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Rare disease research faces significant challenges due to limited patient data,
strict privacy regulations, and the need for diverse datasets to develop
accurate AI-driven diagnostics and treatments. Synthetic data—artificially
generated datasets that mimic patient data while preserving privacy—offer a
promising solution to these issues. This article explores how synthetic data
can bridge data gaps, enabling the training of AI models, simulating clinical
trials, and facilitating cross-border collaborations in rare disease research. We
examine case studies where synthetic data successfully replicated patient
characteristics, and supported predictive modelling and ensured compliance
with regulations like GDPR and HIPAA. While acknowledging current
limitations, we discuss synthetic data’s potential to revolutionise rare disease
research by enhancing data availability and privacy file enabling more efficient
and effective research efforts in diagnosing, treating, and managing rare
diseases globally.
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Introduction

Rare disease research faces critical challenges due to the scarcity of patient data, which

stems from small, geographically dispersed populations and fragmented data across

institutions (1–4). Privacy regulations such as GDPR and HIPAA restrict access to

essential datasets, limiting the potential for AI-driven diagnostics and treatment

advancements (5). These barriers often result in underpowered studies, hindering efforts

to understand rare diseases and develop targeted therapies comprehensively.

Synthetic data offers a promising solution by generating artificial datasets replicating

actual patient data’s statistical properties without containing sensitive information. This

approach facilitates data sharing, enhances collaboration among researchers, and

ensures compliance with stringent privacy laws (6, 7). By providing diverse and privacy-

preserving datasets, synthetic data enables AI models to improve the detection of rare

genetic markers and accelerates innovation in diagnostics and treatments.

This perspective article explores the transformative role of synthetic data in

overcoming the barriers in rare disease research. The objectives are to define synthetic

data and its applications, examine its potential to address challenges in clinical

validation and highlight ethical, regulatory, and quality considerations. The paper also
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proposes best practices for leveraging synthetic data to support

equitable and effective healthcare solutions for rare diseases.
The challenge of limited data in rare
disease research

Rare disease research faces significant challenges due to limited

data, impeding the understanding of disease mechanisms, therapy

development, and diagnosis (8–10).

A lack of expertise and incomplete understanding lead to

delayed or incorrect diagnoses and restricted access to

multidisciplinary healthcare (11). Limited data hampers

clinical trial design, especially with small, heterogeneous

patient populations (12).

Poor understanding of rare disease pathophysiologies, limited

natural history, and inadequate animal models complicate

defining clinical endpoints and data utilisation (13). Small patient

populations, low disease awareness, and limited healthcare access

hinder dose-finding studies and targeted enrolment. These

challenges often lead to reliance on anecdotal evidence rather

than robust data (14). The scarcity of patients complicates

recruitment for conventional research clinical trials, resulting in

underpowered studies and inconclusive results (15). This

uncertainty complicates regulatory approval and market access

for new therapies and hinders assessment of treatment outcomes

and clinical trial endpoints (12, 16).
The concept of synthetic data

Synthetic data refer to artificially created information that

mocks real-world observations. Synthetic data generation

becomes crucial when real data is not available due to privacy

issues or the rarety of certain observations. Various techniques

were proposed for generating synthetic medical data, including

tabular, imaging, and omics data. These methods can be

classified into rule-based approaches, statistical modelling, and

machine learning-based techniques.

1. Rule-based approaches: mimics real world data using

predefined rules, constraints and distribution to create

artificial data. It can create synthetic patience records based

on statistical distribution such as age, gender, etc..

2. Statistical modelling: relies on capturing the relationships

between variables in real medical data to generate data with

comparable characteristics. Different techniques can be

utilised as Gaussian Mixture Model, Bayesian Networks

(depending on probabilistic relations between variables) or

Markov chains to generate sequence of data (history visit,

blood analysis, etc.).

3. Machine learning-based techniques: is considered as a state-of-

the-art method such as Virtual Autoencoders (VAEs) or

Generative Adversarial Networks (GANs) with different

architectures that promote generating different datasets.
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These datasets can include tabular data, MRI images,

radiomic data or bio-signals data like ECG and EGG.
• GANs are one of the most utilised techniques nowadays

to generate artificial data. There are different

architecture dealing with the different types of data. In

general, GANs operate by training two neural networks,

a generator and a discriminator. The generator aims to

produce synthetic data that closely resembles real data,

while the discriminator tries to classify produced

samples as real or synthetic data. These networks are

trained together, and through this process, the generator

improves its ability to create highly realistic synthetic

data over time. GANs evolved into various

architectures, each suited for different types of data

such as tabular records, MRI, genetic data or even as

ECG and ECC signals. For images, deep convolutional

GANs (DCGANs) use convolutional layers to produce

high-quality images (17). Conditional GANs (cGANs)

can generate medical images with specific diseases, such

as tumours or lesions (18). CycleGANs convert images

from one domain to another, for example, generating

MRI images from CT scan datasets (19). Tabular GANs

(TGANs) and Conditional Tabular GANs (CTGANs)

are designed to handle numerical and categorical

datasets, generating synthetic data conditioned on

specific features as specific patient subgroups in certain

ages or diagnoses (e.g., patients with diabetes or

hypertension). TimeGANs produce time-series data

such as ECG (20). Sequence GANs can create synthetic

genomic data such as DNA and RNA (21). Variational

Autoencoder GANs (VAE-GANs) combine VAE and

GANs to generate high-dimensional data as gene

expression profiles, for example, creating synthetic data

for cancer gene expression analysis. Multimodal GANs

generate multiple modalities datasets, such as patient

records with associated medical images and reports (22).

• VAEs are another type of Neural Network used to

generate synthetic data. VAEs capture complex data

distribution using probabilistic modelling to produce

realistic data samples. This neural network learns to

encode data into a latent space (learn probability

distribution of different data types) and then decode it

back to generate synthetic datasets. VAEs generate

different data types for medical records, such as image,

numerical and bio-signal datasets. VAEs generally have

less computational cost than GANs (23) and they do

not suffer from the mode collapse issue. Still, it may

generate blurrier or less realistic images compared to

GAN’s sharp, high-resolution produced images.

Conditional VAE (CVAE) can work well with smaller

datasets to generate more diverse and representative

patient records specifically for rare disease cases. Recent

studies demonstrate promising results and high-quality

datasets generated by utilising hybrid models like
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VAE-GANs, which combine the strengths of both VAEs

and GANs.

The quality of synthetic data can vary depending on the generation

method and the specific use case. No single method is universally

superior across all criteria, highlighting the importance of context-

specific assessment (24). Additionally, enhancing the features of

generated data can help minimise the domain gap between

synthetic and real-world data, improving the performance of

models trained on synthetic data (25).

Synthetic data can be classified based on the connection to the

real data:

• Fully synthetic data: the fabricated data does not have any

connection to real data. Created through algorithms without

any real observations, this type of generated dataset is utilised

when no real data is available or in models required to

guarantee confidentiality.

• Partially synthetic data: created datasets can be considered as

combination between real data values and fabricated ones. So,

some true values remain in the dataset, increasing disclosure

risk while maintaining a higher analytical validity.

Accordingly, the two types mentioned, organisations and

researchers looking to publish synthetic datasets must determine

which method best balances the trade-off between data

usefulness and the risk of disclosure.
Use cases of SD in rare disease
research

Synthetic data generation has emerged as a promising solution

to overcome the challenges posed by data scarcity and privacy

concerns in training AI models for diagnosing rare diseases (26).

This approach is particularly valuable in rare genetic disorders,

where complex symptoms and lengthy diagnostic processes often

hinder timely identification (27). Synthetic data generation not

only enhances diagnostic accuracy but also accelerates innovation

in the field of rare disease identification and management (28).

By replicating the statistical properties of real-world data without

exposing sensitive information, synthetic data supports diverse

applications, including training AI models, simulating clinical

trials, and facilitating cross-institutional collaboration. This

section examines various use cases, enriched by insights into

privacy and security challenges and solutions in synthetic data

methodologies, illustrating its transformative potential in rare

disease research.

Within clinical studies of AI, there is a major gap in finding

combinations of different modalities, such as genetics, imaging,

clinical data for patients. The data for each variable is usually

found in its own. For diagnosis, medical experts usually use

different elements of evaluation for the patient cases. Synthetic

data can generate heterogeneous data types (imaging, clinical

data, age, demographics, etc.) to improve AI understanding for

rare diseases. The generated data allows simulating hypothetical

scenarios or varying conditions with full patient profiles to study

disease behaviour, improving diagnostic accuracy or optimising
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clinical studies, such as patients’ respond to certain compound or

side effects. Moreover, genomic data is highly sensitive with

privacy laws like GDPR and HIPAA restricting the sharing of

real patient data. This necessitates the usage of synthetic data,

which can simulate realistic genomic sequences on different

demographics such as races and ethnicities. This can effectively

assist with having machine models that could discover drug

targets and predict the prevalence and effect of rare genetic

variants in larger populations (29).

Synthetic data enhances AI model training and validation,

especially when actual data is scarce or restricted due to privacy

concerns. Generative Adversarial Networks (GANs) are used to

create synthetic medical images, such as chest X-rays and brain

MRIs, to augment datasets. Combining synthetic and actual data

improves classification accuracy, with studies showing 85.9%

accuracy in brain MRI classification (30). Synthetic imaging

datasets simulate underrepresented clinical scenarios, like non-

optimally positioned X-rays, improving model robustness with

Dice score enhancements of 3%–15% (31).

Synthetic data efficiently designs and simulates clinical trials,

especially in rare disease research. Methods like CTAB-GAN+

and normalising flows (NFlow) create synthetic cohorts

replicating demographic, molecular, and clinical characteristics.

These datasets significantly enhance studies on Acute Myeloid

Leukaemia (AML), capturing survival curves and complex inter-

variable relationships (32). By reducing research time and costs,

synthetic data accelerates clinical advancements. D’Amico et al.

(33) report a threefold increase in a synthetic cohort based on

944 myelodysplastic syndrome (MDS) patients, predicting

molecular classification results years before real-world

data collection.

Privacy-preserving synthetic data also enables secure cross-

institutional research while minimising data breach risks.

According to (34), multiple parties can generate privacy-

preserving synthetic datasets using differentially private

generative modelling techniques. However, challenges such as

data breaches and model inversion attacks remain a concern

(35). Differentially private GANs mitigate these risks, enabling

institutions to securely combine datasets for improved

analytical accuracy and reduced bias (34). Collaborative

frameworks using synthetic data address key vulnerabilities, such

as insufficient anonymisation and weak access controls (36).

By removing identifiable information, synthetic data ensures

GDPR and HIPAA compliance and supports robust cross-

border collaborations.

The application of synthetic data in rare disease research offers

promising solutions to challenges in diagnostics, clinical trials, and

collaborative studies. By enabling secure data sharing, improving

AI model training, and accelerating research timelines, synthetic

data provides a path forward for innovation in rare disease

management. However, addressing emerging privacy and security

challenges, as highlighted in the broader context of federated

learning and data breach prevention, remains essential to ensure

trust and reliability in synthetic data solutions. As synthetic data

techniques evolve, they will further expand their impact on rare

disease research and healthcare innovation.
frontiersin.org

https://doi.org/10.3389/fdgth.2025.1563991
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Mendes et al. 10.3389/fdgth.2025.1563991
How synthetic data overcomes key
challenges in rare disease research

Research in medical artificial intelligence-based studies is often

constrained by the availability of datasets, for privacy reasons, or

the rarity of certain diseases or conditions. Developing new

treatments using machine learning techniques or evaluating the

treatment efficacy can be seen as data-driven approaches. These

data driven approaches including deep learning algorithms,

require large datasets for model validation and training. Synthetic

data presents an innovative solution to the challenge of data

scarcity in medical research. By producing artificial datasets that

mirror real-world statistical patterns, synthetic data serves as a

necessary resource for researchers, enabling them to overcome

data constraints and further their research objectives (6).

First, rare disease can be defined as a disease affecting small

number of people. This poses a challenge for AI researchers, as

the limited data available is insufficient for building robust

models to develop treatments. Synthetic datasets allow

researchers to study cases with larger amounts of information

distributed across diverse patient demographics, including age,

gender, race, ethnicity. This eliminates the need to wait for real

clinical data from multiple countries and institutions to

become available.

Second, the lack of patient case information presents another

challenge. Medical datasets are often restricted due to data

privacy and ethical concerns, limiting their availability. However

synthetic data do not contain any sensitive health information or

real personal data. Ethically, such fabricated datasets can be

freely shared, stored and utilised in analysing rare disease

without strict privacy regulations.

Third, synthetic patient data will achieve the generalisability of

AI models. Rare diseases often involve genetic variations,

environmental factors, medical histories, and treatment scenarios,

making it difficult to capture a comprehensive range of cases

using real-world data alone. By providing a large and diverse

dataset, synthetic data helps improve the accuracy of the AI

models, allowing medical research to overcome the time

constraints and limitations associated with real datasets.
Case studies

Generating datasets for rare diseases proposes a valuable asset

for researches providing important insights into disease diagnosis,

drug discovery, and treatment effectiveness accross diverse

populations with varying factors. The generated data include

medical images, statistical data, and natural language processing

data. They may consist of synthetic patient records (uch as age,

sex, and ethnicity), medical history, clinical data, symptoms,

treatment response, and genomic information. Another category

is the synthetic medical images such as X-rays and MRI.

Yelmen et al. (37) shows that deep generative adversarial

networks (GANs) and restricted Boltzmann machines (RBMs)

can generate high-quality artificial genomes datasets (37). They
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mimic features of real genomic datasets, considering the

generated Artificial Genomes (AG) as a valuable asset for genetic

studies, particularly for underrepresented populations. The

experiments used genomic data from 2,504 individual genomes

from 1,000 Genomes Project and 1,000 individuals from

Estonian Biobank to create artificial genomes (AGs).

Additionally, to different datasets were used for imputating low

frequency alleles and testing. The experimental results proved

that both models effectively encoded the data, with RBMs

performing better in capturing rare genetic variations.

The research highlights a major drawback of the proposed

models: no fully artificial whole genomes have been produced,

due to computational limitations. Instead, only devise genomic

snippets have been generated. Another reported issue is that half

of the rare alleles remains fixed in the GANs AGs, while RBMs

AGs better capture the rare alleles present in real genomes.

European Health Data & Evidence Network (EHDEN) (38)

provides the required infrastructure for the healthcare data

analytics field (38). EHDEN collaborates on a federated network

across Europe with different researchers, offering innovative

solutions using synthetic data to address the challenges of rare

disease research gap, accelerating researches, ensure patients

data privacy, and standardize health data to common data

model (CDM) (39).

Voss et al. (40) research proves that the workflow used by

EHDEN effectively supports the successful standardisation of

observational data across Europe. Their study involved 25 data

partners from 11 countries who received funding from the

EHDEN to standardise their data. The results were measured by

days required to convert health observations to Observational

Medical Outcomes Partnership, OMOP CDM.

Krastev (41) presents an application to convert more than 380

million pseudonymised outpatient records to OMOP CDM to be

published in EHDEN and used on large scale studies. The study

focusses on the need for preprocessing the data structure of raw

data, cleaning data and procedures for assuring data quality (41).

Al-Dhamari (42) propose a software tool called SynthMD, a

lightweight librarydesigned to generate sunthetic datasets

following the set of collected statistical distributions from US

such as different race, age and gender, clinical data, and survive

rate. The experiments focused on three specific rare diseases—

Sickle Cell Disease, Cystic Fibrosis, and Duchenne Muscular

Dystrophy—each with specific concerns related to gender and

racial groups. However, the study’s main limitation was that it

generated only tabular data and captured a limited range of

statistical information.

Oliveira et al. (43) compare ten different GAN architectures for

generating synthetic eye-fundus images, both with and without

Age-related Macular Degeneration (AMD). The study combined

data from three public databases (iChallenge-AMD, ODIR-2019,

and RIADD) to form a single training and test set. Researchers

claim that even clinicians struggled to distinguish between real

and synthetic images. Experiment resulst showed that the

ResNet-18 architecture achieved the highest performance with

85% accuracy, outperforming the two human experts (80%, 75%)

in detecting AMD fundus images.
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The role of SD in addressing regulatory
and ethical concerns

Synthetic data address healthcare privacy, regulatory, and

ethical concerns in healthcare by enhancing data privacy,

improving predictive analytics, and informing policy decisions

(6). It helps mitigate the risks associated with using authentic

biometric data for AI training, particularly face recognition

technology (44). Additionally, synthetic data support compliance

with privacy regulations such as GDPR and HIPAA while by

replicating the statistical properties of actual patient data without

including personal information. This aligs with data

minimisation and purpose limitation principles (45, 46).

However, synthetic data must be carefully generated to avoid

reidentification risks and conflicts with GDPR’s protection of

individual rights and freedoms (47). Ethically, synthetic data

offers advantages by reducing the potential for data misuse,

patient reidentification, and consent-related issues. Privacy-

preserving simulations enable researchers to analyse sensitive

data while yielding similar results to original data (6, 48, 49).

Synthetic data can also replicate complex real-world data,

including those related to rare disease. However, achieving complete

realism remains a challenge, as synthetic data may not fully capture

all nuances necessary for high research value. Despite advancements

in generating realistic biomedical datasets, such as fully synthetic

EHRs, that facilitate data sharing and methodological research (50),

limitations persist. Frameworks like stdpopsim enable realistic

genome-scale simulations across various species, including non-

model organisms (51). However, replicating the complexity of rare

disease data remains remains difficult. This challenge is evident in

fields like image-deraining research, where models trained on

synthetic data underperform on real-world scenarios (52). Some

educational contexts (53) may provide effective approaches for

generating indicating more realistic and valuable synthetic data for

rare disease research. The limitations suggest that combining

synthetic data and real-world data may be necessary to enhance to

enhance research validity and clinical applicability.
Current limitations and challenges

While synthetic data generation offers significant benefits,

synthetic datasets face several limitations that must be addressed to

ensure their effective use in rare disease research. Key challenges

include maintaining data quality, mitigating bias, validating

datasets, and overcoming computational resource demands.

Bias in real-world datasets can be propagated or even amplified

during synthetic data generation, which is particularly concerning

when the source data underrepresents specific populations or

medical conditions, leading to unreliable AI model performance.

Mitigating these biases may involve re-sampling, re-weighting, and

adversarial debiasing techniques that can be employed during data

generation (54). Implementing fairness-aware algorithms and

auditing synthetic datasets with third-party reviews can also ensure

a balanced representation across demographic and clinical

subgroups (24). Evaluating the synthetic dataset against fairness
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disparate impact can help identify and correct biases.

The validation of synthetic datasets is critical to ensuring their

utility and comparability to real-world data. Metrics for evaluating

the quality of synthetic data can include statistical similarity

measures, such as Wasserstein distance, Kullback-Leibler divergence,

and Jensen-Shannon divergence, which assess how closely the

synthetic data matches the statistical distributions of the actual data

(55). Utility metrics, such as predictive accuracy, precision, recall,

and F1-score, can measure how well AI models trained on synthetic

data perform real-world tasks (56). Domain expert assessments are

also vital for validating whether the synthetic data aligns with real-

world medical knowledge and expectations.

Generating high-quality synthetic data is computationally

intensive, particularly for complex data types like medical

imaging or high-dimensional clinical datasets. Training advanced

generative models requires significant computational power and

time (57). For example, GANs require a large amount of data to

train the generator efficiently. These challenges can be mitigated

using certain methods to handle the computational overhead

issue of GANs. Methods such as Transfer Learning (TL), using

pre-trained GAN models and only fine-tuning them on smaller

datasets to adapt the process to the required task, or hybrid

models which depend on fusion of different generative models,

are two possible methods to handle GANs complexity and

computational burden. Another alternative is leveraging cloud-

based platforms offering scalable computing resources,

optimising model architectures to reduce computational

overhead, and adopting federated learning frameworks to

distribute workloads across multiple nodes (58).

Generating high-quality synthesised datasets for rare diseases

encounters data scarcity, high dimensionality and privacy

concerns (59). Also, it requires addressing issues of bias, ensuring

robust validation, and overcoming computational challenges to

provide robust information that empowers meaningful insights

into rare diseases.

Researchers can use fairness-aware algorithms, rigorous

validation metrics, and scalable computational strategies to develop

reliable synthetic datasets that enhance rare disease research while

maintaining data integrity and privacy compliance. These

improvements will facilitate the broader adoption of synthetic data

in medical research and its integration into real-world applications.
Future perspectives

Synthetic data represent an unparalleled opportunity to accelerate

rare disease research, while safeguarding patient privacy. By

addressing critical limitations and fostering innovation, synthetic

data can become the cornerstone of future healthcare, enabling

equitable, efficient, and collaborative advancements. It holds the

potential to transform rare disease research by overcoming barriers

such as data scarcity, privacy concerns, and regulatory constraints,

which traditionally impede progress.

One of its most promising applications is personalised

medicine. By simulating diverse patient profiles, synthetic data
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enhances AI models’ ability to detect rare diseases across varying

demographics and genetic contexts (27, 30). Integrating synthetic

data with real-world evidence is essential for refining AI-driven

diagnostics and therapeutic strategies, particularly during early

clinical validation phases.

Synthetic data also facilitate cross-border research

collaborations by adhering to privacy regulations, such as GDPR

and HIPAA, enabling international studies without

compromising patient confidentiality (26). Federated learning

frameworks augmented by synthetic data offer a promising

avenue for securely integrating datasets, accelerating global

research initiatives while maintaining privacy standards (34).

Emerging technologies such as Generative Adversarial Networks

(GANs) and Variational Autoencoders (VAEs) should be leveraged

to improve the realism and representativeness of synthetic datasets

(30). Hybrid models combining synthetic and real-world datasets

provide a robust foundation for developing generalisable AI

systems for rare diseases, ensuring inclusivity and accuracy.

However, the ethical considerations are critical. The generation

and use of synthetic data requires transparency in methodologies

and adherence to de-identification standards to mitigate re-

identification risks (36). Collaboration between policymakers,

industry leaders, and researchers is essential for establishing

unified frameworks for synthetic data usage, ensuring compliance

with evolving data governance laws, and fostering public trust.

Validation of synthetic datasets against real-world data is

imperative to confirm their clinical and research utility (31).

Involving domain experts in this process bridges gaps in realism

and analytical value, ensuring that the datasets meet the rigorous

standards required for medical research.

Validation of synthetic datasets against real-world data is

imperative to confirm their clinical and research utility (31).

Involving domain experts in this process bridges gaps in realism

and analytical value, ensuring that the datasets meet the rigorous

standards required for medical research.

Despite its promise, generating high-quality synthetic data

remains computationally demanding and requires specialised

expertise. Investment in infrastructure and training is necessary

to overcome these barriers. Research on ethical frameworks and

international standards must also be prioritised to ensure long-

term viability and stakeholder trust.

Unified standards for generating, sharing, and validating

synthetic data, combined with pilot programmes within

frameworks such as the European Health Data Space (EHDS),

can streamline research efforts and foster innovation, driving

transformative progress in healthcare research.
Conclusion

Synthetic data have emerged as a transformative tool in rare

disease research, offering innovative solutions to overcome the

challenges of data scarcity, privacy concerns, and regulatory

constraints. By enabling the generation of realistic, yet non-

identifiable datasets, synthetic data facilitate the training of AI

models, simulation of clinical trials, and cross-border
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collaborations, while maintaining compliance with privacy

regulations such as GDPR and HIPAA. These advancements

have significantly enhanced the capabilities of researchers to

diagnose, treat, and manage rare diseases more effectively.

The integration of synthetic data with real-world evidence has

demonstrated the potential to refine AI-driven diagnostic tools and

accelerate therapeutic development. Case studies, such as those

employing Generative Adversarial Networks (GANs) to generate

synthetic medical imaging or CTAB-GAN+ models for rare

disease clinical trials, have highlighted their ability to mimic

complex datasets with high fidelity. These applications not only

optimise research timelines but also reduce the resource demands

associated with traditional methods.

Despite their promise, synthetic data generation still faces

challenges, including the need for advanced computational

resources, rigorous validation, and ethical governance. Addressing

biases, ensuring data representativeness, and fostering public

trust using transparent methodologies remain critical.

Collaborative efforts between policymakers, researchers, and

industry stakeholders are essential for establishing unified

standards and ethical frameworks for their use.

By bridging data gaps and fostering global collaboration, synthetic

data have the potential to revolutionise healthcare research. However,

realising its full potential requires continued innovation, investment,

and adherence to rigorous ethical and regulatory standards to

ensure sustainable progress in rare disease research.
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