine without completely losing their
ability to choose which borderline case is useful for their literary
interpretation.

2.2. The Evaluation
Redesigning the task into a ranking one was the easiest way to
take into account the non-discrete property of the phenomena we
search for. However, it makes the evaluation less straightforward.
In an ideal world we would like to have a set of thousands of
repetitions of each category (chiasmus, epanaphora, epiphora)
all ranked by rhetorical effect power. Then we would try to
achieve this exact ranking with a machine. The problem is
that creating such a corpus would be very difficult and time
consuming. Annotation time, given the noise generated by
repetition extraction, is the real bottleneck of the detection
problem. Besides the fact that it is very time-consuming to
annotate all candidates, it is a very challenging task for an
annotator to sort them into a complete ranking. As a practical
compromise, we therefore limit annotation to three categories:
True, False and Borderline. However, instead of evaluating only
by precision and recall, we use average precision6, which does
not measure only binary decisions but whether true instances
have been ranked higher than irrelevant cases. Moreover, when
using data annotated by multiple annotators we count as True
only those instances that have been annotated as True by all
annotators. In this way we make sure that systems are evaluated
with respect to their capacity to rank good, prototypical instances
of a figure above all other. We consider this a reasonable

6Average precision is a common evaluation used in information retrieval. It
considers the order in which each candidates is returned by making the average of
the precision at each positive instance retrieved by the machine. Thus this measure
gives more information on the performance of a ranking system than a single
recall/precision value (Croft et al., 2010).Average precision is calculated on the
basis of the top n results in the extracted list, where n includes all positions in the
list until all relevant instances have been retrieved (Zhang and Zhang, 2009). The
average precision is expressed by the following formula:

∑
r
P@r
R

Where:
r = rank for each relevant instance
P@r = precision at rank r
R = number of relevant instances in gold standard

compromise between the theoretical ideal of having a complete
ranking of candidates and the practical necessity of making
annotation and evaluation feasible. Finally, the fact that we have
used a three-way categorization into True, False and Borderline
makes it possible to later apply more fine grained evaluation
methods7.

While average precision, unlike precision and recall, is
sensitive to the ranking of candidates, it nevertheless presupposes
that we can identify which candidates to regard as True and False
respectively. However, as noted earlier, it is practically impossible
to exhaustively annotate all instances given the endless character
of the problem. For instance, in a single book, there can be
many thousands of candidates (Dubremetz and Nivre, 2015)
for only one real chiasmus to be found. Luckily, treating the
task as a ranking task helps us manage this problem as well.
Here we seek inspiration from another field of computational
linguistics: information retrieval targeted at the world wide web,
because the web cannot be fully annotated and a very small
percentage of the web pages is relevant to a given request. As
described almost 20 years ago by Chowdhury (1999, p. 213),
in such a situation, calculating the absolute recall is impossible.
However, we can get a rough estimate of the recall by comparing
different search engines. For instance Clarke and Willett (1997,
p. 186), working with Altavista, Lycos and Excite, made a pool
of relevant documents for a particular query by merging the top
outputs of the three engines. We base our evaluation system
on the same principle: through our experiments our different
“chiasmus/epanaphora/epiphora retrieval engines” will return
different hits. We annotate manually the top hundreds of those
hits and obtain a pool of relevant (and irrelevant) repetitions. In
this way, we can measure average precision in the top hundreds
without having to do exhaustive annotation. In addition, we can
measure recall, not absolutely but relative to the total pool of
genuine cases found by all systems evaluated, as is commonly
done in information retrieval evaluations.

2.3. The Model
In Dubremetz and Nivre (2015) we propose a standard linear
model to rank candidate instances:

f (r) =
n∑

i=1

xi · wi

where r is a candidate pattern, xi is a set of feature values extracted
from r, and wi is the weight associated with feature xi. Given
candidates r1 and r2, f (r1) > f (r2) means that r1 is more likely
to be a true figure of speech than r2 according to the model.

We chose the linear model for its simplicity. As it just adds
(weighted) features, a human can easily interpret the results.
That allowed us in Dubremetz and Nivre (2015) to design
detectors tuned manually when there was no data yet available
for automatic tuning. Once we have accumulated enough
training data, we can train a model using logistic regression

7Although during training and evaluation, the borderlines are always counted as
False instances, the borderline annotation is saved for future research and is already
used to discuss the performance of our system in section 3.3.4.
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(Pedregosa et al., 2011), which gives us a log-linear probability
model, whichis a special case of the linear model where scores are
normalized to form a probability distribution. Where scores are
normalized by a probability distribution. This allows not only to
do ranking (like we did with the human tuned system) but also
to additionally give a precision and relative recall score, because
every instance with a score above 0.5 is considered as a true
instance by the model. Moreover, we can tune the probability
threshold if we want to favor precision over recall or vice versa.

2.4. The Method of Extraction
Part of defining the task consists in choosing how we extract the
candidates. There is not one obvious answer to this question.

The notion of repetition of identical words, common to the
three repetitive figures, is ambiguous. “Identical” can refer to any
type of identity, from vaguely synonymous to exact repetition
of the same string. Ideally we should deal with all of them
but in reality the task of extracting any kind of identity would
pile up technical difficulties and make us extremely dependent
on the performance of lexical resources available (stemmers,
dictionaries, etc.). To make the tasks feasible we have to choose
one method of extraction adapted to the resources we have and
to the difficulties we are able to cope with. From a technical point
of view, the most computer friendly methods of extraction are:
matching the exact same string, as it has been done in previous
work (Gawryjolek, 2009; Hromada, 2011), or matching the same
lemmas as lemmatizers are now expected to be reasonably reliable
in English.

Previous work (Hromada, 2011) has shown that we have to
decide not only the type of repetitions we require, but also on
the minimal number necessary. One can consider to extract only
candidates that are based on more than a single repetition. It is a
restriction of the definition, like restricting the kind of identity is,
but it can be reasonable if it makes the task feasible.

So, how do we choose between these two parameters
(extracting the same string vs. the same lemma, and requiring
only one vs. several repetition of words). To answer this question,
we perform a systematic exploration study that consists in
extracting the candidates with a minimum of only one identical
lemma, without any filter, and annotating a random sample of
100 candidates.

As we can see from Table 1, even if the method of extraction
is the same (minimum one lemma repetition), the number of
instances is definitely not the same, with chiasmus candidates
being a thousand times more frequent than epiphora candidates.

TABLE 1 | Annotation of 100 randomly selected chiasmus, epanaphora and

epiphora candidates.

Type of

instance

True Borderline False Number of candidates

Chiasmus 0 0 100 2,097,583

Epanaphora 1±1.94 3± 3.33 96± 3.82 10,249

Epiphora 4±3.77 7± 4.91 89± 6.02 2,723

The corpus is 4M words of parliamentarian discourses (159,056 sentences).

Additionally, the ratio between True and False instances is
different. This calls for a close examination of the way to extract
candidates. In the next sections we will see how we handle each
figure in turn. For each of them, we will start by discussing the
extraction method. We will go on to describe the features used
in the respective models, and we will finish with experimental
results based on the Europarl corpus.

3. CHIASMUS

3.1. Extraction of Candidates
For chiasmus extraction, we extract every criss-cross pattern that
has an identity of lemmas within a window of 30 tokens. Thirty
tokens is the upper bound found empirically by Dubremetz
(2013)8 and reused by us in Dubremetz and Nivre (2015). As
seen in Table 1, chiasmus is a pattern that generates an extremely
large number of false instances (2 million instances, and 0 true
instances in our sample of 100). Given the rarity of chiasmus and
the absence of filters we are unlikely to find any true instance
in the 100 randomly taken examples. Intuitively, we know that
stopwords like articles, conjunction etc. are a factor of false
instances. What we discovered during annotation of the 100
randomly taken instances is that it is even hard to find any other
kind of false examples in such a small sample: all our chiasmus
candidates involved the repetition of stopwords.

The number of true instances of chiasmus in the corpus is
the most difficult to estimate. Proportionally our sample (100
for more than 2 million instances) is one thousand times less
informative than for epiphora for instance (100 on nearly 3
thousands). If we look only at this table we can assume that in
this corpus there is between 0 and 1% real chiasmus, i.e., from 0
to 20,000 instances of real chiasmi. That is why in Dubremetz
and Nivre (2015) we take the example of a book written by
Churchill where only one chiasmus was to be found and in the
same conditions of extraction we got 66,000 instances. If our
parliamentarians were to make as much chiasmus as Churchill
in his book, in the 2 million instances corpus there would not be
more than 40 instances of chiasmus. Of course, this estimate is
to be used carefully, because there is no reasonable way to have
a very close approximation. Nevertheless, with this comparison,
we get at least the intuition that we definitely should not expect
thousands of good examples in this politician discourse. In fact,
we should probably not even expect several hundreds of them.

3.2. Model Features
Several features have already been tested for chiasmus, as
discussed briefly in section 1. Below we list the features used
in our model using the notation defined in Figure 2. The
first set of features (1–17) are basic features concerned with
size, similarity and lexical clues and come from Dubremetz
and Nivre (2015), while a second group of features (18–22)
belonging to the category of syntactic features was added in
Dubremetz and Nivre (2016). We use the same features in our
machine learning experiments but only train two systems, one

8In the corpus study of Dubremetz (2013) the largest chiasmus found consisted of
23 tokens.
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FIGURE 2 | Schematic representation of chiasmus, C stands for context, W for word.

corresponding to Dubremetz and Nivre (2015) (called Base) and
one corresponding to Dubremetz and Nivre (2016) (called All
features).

1. Punctuation: Number of sentence punctuation marks
(“.”,“!”,“?”) and parentheses (“(‘,’)”) in Cab and Cba

2. Weak punctuation: Number of commas in Cab and Cba

3. Central punctuation: Number of strong punctuation marks
and parentheses in Cbb

4. Stopword a: True if Wa is a stopword9

5. Stopword b: True if Wb is a stopword
6. Words repeated:Number of additional repetitions of Wa or

Wb in the context
7. Size difference:Difference in number of tokens between Cab

and Cba

8. Size bb: Number of tokens in Cbb

9. Exact match: True if Cab and Cba are identical
10. Identical tokens: Number of identical lemmatized tokens in

Cab and in Cba

11. Normalized identical tokens: Same as previous one but
normalized

12. Identical bigrams: Number of bigrams that are identical in
Cab and Cba

13. Identical trigrams: Number of trigrams that are identical in
Cab and Cba

14. Identical left and central context: Number of tokens that
are identical in CLeft and Cbb

15. Conjunction: True if Cbb contains one of the conjunctions
“and,” “as,” “because,” “for,” “yet,” “nor,” “so,” “or,” “but”

16. Negation:True if the chiasmus candidate contains one of the
negative words “no,” “not,” “never,” “nothing” (included in
context left and right)

17. To: True if the expression “from . . . to” appears in the
chiasmus candidate or “to” or “into” are repeated in Cab and
Cba (included in context left and right)

18. Identical tags: True if Wa Wb W′

b W′
a all have the same

part-of-speech tag
19. Identical dependencies a-b′: Number of incoming

dependency types shared byWa andW′

b
20. Identical dependencies b-a′: Same but forWb andW′

a
21. Identical dependencies a-a′: Same but forWa andW′

a
22. Identical dependencies b-b′: Same but forWb andW′

b

3.3. Experiments
Following the setup in Dubremetz and Nivre (2017), we compare
two models for chiasmus detection, one with only basic features
(1–17) and one with all features.

9The list of stopwords is defined by the generic list made available in the snowball
stemmer project: http://snowball.tartarus.org/algorithms/english/stop.txt

3.3.1. Data, Annotation and Preprocessing
The data used in our experiments in this and the following
section comes from the English section of Europarl (Koehn,
2005). It is a corpus common in natural language processing
convenient for experimentation. The type of English contained
in Europarl is generic enough that we think the system is likely
to be applicable on many other genres, like novels. Europarl
is the transcription of discussions in the European assembly.
Most of the persons talking in it are politicians, some of them
have well prepared speeches likely to contain the figures we
are looking for. Finally it is a reasonably challenging corpus as
the parliamentarian speech is full of repetitive structures like
Examples 8 and 10 that are not necessary figures of speech. That
makes it interesting to explore.

(10) Question No 62 by (H-0633/00):
Subject: Subsidies for growing tobacco
Tobacco growing in the European Union is subsidized to
the tune of millions of euros per year while at the same
time over half amillion EU citizens die each year of diseases
caused by tobacco.

The preprocessing consists in tokeninizing, lemmatizing, tagging
and parsing the corpora with the Stanford CoreNLP (Manning
et al., 2014). This allows the extraction of shallow and deep
syntactic features. In each experiment involving an evaluation
on test data the annotation task is systematically given to two
different annotators. The annotation was done by the authors
of this study. It is an expert annotation (as opposed to a
crowdsourcing one). Both annotators have studied literature
analysis but at different schools, in different languages, and at
different times. It is interesting to see through this annotation
whether two experts, not belonging to the same school, can agree
on the interpretation of the candidate repetitions. In order to
avoid any bias toward the machine, the instances to annotate
are presented to the annotator in a randomized order that has
nothing to do with the machine ranking output.

The training corpus is an extract of 4 million words from
Europarl, containing 159,056 sentences. It is the same corpus
used for generating Table 1. It contains 2,097,583 chiasmus
candidates. Through our previous efforts in Dubremetz and
Nivre (2015, 2016), 3,096 of these have been annotated by one
annotator as True, False, Borderline, or Duplicate10. The True,
Borderline and Duplicate instances were then re-annotated by
a second annotator. There were 296 of them. Only instances
labeled True by both annotators will be considered as true

10For example, if the machine extracts both “All for one, one for all” and “All for
one, one for all,” the first is labeled True and the second Duplicate, even if both
extracts cover a true chiasmus.
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positives in our experiments (at both training and test time). This
makes sure that both training and evaluation is based on themost
prototypical true examples.

The test corpus is a different extract from Europarl, containing
2 million words and 78,712 sentences. It is used only in the
final evaluation of the tuned models (sections 3.3.3 and 4.3.3)
and it was used as a test set in previous research and thus
already contains some annotated instances (Dubremetz and
Nivre, 2016, 2017). It contains 1,057,631 chiasmus instances.
For the test phase, two annotators were asked to annotate the
top 200 instances of each system. In total, this produced 533
doubly annotated instances in our test set containing one million
instances in total.

3.3.2. Training
We train a binary logistic regression classifier and use 2-fold
cross-validation on the training to set the parameters11. To fit
the system, we use the 31 instances labeled as True by both
annotators as our positive examples. All other instances are
labeled as False and thus considered as negative examples (even
if most of them are actually unknown, because they were never
encountered during the hand-tuning process).

We tried training on only annotated instances but the results
were not satisfying. Normalizing features by themaximum values
to get only 0 to 1 features deteriorated the result as well. We
tried over-sampling by giving a weight of 1,000 to all true positive
instances; this neither improved nor damaged the results. Finally,
we tried support vector machines (SVM), with rbf and linear
kernels, and obtained similar average precision scores as for
logistic regression during training. When it comes to F-score,
the SVM, unlike logistic regression, requires an over-sampling of
true positives in order to perform as well as logistic regression.
Otherwise, it converges to the majority baseline and classifies
everything as false.

Based on these preliminary experiments, we decided to limit
the final evaluation on the unseen test set to the logistic regression
model, as its probability prediction allows us to rank chiasmi
easily. For the linear logistic regression implementation we used
scikit-learn (Pedregosa et al., 2011).

3.3.3. Evaluation
Table 2 shows that the model with basic features only achieves a
quite respectable (average) precision but suffers with respect to
recall. Adding the syntactic features further improves precision
but also increases recall quite significantly. The best average
precision achieved is 70.8, which indicates that the system
is capable of ranking true instances high on average. For a
comparison with the older hand-tuned system, we refer to
Dubremetz and Nivre (2017).

11 Since we had a very small number of positive instances, using 10-fold cross-
validation would have made the validation procedure unreliable, so we instead
opted for a simpler 2-fold cross-validation, using half of the data for training and
the other half for validation. In order to avoid over-fitting, we repeated the process
6 times with different randomizations and used the average of these runs as the
validation score.

TABLE 2 | Results for logistic regression model on chiasmus detection.

Model Av. Precision Precision Recall F1-score

Base 57.1 80.0 30.8 44.4

All features 70.8 90 69.2 78.3

Inter annotator agreement κ = 0.69.

Bold values indicate the most important differences between all features experiment and

ablation of one feature experiments, in the ablation study.

3.3.4. Discussion
To cast further lights on the results, we performed an error
analysis on the cross-validation experiments (run on the training
set). In the all-features experiment, we encountered 4 false
positives. Of these, 3 were actually annotated as Borderline by
both annotators, and 1 was annotated as Borderline by one
annotator and False by the other, which means that none of
the false positives were considered False by both annotators.
To illustrate some of the difficulties involved, we list 5 of the
31 positive instances in the training set (11–15), followed by
the 3 borderline cases (16–18) and the 1 case of annotator
disagreement (19).

Positive

(11) We do not believe that the end justifies themeans but that
themeans prefigure the end.

(12) Do not pick the winners and let the winners pick.

(13) Europe has no problem converting euros into research, but
has far greater difficulty converting research into euros.

(14) That it is not the beginning of the end but the end of the
beginning for Parliament’s rights.

(15) It is much better to bring work to people than to take
people to work.

Borderline

(16) In parallel with the work on these practical aspects, a
discussion is ongoing within the European Union on
determining the mechanisms for participation both by
EU Member States which are not members of NATO

and by NATO countries which are not EU Member
States.

(17) In that way, they of course become theEU’ s representatives
in the Member States instead of the Member States’
representatives in the EU.

(18) If there is discrimination between a black person and
a white person, or vice versa, for example if someone
discriminates against a white Portuguese in favor of a
black Portuguese, or against a black Portuguese in favor
of a white Portuguese, this is clearly unlawful racism and
should result in prosecution.
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Disagreement

(19) European consciousness is that which must contribute to
the development of mutual respect [...] and which must
ensure that tolerance is not confused with laxity and an
absence of rules and laws and that laws and rules are not
made with the intention of protecting some and not others.

How can the classifier achieve such good results on both recall
and precision with only 31 positive instances to learn from?
We believe an important part of the explanation lies in the
way the training set was constructed through repeated testing of
hand-crafted features and weights. This process resulted in the
annotation of more than 3,000 obvious false positive cases that
were recurrently coming up in the hand-tuning experiments. Our
way to proceed consisted in first tuning the weights of the features
manually. In this process we started by using the stopwords as
our first feature in order to filter out most false positives. This
is in fact a necessary requirement. Without stop word filtering,
the chance of finding a true positive in the top 200 instances is
extremely small. Thus, if a false negative is hidden somewhere in
the training set, it is likely to be one involving stop words. To
the best of our knowledge, there is only one existing chiasmus
ever reported in the history of rhetorics that relies exclusively on
stopwords12.
Given this, we cannot guarantee that there are no false negatives
in the training set, but we can definitely say that they are
unlikely to be prototypical chiasmi. Thanks to this quality of
the annotation, the machine had the maximum of information
we could possibly give about false positives which is by far the
most important class. In addition, the performance observed with
only 31 positive training instances might be revealing something
about chiasmus: the linguistic variation is limited. Thus, within
31 examples the patterns are repeated often enough so that a
machine can learn to detect them.

We have now addressed the problem of chiasmus and
discovered that even with a very partial annotation we can train
a system. In the next section, we will generalize this approach
to epanaphora and epiphora, two figures that have hardly been
explored at all in computational linguistics.

4. EPANAPHORA AND EPIPHORA

4.1. Extraction of Candidates
As for chiasmus we perform the basic exploration of the
epanaphora and epiphora patterns (Table 1) in order to
determine the best extraction process: only successive sentences,
with one identical initial lemma for epanaphora, final lemma for
epiphora, are considered as candidates. Then 100 examples are
randomly picked and annotated.

The epanaphora and epiphora extraction is definitely less
of a needle in the haystack problem than chiasmus. As we
can see in Table 1, the number of candidates is reduced to a
couple of thousands instead of millions and we find at least one
positive example and several borderline cases in our extraction
of epanaphora and epiphora. That is extremely positive because

12All for one, one for all.

it means that, unlike for chiasmus, we might not have to start
tuning systems manually: a couple of state of the art filters should
be enough to extract a decent number of positive examples in
order to directly train our system.

We just showed that both epanaphora and epiphora extraction
are less noisy than chiasmus extraction. The issue is now to
determine if epanaphora and epiphora detection are really the
same problem and thus could be extracted with the same
parameters (kind and number of repetitions).

From Table 1, we see that the distribution of instances for
epanaphora vs. epiphora is definitely not the same. First of all, the
number of epanaphora candidates is more than three times larger
than the number of epiphora candidates. During the annotation
of epanaphora, we noticed the following: more than 50% (55
exactly) of the candidates are simply due to the determiner
The occurring at the beginning of the sentences and 20% are
due to the appearance of a single pronoun (I, It, You, etc.).
Such recurrent patterns do not appear in epiphora candidates.
Thus, epanaphora extraction is necessarily more noisy, which
is confirmed by the number of true and borderline cases found
in the samples: 11 True or Borderline cases found for epiphora
and only 4 for epanaphora. Even if epanaphora detection seems
more difficult than epiphora detection because of the number of
candidates this can be handled like we do for chiasmus. However,
another phenomenon attracted our attention and forced us to
restrict the candidate selection for epanaphora: the phenomenon
of True/False cases. In our machine learning system we want to
divide the candidates into three categories: True like Example 7,
False like Example 8, and Borderline like Example 9. Because
of pronouns and determiners, we observed that epanaphora,
more than epiphora and chiasmus, could generate instances that
cannot really be defined as Borderline cases because they contain
very prototypical True cases and very prototypical False cases at
the same time. We observe this in Example 20. In this example,
the fact that the author insists four times on the formulation
He should never have is a noticeable rhetorical effect that would
deserve to appear in a translation, or be stressed in a text-to-
speech application. But the fact that the first sentence starts
with the pronoun He is nothing exceptional and it would sound
strange to stress it as a rhetorical figure.

(20) He arrived from Algeria at a time when, [...] immigration
had been stopped and there was no reason for him to come.
He should never have stayed in France, having been
reported to the transport police more than 40 times for
offences [...].
He should never have been free because 14 charges of theft,
violence and rape had been brought against him[...].
He should never have been able to escape from France, but
the officers pursuing him had no jurisdiction and European
frontiers have more holes than a sieve.
He should never have arrived in Spain, where he mugged
a woman at knifepoint [...].

This phenomenon is confusing even for a human and can
make the task of annotation and learning extremely difficult.
Furthermore, we observed that in the case of personal pronouns
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and verbs the lemmatizer was extracting candidates that did
not even sound like a reasonable candidate to extract. For
instance in the case of Example 21 the verb “be” is starting
the sentence but has a very different morphology which makes
the example likely to be considered as false. In Example 22,
we see that the lemmatizer is tailored to lemmatize the same
way subject pronouns and possessive pronoun. In this particular
case the example would sound like a perfect positive one if only
the machine had not extracted the last sentence, starting by
“his.” Such case is not so infrequent in the task of epanaphora
detection. Indeed, personal pronouns (I, my, you, our, he, his...)
are likely to be at the very beginning of sentences. The personal
pronoun category is a closed class of words with only a dozen of
possibilities, thus reducing even more this class by lemmatization
sounds like an unnecessary factor of false candidates and/or of
True/False cases like Example 22 was.

(21) Are the rights guaranteed under the Convention on
Human Rights better than those guaranteed under the EU’
s Charter?
Is the latter, again, better than the national constitutions?

(22) He knows perfectly well that ours is a non-political Head
of State.
He knows perfectly well that for nearly fifty years she has
scrupulously avoided engaging in controversial political
issues.
He knows perfectly well that she cannot come to this
House to set the record straight.
His behaviour is a disgrace and a scandal.

Because of these two phenomena, we decided to restrict the
extraction to epanaphora candidates that have at least 2 identical
words (not lemmas) at the beginning. Thanks to this restriction,
the number of candidates is comparable to those for epiphora
detection: 2,369.

This exploration determined for us the way to proceed in
the extraction of candidates. It cast light on what method of
extraction is preferable for each figure. In the specific case of
epanaphora, using the same extraction method would lead to
different numbers of candidates (more than three times more for
epanaphora than for epiphora) and the types of false positives
would not be the same. English grammar imposes different
constraints at the beginning and at the end of a sentence.
We therefore have to use two different extractions for the two
problems.

In this section we have explored the common problems
concerning both epiphora and epanaphora. In the following
parts we present the features experiments and the specific
implementation for each of these figures.

4.2. Model Features
In this section, we describe eight features that are used in our
systems and that provide the basis for a feature ablation study
in the next subsection. The three first features (baseline ones) are
inspired by the previous study of Strommer (2011); the five others
come from our own exploratory study.

1. Sentence count:As noted by Strommer (2011), the number of
sentences exhibiting a repetition is a significant feature. The
higher the number, the more likely the repetition is to have a
rhetorical effect. We treat this as a simple numerical feature.
For instance, Example 23 has a sentence count of 3. Sentence
count is included in the baseline models.

(23) Paranoid?
Paranoid!
Who says I’m Paranoid?

2. Strong punctuation: The strong punctuation feature counts
the number of sentences that end with a “strong” punctuation
mark (! or ?). The count is normalized by taking the
average over all sentences in the sequence. For instance,
Example 23 has a strong punctuation feature of 3/3 = 1. Strong
punctuation is also a baseline feature.

3. Sentence length: The third feature inspired by Strommer
(2011) is sentence length, which measures the average
number of tokens per sentence in the sequence. For instance,
Example 24 has a sentence length feature of (6+5)/2 = 5.5.
Sentence length is the third and final baseline feature.

4. End similarity: The end similarity feature counts the number
of successive identical lemmas at the end of adjacent sentences,
averaging over all such pairs in the sequence. To avoid giving
an excessive advantage to long sentences, we divide this
number by the number of words of the shortest sentence. For
instance, Example 24 has an end similarity of 2 similar end
words (not on) divided by 4 (the number of words in the
shorter sentence This is not on).

(24) This is not on!
This is absolutely not on!

5. Start similarity:The start similarity feature is analogous to the
end similarity feature but at the start of sentences.

6. End tag similarity: The end tag similarity feature is again
analogous to the end similarity feature but looks at part-of-
speech tags instead of lemmas. For instance, Example 25 has
an end similarity score of only 1/3 = 0.33 but an end tag
similarity score of 3/3 = 1. (The sequence of tags is identical
for both sentences: pronoun, verb, pronoun.)

(25) I made it!
You take it!

7. Same strict: The same strict feature is a binary feature that is
1 if the last word of the sentences in a sequence has the same
form as well as the same lemma. For instance, Example 27 has
a same strict value of 1, while Example 26 has a same strict
value of 0, because problem is repeated without the inflection
-s the second time.

(26) As such, mining waste is one of ourmajor problems.
The safety of mines is also amajor problem.

8. Diff on end similarity: Diff on end similarity (DoE) is our
most complex feature. It counts the number of identical
lemmas at the end of sentences but then divides it by the
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number of lemmas that do not reappear in the other sentence.
For instance, Example 27 has two different words (so, now) but
have only one identical word at the end of the sentence. Thus,
the diff on end similarity is 2/1 = 2.

(27) And so what? And now what?

When this feature is applied to epanaphora, we call it diff on
start similarity (DoS) because we then divide the difference by
the n-gram similarity at the start of the sentences instead of
the end.

4.3. Experiments
For epanaphora and epiphora the questions are slightly different
than for chiasmus. First no ranking method has ever been tested
for those two figures. It is a pattern that generates fewer false
candidates than chiasmus, but only some features have been
tested so far and only on epanaphora. Finally, unlike chiasmus,
epanaphora and epiphora, have strong theoretical similarities as
they are often defined together. The most legitimate question to
answer is thus whether this theoretical proximity is confirmed in
practice by testing the same set of features on the two figures.

4.3.1. Data, Annotation and Preprocessing
The corpora used for experiments in this section are the same as
in section 3.3.1. We use the same preprocessing as we used for
chiasmus and the same approach to annotation.

The training corpus is the same as in section 3. With our
method of extraction (see section 4.1), this 4 million words
training corpus contains 2,723 epiphora candidates and 2,369
epanaphora. Annotation is time consuming, thus not all of
these instances are annotated. To make the task feasible, we
annotate only the candidates preselected by any of the features
of Strommer (2011). All other candidates will be assumed to be
negative instances (i.e., candidates that neither have any strong
punctuation, neither more than 2 sentences or do not have
an average of less than 10 words per sentences.). For instance,
Examples 7 and 9 would be annotated but not Examples 8 and 28.

(28) It is not exactly the first successful conciliation on social
matters between the European Parliament and the Council.
It is the second, following the successful conciliation
on the minor issue of workers working in an explosive
atmosphere.

This first round of annotation represent in total a set of 508
epanaphora candidates and 410 epiphora candidates. These
were first annotated once by one annotator. Then all instances
annotated as True or Borderline were sent to a second annotator
and discussed. Only the candidates considered as True by
both annotators were used as True instances for training
(64 True epanaphora instances, 50 True epiphora instances).
All remaining instances were regarded as False (even though
most of them were actually unknown because they were never
encountered during any of the annotation process).

The test corpus is also the same as in section 3.3.1. It contains
1,154 epanaphora instances and 1,164 epiphora instances. It is
used only in the final evaluation of the tuned models (with only

the top 200 instances of each systems annotated, as described in
section 2.2). This evaluation method yielded to the annotation of
291 epiphora candidates and 297 epanaphora candidates (among
them 35 epiphora and 53 epanaphora were doubly annotated as
True instances).

4.3.2. Training and Feature Selection
To test the usefulness of our features for detecting epanaphora
and epiphora, respectively, we performed an ablation study,
where we systematically removed one feature at a time to see
what contribution it gave to the results. Based on the result of
the ablation study, we then tried to select the best model for each
figure of speech. All the feature selection experiments reported in
this section were performed on the training corpus.

The feature ablation study was carried out by training and
evaluating a binary logistic regression classifier using two-fold
cross-validation (Pedregosa et al., 2011). This is essentially the
same set-up as for section 3. The only difference is that we applied
oversampling with a weight of 5 for the true class. We tried not
oversampling at all, but this degraded the F-score because of a
recall lower than 10%.

Table 3 shows the results of feature ablation for epanaphora.
Two results are noteworthy. First, sentence length (abbreviated
as Length), unlike other basic features, does not seem to make
a positive contribution to the result, as seen by the fact that

TABLE 3 | Ablation study for epanaphora.

Epanaphora F-Score 1 Full feat.

Av. P.

Full Features 62.25% −

54.60% −

-Sent. Count 48.59% −13.66

54.02% −0.58

-Strong Punct. 56.37% −5.88

50.30% −4.30

-Length 63.13% 0.87

55.71% 1.10

-Start Sim 61.12% −1.14

54.51% −0.09

-End Sim. 62.01% -0.25

54.59% −0.02

-Start Sim Tag 62.03% −0.22

54.65% 0.05

-Same Strict N/A (see section 4)

-Diff on Start 48.29% −13.96

42.58% −12.03

Bold values indicate the most important differences between all features experiment and

ablation of one feature experiments, in the ablation study.
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accuracy improves when this feature is removed. Secondly, one
feature seems to be muchmore important than all others, namely
diff on start (DoS), since results drop by over 10 points when this
feature is removed, which is ten times more than the second best
new feature, start similarity, where results drop by slightly more
than 1 point.

Based on the results of the ablation study, we decided to run
an additional model selection experiment, the results of which
are shown in Table 4. Here we see that a simple combination of
the baseline and the DoS feature performs almost as well as the
full feature model (less than 1% difference). And if we remove
the harmful sentence length feature, it actually performs even
better (gain of 1% on both metrics compared to Full Features).
We therefore selected Baseline− Length+DoS as the finalmodel
to evaluate on the test set.

The ablation study for epiphora, shown in Table 5, tells a
different story. Here all the features seem to make a positive
contribution, and no feature stands out as remarkably better than
any other, although the two baseline features strong punctuation
and sentence length appear to be crucial for getting high average
precision. As a sanity check, we also made a model selection
experiment including a model with only baseline feature and diff
on end (the counterpart of diff on start, which was so important
for epanaphora). However, the results in Table 6 confirm that,
for epiphora, the full model is indeed the best performing model
when using cross-validation on the training set (plus 3 points for
full features on both F-Score and average precision compared to
Baseline + Diff on End experiment). We therefore selected this
model to be evaluated on the test set.

4.3.3. Evaluation
Tables 7, 8 shows the evaluation results for the baseline and the
two best models on the unseen test set. The results were obtained
by annotating the union of the top 200 instances output by the
four systems as proposed in Dubremetz and Nivre (2015) with
inspiration from Clarke and Willett (1997). We observe that
the best models improve on all metrics by at least 14%. The
improvements are balanced across recall and precision and end
up improving the F-Score by 20% for both figures. The largest

TABLE 4 | Choosing the best model for epanaphora.

Epanaphora F-Score 1 Baseline

Av. P.

Baseline 35.96% −

31.74% −

Full Features 62.25% +26.29

54.60% +22.86

Baseline + DoS 61.18% +25.22

54.75% +23.01

Baseline - Length + DoS 63.73% +27.77

55.63% +23.89

Bold values indicate the most important differences between baselines and experiments.

improvement is obtained in the average precision of epanaphora
(+38%). This difference is actually the most impressive because it
is created only by the addition of the DoS feature and the removal
of the sentence length feature. Like the baseline model, the best
epanaphora model has only three features, and yet improves the
F-score by 24%.

4.3.4. Discussion
How can we explain that for epanaphora, unlike epiphora, only
one new feature is needed to significantly improve the results?

TABLE 5 | Ablation study for epiphora.

Epiphora F-Score 1 Full feat.

Av. P.

Full Features 51.80% −

60.53% −

-Sent. Count 51.28% −0.52

60.37% −0.16

-Strong Punct. 49.89% −1.91

52.90% −7.63

-Length 51.13% -0.67

51.15% −9.39

-End Sim. 51.41% −0.39

60.27% −0.26

-Start Sim. 50.74% −1.06

59.13% −1.40

-End Sim. Tag 50.64% −1.16

59.66% −0.87

-Same Strict 50.50% −1.30

59.38% −1.15

-Diff On End 49.28% −2.52

58.58% −1.95

TABLE 6 | Choosing the best model for epiphora.

Epiphora F-Score 1 Baseline

Av. P.

Baseline 35.11% −

41.91% −

Full Features 51.80% +16.69

60.53% +18.62

Baseline + DoE 48.48% +13.37

56.29% +14.38

Bold values indicate the most important differences between baselines and experiments.
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TABLE 7 | Results for the epiphora experiments.

Experiment Recall Precision F-Score Av. Prec.

Baseline 25.71 42.86 32.14 26.78

Full Features 45.71 64.00 53.33 47.90

1 +20 +21 +21 +21

Inter annotator agreement Cohen’s κ = 0.88

TABLE 8 | Results for the epanaphora experiments.

Experiment Recall Precision F-Score Av. Prec.

Baseline 30.19 29.09 29.63 19.97

Baseline -Length + DoS 45.28 53.33 48.97 57.92

1 +15 +14 +24 +38

Inter annotator agreement Cohen’s κ = 0.85.

How can we explain that DoS (and DoE to a lesser extent) is such
an effective feature? There could be several reasons for this.

First, the order in which we performed experiments may
have played a role. We started by designing and testing
features on epiphora and then adapted these to epanaphora.
We did not add or test new features especially designed for
epanaphora. This may partly explain why we ended up with
a simpler system for epanaphora. If we had reversed the
order, we might have ended up with fewer features applied to
epiphora.

A second possible reason is the way we extract candidates,
which is subtly different for the two figures. Because of the
high number of false positives beginning with a single repeated
function word for epanaphora, we had to require at least two
repeated words, which may have reduced the effectiveness of
some features like similarity of beginning.

These reasons may explain why there are fewer features in the
best epanaphora model. However, they do not explain why DoS is
such a powerful feature. One explanationmay be that this feature,
unlike other features, combines two properties: similarity and
difference. Indeed, before coming up with this feature we tried
using a simpler measure of the difference, without normalizing
by the length of the repetition. This was helpful, but not as good
as the normalized version, and it turned out to be redundant
and harmful when used together with the normalized version.
DoS is the only feature that measures the relation between
two properties: similarity vs. difference. Without measuring this
relation between the two features we probably miss an essential
property of the figure.

Finally, this might be explained by the definition of
the figure itself. Our inter-annotator agreement is good but
it was achieved after discussions between annotators on
many borderline cases in the exploratory study. Before this
discussion, our inter-annotator agreement was below 40%
for both of our figures. What came out of discussions
is that the rhetorical effect of epanaphora and epiphora
often comes from the combination with another figure of
speech. For instance, Example 29 contains rhetorical questions,

Example 30 contains a parallelism, and Example 31 is an
apostrophe.

(29) Are the profits from the arms trade clean money?
Are the huge sums spent bribing officials [...] cleanmoney?
Are the profits amassed by [...] companies by making
children work [...] clean money?

(30) National states provide development aid, so does Europe.
National states combat racism, so does Europe.
National states support the women’ s movement, so does

Europe.
National states support the trade unions and parties, so
does Europe.

(31) Poor old European Commission!
Poor old European Council of Ministers!
Poor old European Union!

Others may trade on hyperboles, allusions or other figures.
This means that there are many different ways to build the
rhetorical effect of repetitive figures and every human is not
equally equipped to perceive that. Some annotators are more
sensitive to the similarity of syntactic structures, others are more
disposed to attend to lexical phenomena. Human annotators
can have a difference of sensitivity toward rhetorical effects. We
can illustrate this by Example 32: in this particular case, one
annotator could see the allusion to the similar expression “the
poor cousin,” while the other one could not see it, because he did
not know the expression.

(32) It has been the poor relationwith respect to the milk, beef,
tobacco and wine sectors.
It has been the poor relation because it has been deemed
to lack a strong voice in Europe.

This is the proof that difference of education modifies our
perception. However, there is something common to all humans:
we all have a limited memory. Thus, the more memorable a
pair of sentences is (more repetition between them and less
differences), the more likely they are to be perceived as rhetorical
by all humans, regardless of their backgrounds. Thus, DoS and
DoE features work because they encode a more universally
perceived property.

Now we have designed systems of extraction for three figures
of speech. They have been trained and tested on data from
Europarl. In the next section, we will see if our systems prove to
be useful on other corpora.

5. A CASE STUDY IN GENRE ANALYSIS

In the preceding sections we developed three systems of detection
for three different figures of repetition. This is the first time
that detection of such a large set of repetitive figures has been
both developed and fully evaluated. As we know our systems
are not able to give an absolute recall. However, this does not
impair the quantitative analysis capacity as long as we create a
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fair comparative study. In this section, we will apply the three
detectors to three comparable corpora (same quantity of text,
same language and only different genres). We will study how the
genre influences the frequency of different repetitive figures.

While studying chiasmus, one remark attracted our attention.
Vandendorpe (1991, p.4) says:

Very commonly used in the 70’s, [chiasmus] has been harshly
criticized for the violence it makes against communicative
function of language : “[...]. The research of meaning is the
meaning of research, etc. You can appear deep with any banal
idea.” But by forcing the naive reader to think, this propositional
chiasmus [...] is often appropriate for titles both because of its
lexical economy and because of the endlessly deep discussions
that it seems to foretell. In La trouble-fête, Bernard Andrès
criticizes this process for being typical of academic jargon[...],
which is likely to draw attention and grants.

The remark of Vandendorpe (1991) citing Bernard Andrès
implies several assumptions. First, if chiasmus is convenient for
titles, we might be likely to find them in this kind of text. Second,
chiasmus seems to be regarded by Vandendorpe as cliché13

when it comes to academic writing. This remark is interesting
because it assumes that chiasmus should be over-frequent in it.
However this was said nearly 30 years ago. There is no way that
Vandendorpe (1991) could check automatically on huge amounts
of academical titles that chiasmus is a cliché in this genre. We
have no reason to disbelieve what Vandendorpe (1991) says but it
is discussable. One could argue that chiasmus, and any figure of
speech in general, should be less frequent in scientific titles given
that researchers are not professional creative writers like authors
of fictions are.

To check this, we design a study on multiple corpora. The first
corpus contains titles from scientific publications, and the second
contains titles from fictional literature. Running our detectors on
both of those corpora is interesting because they are alike (they
are both a list of titles) and they come from completely different
genres. To improve our comparisons, we also include a corpus of
quotes14. The quote corpus is likely to contain rhetorical figures,
because quotes are selected for their rhetorical properties. Thus,
in quotes, figures of speech are expected, more than in any other
genres and certainly more than in titles in general. If a figure of
speech in scientific articles happen to appear nearly as much as in
quotes we can definitely conclude that this figure is a cliché.

5.1. Data, Annotation and Preprocessing
The three corpora15 we use are:

• The Fiction Titles Corpus: It is obtained by downloading
all the titles of books under the category “Fictions” available
on the website Waterstone16. After, cleaning and removing of
duplicates this corpus contains exactly 192.506 titles.

13i.e., expression that has lost originality, ingenuity, and impact by long overuse.
14The list of quotations comes from an open source collaborative collection
initiated by Tan (2015).
15The three corpora and output based on them are available at https://github.com/
mardub1635/corpus-rhetoric (Dubremetz, 2018).
16Waterstone is a commercial website for selling books to the general public
https://www.waterstones.com

• The Scientific Titles Corpus: We download titles from
scientific publications coming from dblp17. For comparison
sake we apply the same preprocessing as for the fiction titles
corpus and we reduce the number of title by picking randomly
192.506 of them.

• The Quotes Corpus: We download a corpus of quotes. We
have 32,000 quotes but with a comparable number of words
with the fiction title corpus (around 1,000,000 words).

Out of those three corpora, two are lists of titles. Titles are
suitable for comparing genres because a title is an independent
meaningful piece of text and it is easy to obtain corpora of
equivalent sizes simply by sampling the same number of titles.
Titles are also short, whichmeans that the number of epanaphora
and epiphora candidates is limited. This allows us to exhaustively
check all candidates manually, which is otherwise difficult.

Those three corpora are used in a realistic condition of a user
in order to perform a literary analysis of the genres. At this
stage of the study we want to reproduce the same conditions
as a real discourse analyst would face. Thus, the corpora are
annotated by one annotator without randomization. The corpora
are preprocessed (tagged and parsed) as described in previous
sections before running the detectors.

5.2. Experiments
The results of our comparison are presented in Table 9, where
we report three types of results. The first is the number of true
positive instances found with a probability threshold of 0.5 (@S
= 0.5). This is useful because it allows to compare the number of
figures in each corpus on an equal basis, and 0.5 is the natural
threshold above which a classifier considers an instance as true.
However, outside of the quote corpus, very few instances have
such a high score and the user is likely to look below this score.
Therefore, we also give the number of true instances at rank 100
or above (@R = 100) (or at the maximum rank when there are
too few candidates). Finally, in the third column (in blue), we
evaluate the system using average precision. The results show
that average precision can be excellent even when very few true
instances are to be found. When the average precision reaches
100%, this means that the user never has to encounter any false
positives because all true instances are ranked first.

Reading Table 9 and comparing it to Tables 2, 7, 8, the reader
might be struck by the strong performance of the system (over
90% precision for the majority of the figures and corpora). The
average precision scores are higher than in our development
corpus. On the one hand, this improvement could be expected
because the task itself is easier as titles and quotes, unlike
Europarl, are already split into chunks of little texts. This
leads to fewer false candidates thanks to the limited amount of
long successions of non-figure repetitions. On the other hand,
the system has never been trained on any of these corpora,
and could thus have suffered from bad performance because
of it. That means that Europarl was generic enough that our
algorithm could be applied to those three different types of
texts. The only drawback is that the chiasmus system achieves
very high precision at the expense of recall. The probability

17dblp is a database of scientific publications in the domain of computer science
http://dblp.uni-trier.de
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TABLE 9 | Application of our best detectors on three corpora.

Chiasmus Epiphora (incl. Symploce)18 Epanaphora).

@S=0.5 @R=100 Av. P. (%) @S=0.5 @R=100 Av. P. (%) @S=0.5 @R=100 Av. P. (%)

Fiction 1/1 13/100 66 35/41 37/43 100 2/2 2/4 100

Scient. 7/7 21/100 65 3/4 3/13 100 0/0 1/2 100

Quotes 46/46 93/100 99 187/197 93/100 91 128/131 98/100 99

We report number of true instances retrieved with probability threshold 0.5 (@S = 0.5), number of true instances in the top 100 (@R = 100), and average precision (Av. P.).

threshold here is not very well calibrated, and the system hardly
assigns a probability above 0.5 to any instance. For example,
only one instance of chiasmus has a score above 0.5 in the
fiction corpus. This, however, is not a problem for the user,
because we do not limit the output to those. The ranking is
what matters the most for the user and it is reflected by the
average precision measure which is still excellent (minimum
65%).

Because titles are extremely short, the number of candidates
is fairly limited for epanaphora and epiphora (only 2 instances
of epanaphora for scientific titles for instance). This allows us to
look at all the candidates which is excellent for corpus analysis.
In the case of epiphora, we can say that our human annotation
is exhaustive. Indeed, in the case of titles of fiction and titles of
science, there were very few candidates (43 for fiction and 13 for
science at the maximum) and unlike epanaphora the constraint
for extracting candidates is minimal (only one repetition of
lemma needed).

Our genre analysis confirms the intuition of Vandendorpe
(1991). Chiasmus is nearly twice as frequent in scientific titles
as in fiction titles, if we look at the top hundred. And if we limit
our comparison to the the very prototypical instances scored over
50% we have seven times more of them. That can be explained by
the fact that chiasmus is the ideal figure to wrap up an argument
and above all to summarize a paradoxical issue as in Example 33
and 34.

(33) Doing the Right Thing or Doing the Thing Right:
Allocating Resources Between Marketing Research and
Manufacturing.

(34) A Future with No History Meets a History with No
Future: How Much Do We Need to Know About Digital
Preservation.

The fact that chiasmus is more frequent could be seen as normal
because titles of science are longer than of literature. (On average,
scientific titles contained twice as many words as literary ones.) If
this was true, we should find more repetitive figures in general:
this is not the case. Epanaphora and epiphora are almost non-
existent in scientific titles (1 anaphora and 3 epiphora found)

18Sometimes both an epanaphora and an epiphora are contained in a repetitive
figure either because it repeats the all sentence (e.g., Torah! Torah! Torah!) or
because it is repeating the beginning and the end (e.g., Life is a song - sing it. Life
is a game - play it. Life is a challenge -meet it.) this phenomenon is called symploce
and in order to not count them twice we count them only as epiphora.

and we find nearly ten times more of them in titles of fiction
(2 epanaphora and 37 epiphora and symploce).

Why are epanaphora and epiphora more specifically used in
fiction title? Our explanation is based on the observation of the
figures. Note that the misbalance in the number of epiphora
is due to the majority of symploce found (30 of them in the
corpus of fiction). Most of them are actually the short and lyrical
repetition of one or two words like in Examples 35 and 36
extracted from two titles of thrillers. These short symploce are
excellent in fiction titles because they are appealing, fast to parse
for the reader and they give them an immediate emotion likely to
make them open and buy the book.

(35) Stop It!
Stop It!
Stop It!

(36) Bingo!
Bingo!
Bingo!

In science the aim is different and emotional appeal is not enough
to make a good title in this genre. The aim of the scientist is not
only to be read but above all to be cited. To be cited, a scientist
must show that he provides useful content to the scientific
community. Epanaphora and epiphora, unlike chiasmus, takes a
lot of words to express the content of an argument. For instance,
in Title 37 and 38 the repetitions alone take 8 words in the title.
If they are too short, they are emotionally appealing but they
do not reveal what is the article content, problem or argument.
For instance, Example 39 is a title that is appealing but does not
precisely express which scientific domain the article belongs to.
Thus, it might not reach the right audience.

(37) Bring out your codes! Bring out your codes! (Increasing
Software Visibility and Re-use)

(38) Beneath the layers in nature, resilient life. Beneath the

layers in artifacts, lifeless components.

(39) Models.Models.Models. So what?

Thanks to this case study, we show evidences that the origin
of the text (fiction vs. science vs. quotes) influences the type
of repetitions we are likely to find. Our case study supports,
in a systematic way, the intuition of Vandendorpe (1991). We
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have showed, for instance, that chiasmus is more used in
scientific titles than in fiction. However, we give a more nuanced
judgement than he does: yes, chiasmus is more frequent in
science titles than in fiction but not to the extreme that we meet
in quotes. Finally, if we just confirm the intuition that quotes
are full of figures of speech, our system allowed us to discover
a more surprising result: the specificity of epanaphora, epiphora,
and above all symploce to fiction titles.

6. CONCLUSION

In this article, we have targeted the detection through ranking
of three repetitive figures: chiasmus, epiphora and epanaphora.
The challenge consists in training a model for rare stylistic
phenomena, with a corpus that is only very partially annotated.
We have proposed a generic approach to this problem, using a
linear model for ranking and average precision for evaluation,
and we have shown that the model can be successfully
applied to three different repetitive figures, each with its own
characteristics. Finally, we have demonstrated the usefulness
of our approach through a comparative analysis of three
corpora: one belonging to science, another to fiction, and
a last one consisting of quotes. In this way, we discovered
that chiasmus was more specific to scientific publication titles,
whereas epiphora and epanaphora were more likely to appear
in fiction titles. This study is unique: for the first time the
frequency of figures are compared mechanically on comparable
corpora and we could detect the specificity of figures to different
genre.

Such a tool and comparative method opens up to new type
of literary analysis adapted to our century: in the recent past,

the life of a literature scholar consisted in knowing and reading
maybe a couple of hundred of canonical authors (Shakespeare,
Fitzgerald, . . . ) already selected through the ages and through
editing processed. In the internet century, the authors are
millions. They write amateur books19, short stories, poetry,
blogs, etc. Some of them are talented and would deserve to
be studied, but the overwhelming number of texts available
makes it difficult to find them. Our tool is complementary to
the traditional manual analysis. Thanks to our ranking system,
we never pretend to replace the human judgment with a
binary system. As expressed very well by Michael Ullyot, we do
not aim at building robots, but we enable readers to become
augmented20.
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