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1 Introduction

1.1 Importance of tumor boards in cancer treatment

Tumor boards are multidisciplinary teams of healthcare professionals that are working

together to encompass the full spectrum of care around diagnosing, planning treatment,

and advising outcomes for individual cancer patients. These boards typically consist of

oncologists, radiologists, pathologists, geneticists, surgeons, nurse practitioners, and

other palliative care professionals (1). These boards create a collaborative space for

experts from various disciplines to assess clinical factors and patient circumstances,

ensuring the application of appropriate care standards and personalized

recommendations from the National Comprehensive Cancer Network (NCCN)

Guidelines to enhance cancer treatment are met. Since no patient fits the “textbook”

cancer profile, oncologists benefit from discussing tailored treatment plans and learning

from their colleagues’ experiences. When tumor boards are functioning well, they can

have a significant impact on patient care (2). For instance, a thoracic oncology board in
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Munich, Germany, found that 90% of their recommendations met

or exceeded clinical standards, with nearly 90% being implemented

in practice (3).

Tumor boards are increasingly used worldwide, but expertise and

resources for conducting multidisciplinary tumor boards are still

limited in the Global South. However, this does not mean they

cannot be implemented in developing countries. A 2020 survey

from Southeast Asia found that 80.4% of pediatric solid tumor

units had pediatric-trained specialists, including oncologists,

surgeons, radiologists, pathologists, radiation oncologists,

nuclear medicine physicians, and nurses. This indicates that

multidisciplinary tumor boards are already in place and that

these specialists play a critical role in cancer care (4). With full

implementation in the global south, data scientists can further

enhance tumor boards with AI and data analytics to improve

decision-making and personalize cancer care.
1.2 Growing role of data in clinical decision-
making

Advances in big data, machine learning (ML), and artificial

intelligence (AI) provide more precise, evidence-based, and

patient-specific care, thus, giving a different approach as to how

healthcare professionals diagnose, treat, and manage their

patients (5). For instance, there is a growing number and

complexity of data in the healthcare industry such as from

Electronic Health Records (EHRs), next-generation genomic

sequencing (NGS), and advanced imaging modalities like X-ray

Radiography, Magnetic Resonance Imaging (MRI), and

Computed Tomography (CT) scans. However, analyzing these

data, individually and manually, can be time-consuming and

considerably impractical. This is where clinical decision support

systems (CDSS) powered by AI and ML are put into action.

These systems provide predictive analysis of the disease

progression or prognosis, personalized treatment based on the

patients’ genomic profile, and drug-drug interaction alerts (5, 6).

As precision medicine and big data continue to evolve,

healthcare will increasingly rely on data-driven tools to enhance

patient care, reduce errors, and improve overall health outcomes

(7). Data scientists are critical to this process as they can analyze

large datasets to identify biomarkers that can predict how a

patient will respond to specific treatments (8). In addition, AI

algorithms are being used to interpret radiological images, detect

early signs of cancer, and predict tumor progression. These tools

are increasingly becoming standard in tumor boards, especially

in high-income countries (9, 10).

In oncology, the most commonly used diagnostic tools to identify

biomarkers and guide targeted therapies in precision medicine are

Polymerase Chain Reaction (PCR), fluorescent in situ hybridization

(FISH), and immunohistochemistry (IHC) to identify biomarkers

and guide targeted therapies (11). However, high-throughput next-

generation sequencing (NGS)-based diagnostics, which analyze

somatic mutations in tumors, have proven clinically useful in

identifying single-nucleotide mutations, insertions, deletions, and

large genomic rearrangements (12). Thus, multigene NGS testing
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can provide the oncologist a clinical picture of the patients’

molecular profile which can be utilized in planning the best

treatment option (13).
1.3 Why data scientists should be essential
members of tumor boards

As precision medicine continues to gain prominence and the

molecular characterization of individual cancers becomes

increasingly complex (8, 14), incorporating data scientists into

tumor boards is essential. Data scientists bring advanced expertise

in ML, data analysis, and bioinformatics, enabling tumor boards

to make more accurate, evidence-based clinical decisions that lead

to improved patient outcomes (8, 15). They play a critical role in

synthesizing and analyzing diverse datasets generated in oncology

care, uncovering actionable insights, and informing treatment

strategies. This role is particularly crucial as cancer treatment

shifts focus toward personalized approaches based on the genetic

and molecular characteristics of tumors (16). Specifically, data

scientists apply advanced statistical techniques including survival

analysis, clustering, and predictive modeling to uncover actionable

insights and inform treatment decisions. Their knowledge of

foundation models, such as Generative Pre-trained Transformer

(GPT), Bidirectional Encoder Representations from Transformers

(BERT), and memory-augmented neural networks enables them to

extract valuable insights from unstructured data, such as medical

records and pathology reports (6, 8).
2 Global perspective: the role of data
scientists in tumor boards

2.1 Overview of global trends in integrating
data-driven approaches to oncology

Globally, there is a growing trend towards integrating data-driven

approaches into cancer care. In high-income countries, AI-based tools

are being used to assist clinicians in interpreting medical images,

predicting patient outcomes, and identifying optimal treatment

strategies. In the United States, for example, institutions like

Memorial Sloan Kettering Cancer Center are using AI tools to

guide clinical decisions in oncology (6). These tools, powered by

machine learning algorithms, can analyze patient data in real time

and provide recommendations during tumor board discussions.

However, the integration of these tools varies across regions, with

some low- and middle-income countries facing significant barriers

to adoption due to a lack of infrastructure and expertise (17).
2.2 Examples from high-income countries
where data scientists are key members of
tumor boards

In high-income countries like the United States and those in

Europe, data scientists are already key members of tumor boards.
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For instance, data scientists at the University of Florida collaborate

with oncologists to develop personalized treatment plans based on

genomic data and machine learning models (18). These experts

apply AI-driven tools to predict patient responses to various

therapies and identify potential clinical trials. Similarly, in

Germany, data scientists work with oncologists to analyze real-

world data and integrate it into clinical decision-making,

ensuring that each patient receives the most appropriate care

based on their unique profile (19).
2.3 Benefits of data-driven insights for
personalized cancer treatment

Data-driven insights provided by data scientists have

revolutionized personalized cancer treatment. By analyzing large-

scale genomic and clinical datasets, data scientists can identify

mutations driving cancer and suggest targeted therapies that are

likely to be more effective than standard treatments (20).

Predictive models can also be used to forecast patient outcomes,

allowing oncologists to tailor treatment plans based on the

predicted response. These data-driven approaches reduce the

trial-and-error nature of cancer treatment and lead to more

efficient and effective care (21).
2.4 Challenges of integrating data science
into medical practice on a global scale

Al is a promising innovation in medical imaging, with

applications ranging from image acquisition and processing to

reporting, follow-up planning, and data management. Given the

broad scope of these applications, AI is anticipated to have a

significant impact on the daily work of radiologists (22). The

challenge, however, lies in integrating AI-powered equipment due

to the lack of information and training provided to many

healthcare professionals, especially radiologists. This lack of

preparation may contribute to their reluctance to adopt AI in

radiology or other healthcare fields (22, 23). Nevertheless, the

most significant and transformative advancements in AI are not

only occurring in academic hospitals and highly advanced

facilities, but in regions and communities grappling with the

greatest healthcare challenges and disparities (24).

While high-income countries have made significant strides in

integrating data science into oncology care, many LMICs face

significant challenges. These include a lack of computational

infrastructure, insufficient access to high-quality datasets, and a

shortage of trained professionals capable of using AI and

machine learning tools (25). Additionally, there are concerns

about algorithmic bias and the ethical implications of using AI in

healthcare, particularly in countries with diverse patient

populations (26). Overcoming these challenges will require

significant investment in both technology and human capital, as

well as the development of ethical frameworks for the use of AI

in clinical settings.
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3 The case for the global south:
maximizing the impact of data
scientists

3.1 Overview of cancer care challenges in
the global south

In the Global South, which includes LMICs or developing

regions in Asia, Africa, and Latin America or the Caribbean (27),

cancer care is often hampered by a lack of access to advanced

diagnostic tools, a shortage of healthcare professionals, and

outdated infrastructure. These challenges contribute to higher

rates of late-stage cancer diagnoses and poorer outcomes

compared to high-income countries (28). In many parts of Sub-

Saharan Africa and Southeast Asia, patients often travel long

distances to access healthcare, leading to delays in diagnosis and

treatment (29). Moreover, many healthcare systems in these

regions are underfunded and lack the resources to adopt the

latest advances in cancer care. Just like in the Philippines, the

main challenge of cancer care is the difficulty of access to global

standards of care due to the financial toxicity it brings to the

patients and their family (30). Thus despite global and national

recommendations to incorporate precision medicine in the care

of patients with cancer in the country (31) it is still very

challenging for clinicians to incorporate this in their day-to-day

clinical practice. If cost were not a limiting factor, oncologists in

the Philippines would incorporate AI in precision medicine in

managing their patients (32).
3.2 Leveraging AI and machine learning:
how data scientists can address disparities
and improve early diagnosis and treatment

Data scientists have the potential to address healthcare

disparities in the Global South by leveraging AI and machine

learning to optimize resource allocation and improve diagnostic

accuracy. AI-powered tools, such as telemedicine platforms and

mobile health (mHealth) applications, can be used to provide

real-time diagnostic support in rural areas where access to

healthcare professionals is limited (33, 34). ML models can also

be used to predict cancer progression, identify patients at high

risk of developing complications, and prioritize those most in

need of treatment (5). IBM’s Watson for Oncology (WFO), an

AI CDSS for oncology therapy selection (35), is also found to be

a beneficial tool in cancer care in LMICs (17). Hence, these tools

can track disease progression and monitor treatment responses,

enabling more personalized care (9). By developing predictive

models that can be applied even in the absence of advanced

diagnostic equipment, data scientists can help improve outcomes

for cancer patients in these regions.

While there are many studies discussing the potential of AI in

healthcare settings in LMICs, the full implementation of AI in

healthcare or specifically in oncology are limited. In Kenya, for

instance, AI-driven mobile applications are being used to screen
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for cervical cancer in rural areas, significantly reducing the time to

diagnosis and treatment. While in Ethiopia, machine learning

algorithms have been used to analyze blood smear images to

diagnose leukemia with high accuracy (34). These examples

demonstrate the potential for data science to revolutionize cancer

care in the Global South by providing affordable, scalable

solutions to some of the most pressing challenges. Moreover, the

United States Academy International Development (USAID) has

already been making efforts to address the gap by identifying the

challenges to large-scale AI implementation in LMICs and

highlighting the actions that can most effectively promote the

appropriate use of AI to enhance health outcomes in these

settings (36).
4 Transdisciplinarity for improved
patient care: the future of cancer
treatment

4.1 Broader transdisciplinarity in healthcare

Transdisciplinarity has emerged as a critical approach in

healthcare, particularly in cancer treatment, where multiple fields

of expertise are integrated to tackle complex problems from

various angles. This collaborative approach incorporates

professionals from diverse domains such as medicine,

bioinformatics, data science, social sciences, and ethics. By

pooling knowledge from these fields, healthcare providers can

offer more comprehensive and personalized care for patients,

especially in oncology (37). For instance, in the Oncology

Complex of Hospital S.G. Bosco in Turin, nurses and other

healthcare professionals such as oncologists, psychologists, and

social workers have worked together to identify the unmet needs

of patients and develop innovative projects to address them (38).

Transdisciplinary teams have also been proven to be a successful

strategy in expediting emergency department (ED) patient flow.

Through the collaboration of nurses and other allied health

professionals, the team was able to address patients’ needs more

efficiently, ensuring prompt delivery of care (39). Additionally, a

secondary analysis of the International BRIGHT Study on

chronic illness management after heart transplant revealed that

centers with dedicated multidisciplinary teams achieved better

outcomes (p = 0.042) (40). Similar examples are increasingly

found across medical disciplines, including efforts to leverage

data resources, such as a project linking 54 million electronic

health records in England (41). Thus, these efforts highlight the

potential for data scientists to make a significant impact within

transdisciplinary teams across various healthcare sectors.
4.2 Qualifications and competencies for
tumor board data scientists

To effectively contribute to tumor boards, data scientists must

meet a range of technical, domain-specific, and interpersonal

requirements. A solid foundation in data analysis, statistical
Frontiers in Digital Health 04
modeling, and machine learning is essential, particularly with

expertise in oncology-related datasets such as omic data, medical

imaging, and electronic health records. Candidates should hold a

graduate-level degree in a discipline with a strong emphasis on

statistics and data science, such as mathematics, statistics,

physics, computational biology, computer science, electrical

engineering, biomedical engineering (BME), or related fields.

This level of expertise ensures the ability to handle large and

heterogeneous datasets while adhering to healthcare regulations

similar to the Health Insurance Portability and Accountability

Act (HIPAA) of the United States to maintain patient data

privacy and confidentiality.

A robust understanding of medical terminology and clinical

workflows enables seamless communication with oncologists,

radiologists, pathologists, and other healthcare professionals.

Furthermore, data scientists must excel in translating complex

findings into actionable insights, employing data visualization

techniques that facilitate understanding across diverse disciplines.

Beyond technical skills, strong collaboration and communication

abilities are vital for integrating effectively into the multidisciplinary

environment of tumor boards. To ensure the quality and

consistency of their contributions, eligibility for this role may

require regulation by national or international professional bodies.

Lastly, a commitment to continuous learning in both data science

and oncology ensures that data scientists can adapt to emerging

challenges and innovations in precision medicine.

Insights from the study of Fermin and Tan (42), on the

development of BME as a formal discipline, particularly in some

LMICs in the Global South, highlight the critical importance of

formalized educational pathways and professional recognition in

integrating technical expertise into healthcare. This research has

demonstrated that LMICs recognizing BME as an academic and

professional field have significantly advanced healthcare

outcomes, leveraging limited resources to achieve impactful

innovations. Applying these lessons to the integration of data

scientists in tumor boards emphasizes the need for structured

education programs and national or international regulatory

frameworks tailored to LMIC contexts.

Efforts to standardize the qualifications and competencies of

data scientists include frameworks such as the EDISON Data

Science Framework (EDSF), which provides a comprehensive

foundation for the professionalization of data science, comprising

components such as the Competence Framework (CF-DS), the

Body of Knowledge (DS-BoK), the Model Curriculum (MC-DS),

and the Professional Profiles (DSPP) (43–46). In the United

States, the American Medical Informatics Association (AMIA)

emphasizes competency-based accreditation for health

informatics, which aligns closely with data science roles (47). The

Association for Computing Machinery (ACM) further supports

this with computing competencies for undergraduate data science

curricula, detailing essential knowledge and skills (48).

Country-specific regulations vary; for example, the United

States emphasizes skills-based hiring under Executive Order

14110 for AI and data professionals, with a focus on practical

competencies over formal education (49). Similarly, the National

Occupational Standards (NOS) of the United Kingdom include a
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standard which outlines detailed performance criteria for

computational data analysis in life sciences [Unique Registration

Number (URN) COGBIO-05], making it particularly applicable

to specialized data science roles (50).
4.3 Key tasks of a data scientist in tumor
boards

The data scientist plays a vital role as a synthesizer of

knowledge, integrating patterns from large, disparate datasets

across multiple domains, including clinical, genomic, and

environmental data (51). Within tumor boards, data scientists do
TABLE 1 A summary of key tasks for data scientists in tumor boards, the cha

Tasks, challenges, and solutions for data scientists in tumor

Key task Example
Reinforcement
Learning (RL)

Developing adaptive chemotherapy dosages
that minimize toxicity while maximizing
effectiveness (55)

Real world onco
Markovian, and
lead to misrepre

Bayesian networks Guiding immunotherapy decisions for head
and neck cancer by integrating patient data
and treatment probabilities (57)

Handling incom
subjective data in
often leads to in
(57)

Simulation-based
approaches

Optimizing Tumor Treating Fields (TTFields)
for brain tumors by simulating array
placement and tumor characteristics (59)

Simulation-based
the high comput
accurate and tim

Dose optimization
and scheduling

Recent DL models predict doses by analyzing
patient scans to map optimal dose values,
guiding treatment planning and predicting
dose distributions (62)

AI-driven dose p
generalizability a
variations in pat
practices, includ

Multi-omics
integration

Selecting appropriate methods to maximize
accuracy in cancer classification, drug
response prediction, and runtime efficiency
(65)

Discovering true
genomic, transcr
challenging due
batch effects from
across multiple s

Radiomics and
pathomics integration

Developing models to classify cancer stages or
predict survival outcomes by integrating
radiological and pathological imaging data
(66)

Radiopathomics
standardization,
and model gener
populations

Advancing cancer
care through spatial
biology

Using spTx to understand breast cancer drug
sensitivity across tumor regions, improving
treatment personalization (73)

Scaling data inte
demands, and tr
into actionable t

Causal modeling in
oncology

Applying a large language model to
determine the directionality of causation in
NSCLC, such as how smoking status may
impact treatment choice (76)

Causal discovery
by the complexit
relationships in
and electronic h
generated causal

Adaptive treatment
strategies

Modifying radiotherapy plans during
treatment to account for tumor changes and
improve precision (79)

Limited rapid im
real-time replann
adaptive radioth
tools

Decision support
systems

A CDSS based on ML that integrates clinical,
imaging, biologic, and genetic data to aid
tumor board discussions of metastatic lung
cancer cases (82)

Lack of precise a
locations, sizes, a
lead to limitation
CDSS

Optimization of
combination
therapies

Designing nanoplatforms for synergistic drug
delivery and reduced toxicity in cancer
treatment (84)

Variability in the
makes it difficul
effectively modu
diverse patient p
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not only leverage advanced ML models but also employ a variety

of statistical and computational techniques to optimize treatment

planning and personalize patient care (8). The breadth of their

contribution extends beyond predictive modeling and data

integration into more specialized areas such as reinforcement

learning, Bayesian networks, simulation-based approaches, and

many others. Table 1 summarizes the key tasks for data scientists

in tumor boards, the challenges that they face, and data science

solutions to overcome them.

4.3.1 Reinforcement learning (RL)
Reinforcement learning, a type of machine learning where an

algorithm learns to make sequences of decisions by maximizing
llenges they face, and data science solutions to overcome them.

boards

Challenges Potential solutions
logy environments are non-
assumptions that they are may
sentation of clinical scenarios (54)

Employ partially observable Markov decision
processes or multiple imputation methods to
improve the environment representation (54)

plete clinical histories and
Bayesian Network construction

accurate probabilistic inferences

Integrate expert knowledge with advanced
imputation methods to refine Bayesian Network
structures and enhance predictive accuracy (57)

approaches often struggle with
ational demands required for
ely results in clinical settings

Partnerships between national governments and
hardware providers such as Nvidia to develop
supercomputer-level capabilities

rediction struggles with
cross institutions due to
ient populations and treatment
ing treatment planning

Develop collaborative multi-center databases to
train models on diverse datasets for better
generalization. Incorporate domain adaptation
techniques and robust cross-validation strategies
to refine model performance across varying
clinical settings

causal relationships among
iptomic, and proteomic layers is
to high-dimensional data and
inconsistent datasets generated

ites

Apply causal modeling with Bayesian networks
and biological knowledge to improve integration
accuracy, using batch effect correction and
robust normalization for consistent, reliable data

currently struggles with data
feature dimensionality reduction,
alizability across diverse patient

Use advanced feature selection methods to
reduce feature redundancy and improve model
robustness. Incorporate multi-center data and
external validation cohorts to ensure model
applicability across different clinical settings

gration, handling computational
anslating complex spatial insights
herapeutic strategies

Develop streamlined workflows that employ
cloud-based visualization techniques to translate
spatial insights into clinically relevant
therapeutic decisions

in oncology datasets is hindered
y of accurately identifying causal
multi-modal data, e.g., genomics
ealth records, and validating
structures

Combine causal discovery algorithms with
domain expertise encoded through LLMs to
refine causal graphs. Validation techniques, such
as Bayesian Dirichlet scoring, can ensure the
causal models align with both observed data and
clinical relevance

aging, precise segmentation, and
ing capabilities for MRI-guided
erapy and automated planning

Fund research which may advance accelerated
imaging, deep learning auto-segmentation, and
real-time adaptive planning capabilities

nd standardized data on tumor
nd numbers in clinical notes can
s in training ML models for

Extract geometric features from medical images,
like tumor volume and location, to enhance ML
models for precise treatment predictions

TME and immune profiles
t to design therapies that
late immune responses across
opulations

Use causal inference models to integrate genetic,
proteomic, and spTx data for identification of
key biomarkers and pathways to design
personalized combination therapies
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cumulative rewards, has growing applications in treatment planning

(52). Data scientists need to account for the differences between the

oncology environment and a classic RL environment following the

Markov assumption that the future state of a system depends only

on its current state (53). They may do this by suggesting an

adaptation to a RL model. In oncology, RL is used to develop

dynamic treatment strategies that adapt based on the patient’s

response to ongoing treatments. RL algorithms can continuously

adjust dosages of radiation or chemotherapy to minimize toxicity

while maximizing effectiveness (54). Moreover, Tempo, a novel

framework based on RL for personalized screening, has proven its

effectiveness in the context of breast cancer. The Tempo policy,

combined with an AI risk model, outperforms current practices in

early detection and can be adapted to different screening

preferences. It also improves detection while reducing overscreening

(55). A personalized treatment approach allows clinicians to adjust

treatment plans in real time, providing adaptive strategies as new

patient data emerges. Similarly, personalized screening tailors

assessments to individual risk profiles, enhancing early detection

and treatment precision.

4.3.2 Bayesian networks
Data scientists also use Bayesian networks, probabilistic

graphical models that represent a set of variables and their

conditional dependencies. These networks help in predicting

outcomes and understanding the likelihood of various treatment

responses based on observed data. In a tumor board setting,

Bayesian networks can integrate information from different

sources—clinical data, molecular biomarkers, and patient history

—to estimate the probabilities of different clinical outcomes and

provide uncertainty quantifications, helping doctors make more

informed decisions in cases where there is ambiguity (56). For

example, in the study of Huehn et al. (57), they developed a

digital patient model using Bayesian networks to integrate patient

data and relevant probabilities for treatment decisions in head

and neck squamous cell carcinoma (HNSCC). Validation showed

the model effectively guides immunotherapy decisions, with 84%

accuracy and significant concordance (Cohen’s κ = 0.505,

p = 0.009) when compared to actual treatment decisions for 25

patients. This model was created to represent a physician’s

decision-making in tumor boards, integrating clinical and

molecular data to identify the best treatment for each patient.

4.3.3 Simulation-based treatment planning
Simulation-based approaches enable data scientists to create

virtual treatment scenarios and evaluate potential outcomes. By

simulating multiple strategies, clinicians can explore the

consequences of various plans before applying them to patients.

These simulations are especially valuable in complex cases with

multiple options, helping model long-term effects of treatments

like chemotherapy combined with immunotherapy or predict

patient responses based on genetic profiles (58). Just like in the

study of Federov et al. (59), they developed a novel simulation-

based method for optimizing Tumor Treating Fields (TTFields)

treatment planning for brain tumors. TTFields, delivered through

transducer arrays on the skin, inhibit tumor growth, with their
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distribution varying based on array placement, patient anatomy,

and tumor characteristics. Incorporating such algorithms into

advanced treatment planning systems is expected to enhance

physician management of TTFields patients, ultimately

improving patient outcomes.
4.3.4 Dose optimization and scheduling
In addition to simulating treatment outcomes, data scientists

also use dose optimization models to personalize the amount and

timing of therapies such as chemotherapy or radiation. These

models aim to balance efficacy with minimizing side effects,

especially in treatments that involve toxic agents. By adjusting

dosing schedules based on individual patient metabolism and

tumor characteristics, clinicians can optimize therapy duration

and frequency to increase the probability of success without

compromising patient quality of life (60). The emergence of new

anti-tumor treatments further complicates this, creating an

urgent need for optimized dose-schedule strategies. Data

scientists can be useful by using Bayesian adaptive designs which

can offer an efficient approach to assess multiple doses and

schedules concurrently within a single clinical trial (61).

Moreover, recent advancements in deep learning (DL) have led

to the development of DL-based dose prediction models. Unlike

traditional methods, DL automatically extracts features from

patient CT, MRI, or PET scans to map optimal dose values,

guiding treatment planning systems for final dose distribution. It

can also predict dose distributions based on anatomical data and

dose prescriptions (62).
4.3.5 Multi-omics integration
Multi-omics integration is another important facet of treatment

planning. Data scientists combine data from genomics,

transcriptomics, proteomics, and metabolomics to create a

comprehensive molecular profile of a patient’s tumor. By

integrating these diverse datasets, data scientists help tumor

boards develop more targeted therapies. For example, a multi-

omics approach might reveal not just a single genetic mutation

driving the cancer but also how it interacts with other molecular

pathways, leading to more tailored treatments, such as targeting

metabolic pathways in addition to the genomic aberration

(63). Multi-omics offers a comprehensive view of cancer

biology, but the large data volumes pose analytical challenges.

AI helps address these by identifying patterns and extracting

insights from complex omics data, advancing cancer research

(64). Similar to the study by Cai et al. (65), which explored

machine learning methods for integrating multi-omics data in

cancer research, their focus was on both general-purpose and

task-specific approaches. They benchmarked five methods

using data from the Cancer Cell Line Encyclopedia, assessing

accuracy in cancer classification, drug response prediction, and

runtime efficiency. Their paper provides recommendations for

selecting appropriate methods and encourages the

development of new tools to advance drug discovery and

personalized treatments.
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4.3.6 Radiomics and pathomics integration
Radiomics involves extracting quantitative features from

medical imaging (e.g., CT, MRI, PET scans) that can reveal

tumor heterogeneity and predict patient outcomes. Similarly,

pathomics analyzes histopathological images to identify patterns

that may not be discernible by a pathologist alone. Data

scientists combine these image-derived features with clinical and

genomic data to improve treatment predictions and select

optimal therapeutic strategies. Like in the study of Tan et al.

(66), they developed radiopathomics models, employing ML

algorithms, that can highly classify stage I, II, and III gastric

cancer. Other researchers also developed radiopathomics models

to predict prognosis in patients with colorectal and lung cancers,

as well as their overall survival (67, 68). Radiomics and

pathomics are particularly valuable in situations where genetic

testing may not be available, offering non-invasive options for

assessing tumor characteristics (69, 70).

4.3.7 Advancing cancer care through spatial
biology

Spatial biology technologies, such as GeoMx® (NanoString

Technologies®)1, CosMxTM (NanoString Technologies®)2, Visium®

(10x Genomics®)3, and XeniumTM (10x Genomics®)4, are

revolutionizing cancer research by integrating molecular profiling

with spatial context. These approaches enable the mapping of

tumor heterogeneity, microenvironment, and cell-cell interactions,

providing insights that traditional bulk sequencing cannot offer.

For instance, spatial transcriptomics (spTx) platforms like

CosMxTM5 and XeniumTM6 enhance tumor analysis by combining

high-resolution imaging with RNA profiling, capturing cellular

organization and biomarker localization within tissue samples (71).

Visium® HD7 offers sub-cellular resolution, enabling more

detailed reconstruction of cell morphology and expression patterns

in tumors (72).

One of the most notable applications of spatial biology in the

field of oncology is the use of spTx in understanding breast

cancer. Despite the improved patient outcomes in precision

medicine, breast cancer treatment still faces challenges due to
1See https://nanostring.com/products/geomx-digital-spatial-profiler/geomx-

dsp-overview/, Last accessed: January 11, 2025.
2See https://nanostring.com/products/cosmx-spatial-molecular-imager/,

Last accessed: January 11, 2025.
3See https://www.10xgenomics.com/platforms/visium, Last accessed:

January 11, 2025.
4See https://www.10xgenomics.com/platforms/xenium, Last accessed:

January 11, 2025.
5See https://nanostring.com/products/cosmx-spatial-molecular-imager/single-

cell-imaging-overview/, Last accessed: January 11, 2025.
6See https://nanostring.com/resources/cosmx-smi-vs-xenium-superior-in-

situ-single-cell-performance-study/, Last accessed: January 11, 2025.
7See https://www.10xgenomics.com/products/visium-hd-spatial-gene-

expression, Last accessed: January 11, 2025.
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intratumoral heterogeneity (ITH), where different parts of the

tumour respond differently to drugs. Using spTx, recent research

shows that drug sensitivity varies across the tumor, from the core

to the periphery. It also finds that genetically identical tumor

cells can respond differently depending on their location (73).

Thus, it is crucial to consider not only the genetic profile of the

tumor but also its spatial organization and the surrounding

microenvironment. This approach could lead to more

personalized and effective treatments by addressing the tumor’s

complexity, improving outcomes, and reducing the chances of

treatment failure.
4.3.8 Causal modeling in oncology
Causal modeling focuses on determining cause-and-effect

relationships, going beyond correlation to uncover how specific

interventions lead to observed outcomes. This is particularly

critical in oncology, where data scientists use advanced

techniques like the Peter-Clark (PC) algorithm (74) and latent

Gaussian models to identify causal pathways in treatment effects

and disease progression (65). While frameworks like the SHapley

Additive exPlanations (SHAP) and Local Interpretable Model

Agnostic Explanation (LIME) help interpret machine learning

models, they primarily explain correlations rather than

causation (75).

For example, a large language model (LLM) was used to

improve causal discovery of the factors impacting survival in

Non Small Cell Lung Cancer (NSCLC), revealing potentially

unexpected causal relationships such as smoking status having a

causal effect on treatment choice (76). The role of data scientists

extends further, applying causal inference methods, such as

inverse probability weighting and structural failure time models,

to address biases like treatment switching in survival analysis

(77). By integrating these causal approaches into clinical

workflows, data scientists enable tumor boards to base decisions

on robust cause-and-effect insights, driving better patient

outcomes in personalized oncology care.
4.3.9 Adaptive treatment strategies
Another application where data scientists play a key role is in

developing adaptive treatment strategies. These strategies are

designed to evolve in response to the patient’s changing

condition. For instance, if a patient’s tumor becomes resistant to

chemotherapy, data scientists can employ adaptive models to

recommend alternative treatments, such as switching to targeted

therapy or immunotherapy. By continuously analyzing patient

data throughout the treatment course, adaptive models ensure

that treatment plans remain flexible and responsive to real-time

changes in disease progression (78). For example, adaptive

radiotherapy (ART) is used as a cancer treatment method that

adjusts the radiation plan during treatment to account for

changes in the tumor’s size, shape, and position, as well as

nearby healthy tissues. This helps make the treatment more

effective and safer by targeting the tumor better while reducing

harm to healthy tissues, thus improving both the treatment’s

efficacy and safety (79).
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4.3.10 Decision support systems (DSS)
Data scientists also develop decision support systems (DSS) that

aid oncologists in selecting treatment pathways based on the

integration of patient data, clinical guidelines, and outcomes from

past treatments. These systems use a combination of machine

learning algorithms and clinical knowledge to provide

recommendations that consider both standard care protocols and

personalized factors. In particular, data scientists design systems

capable of providing real-time decision support by processing data

from sensors, wearables, or EHR systems. For example, a clinical

DSS could alert the physician in real time about the patient’s

deteriorating condition, helping to prevent adverse effects or

complications (80). Monitoring biometric data in cancer patients

offers crucial insights for oncologists. Initial metrics such as steps

and heart rate aid in prognosis and treatment choices, while

ongoing tracking helps identify potential adverse events and

supports rehabilitation monitoring (81). Additionally, a recent

thesis from the University of Toronto found that Machine

Learning, especially random forests (RF), could be used to create a

better clinical DSS (CDSS) for metastatic lung cancer than current

hospital decision support framework (82). A one-step prediction

of non-local therapy, surgery, or stereotactic body radiation

therapy using RF achieved an Area under the Receiver Operator

Curve of 0.857 and a mean accuracy of 72.55% against the tumor

board’s final decision as truth.
4.3.11 Optimization of combination therapies
Data scientists can also help optimize combination therapies,

where multiple treatments such as chemotherapy, radiotherapy,

and immunotherapy are used in tandem. By modeling the

interaction effects between various treatments, they can predict

the synergistic or antagonistic outcomes of combining therapies.

This is particularly important in oncology, where combination

treatments are often necessary but must be carefully balanced to

avoid excessive toxicity while maximizing therapeutic benefit

(83). For instance, nanoplatforms are used to improve treatment

precision and reduce toxicity by enhancing drug delivery,

especially in combination with immunotherapy, chemotherapy,

radiotherapy, and other cancer treatment procedures (84). With

the help of data scientists, AI-powered predictive modeling can

be utilized to help simulate intricate nanoscale processes,

assisting in the design and refinement of nanomaterials and

devices. This technique will enhance the development of

nanoplatforms, optimizing their performance in drug delivery

and cancer therapy while reducing associated risks.
4.4 The importance of foundation models in
tumor boards

Foundation models, particularly transformer-based

architectures like GPT, BERT, Pathways Language Model

(PaLM), and Large Language Model Architecture (LLaMA)

(85–88), have significantly enhanced natural language processing

(NLP) and pattern recognition in healthcare, making them
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indispensable tools for tumor boards. These models are adept at

processing unstructured clinical data, including medical histories,

radiology reports, and pathology images, which often contain

critical information for decision-making. By efficiently

summarizing and analyzing vast amounts of data, foundation

models enable clinicians to make more precise, data-driven

decisions that improve patient outcomes (89, 90).

4.4.1 Transformer-based models
These models, including GPT and BERT (85, 86), excel at

processing large amounts of textual data from patient records and

clinical notes. Their ability to handle unstructured data and

perform complex tasks like summarization and sentiment analysis

offers significant advantages over traditional statistical methods,

which often struggle with the high dimensionality and noise

inherent in medical data (91). In tumor boards, transformer-based

models can summarize complex patient histories and predict

treatment responses, providing oncologists with actionable insights.

4.4.2 Memory-augmented neural networks
(MANNs)

Memory-Augmented Neural Networks (MANNs) are designed

to enhance long-term dependencies, allowing for the retention of

information over extended periods (92). This capability is

particularly valuable for tracking the progression of diseases like

cancer, where long-term data about tumor growth and treatment

responses can inform future care strategies. MANNs are essential

in long-term treatment planning, helping clinicians assess how a

patient’s condition might evolve over time (93).

4.4.3 Graph neural networks (GNNs)
Graph Neural Networks (GNNs) play a crucial role in

understanding relationships between biological factors such as

gene expressions, protein-protein interactions, and TMEs (94).

These models analyze complex biological networks to provide

insights into molecular mechanisms that drive cancer

progression. By mapping interactions within biological pathways,

GNNs help identify potential therapeutic targets, making them

valuable for personalized treatment strategies in oncology (95).

4.4.4 Neural ordinary differential equations (neural
ODEs)

Neural Ordinary Differential Equations (ODEs) offer a powerful

approach to modeling continuous biological processes (96). These

models are adept at simulating how a patient’s condition changes

over time, making them useful for predicting treatment responses

and disease progression. Neural ODEs are particularly valuable in

dynamic environments like oncology, where patient conditions

can rapidly change due to treatment or disease relapse (97).

4.4.5 Hyena hierarchy
The Hyena Hierarchy model is a relatively new advancement in

sequence modeling, designed to outperform traditional transformer

models in processing long-range dependencies without the

quadratic scaling issues inherent in transformers (98). In tumor

boards, Hyena Hierarchy can be applied to analyze extensive
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patient datasets, such as multi-modal data from clinical trials or

longitudinal studies. This model’s ability to handle long sequences

efficiently makes it ideal for extracting patterns from extensive

patient histories, genetic sequences, and radiological imaging,

leading to more personalized and precise treatment plans.

4.4.6 Fourier transform-based models (FNet)
FNet models replace the self-attention mechanism found

in transformers with Fourier Transforms, which are

computationally efficient and scalable. FNet models are

particularly useful in situations where quick and efficient data

processing is required, such as analyzing large datasets of patient

vitals or sensor data from wearable devices (99). In tumor

boards, FNet could be used to extract meaningful insights from

continuous data streams like monitoring patient vitals in real

time, offering the potential for more dynamic, real-time decision-

making during cancer treatment.

4.4.7 Retentive networks
Retentive Networks are designed to process long-range data

while retaining context across large sequences, much like

transformer models but with more efficient memory use (100).

This model can be useful in oncology, where a continuous

stream of patient data is analyzed over the long term. Retentive

Networks can help tumor boards track the effectiveness of

treatments over time, analyzing data from repeated scans, lab

results, and genomic updates to ensure that treatments remain

optimal as the disease evolves.

4.4.8 Adaptive computation time models
Adaptive Computation Time is a strategy in DL models that

improves computation efficiency and adaptability (101). It is

particularly relevant in scenarios where different parts of a

dataset require varying amounts of computational attention. In

tumor boards, these models can dynamically allocate resources to

the most critical patient data, such as prioritizing genomic

markers or radiology results in patients with advanced cancers.

This ensures that the model focuses on the most relevant data

points to assist with urgent clinical decisions.

4.4.9 Autoencoder-based models
Variational Autoencoders (VAEs) play an important role in

modeling high-dimensional data, which is common in oncology

due to the complexity of genetic and clinical information (102).

VAEs can be used to compress these large datasets while

retaining the most relevant features for tumor classification or

risk stratification. In tumor boards, VAEs assist by reducing data

complexity, enabling clinicians to focus on the most critical

elements for personalized treatment planning (103).
4.5 How these models compare to
traditional biostatistics

Traditional biostatistics relies on predefined assumptions,

which often limit its capacity to analyze complex and high-
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dimensional data. While biostatistics has been invaluable for

hypothesis-driven research, it may fall short in addressing the

complexity of cancer data, especially as datasets grow in size and

complexity (104). Machine learning models, particularly

foundation models, offer a more adaptive approach, as they can

learn from data and adjust predictions in real-time. These

models are not bound by the rigid assumptions of traditional

biostatistics and are better equipped to handle the evolving

nature of cancer treatment paradigms (105).

By working alongside traditional biostatistical methods, data

scientists using advanced ML models bridge the gap between

established statistical techniques and novel data-driven

approaches. This collaboration ensures that tumor boards can

extract the most comprehensive insights, allowing for more

accurate and personalized cancer care (106).
4.6 Expanding roles for improved
patient care

Theories around transdisciplinary integration suggest that

expanding the roles of healthcare teams to include more diverse

professionals—such as data scientists, AI specialists, and social

scientists—leads to improved patient outcomes. As healthcare

becomes more data-centric, the roles of data scientists are expected

to grow even further (16). Frameworks like the learning health

system (LHS) propose that constant learning and data integration

lead to better clinical outcomes, which aligns with the data

scientist’s role in synthesizing diverse sources of information (107).

Healthcare professionals are also encouraged to embrace and

integrate AI in their respective fields to ensure the effectiveness

and success of transdisciplinary teams. As essential members of

the healthcare team, nurses, for instance, should receive ongoing

education and training in AI to prepare for the AI-driven future

of healthcare. This can be most impactful when AI concepts and

skills are incorporated into the nursing curriculum, ensuring

nurses are equipped with the knowledge and tools needed to

navigate and leverage AI in their practice (108). Additionally, AI

can significantly support radiologic technologists by enhancing

their ability to provide high-quality, efficient, and safe imaging

services, while also allowing for better collaboration with other

healthcare professionals. By automating repetitive tasks and

providing decision support, AI helps radiologic technologists focus

on more complex aspects of patient care and diagnostics (109).

Healthcare teams that embrace transdisciplinary approaches

are better equipped to tackle complex problems, as they benefit

from the combined expertise of professionals from different

domains. This collaborative approach improves the ability to

adapt to new treatments, technologies, and patient needs (110).
4.7 Why a data scientist who stays current
with foundational models is invaluable

The field of foundation models is rapidly evolving, and most

clinicians are likely unable to stay current on these developments
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in addition to their intense workload. Data scientists who are

familiar with the latest models—such as GPT, BERT, PaLM, and

GNNs—can integrate insights from clinical, genomic, and

lifestyle datasets to inform the tumor board’s decisions). This

capability allows tumor boards to remain at the cutting edge of

cancer treatment (90).

In resource-constrained settings, such as those in the Global

South, a data scientist’s ability to leverage foundation models to

extract meaningful insights from limited data can be

transformative. By applying these models to real-world data, data

scientists can improve diagnostic accuracy, optimize treatment

plans, and make personalized cancer care more accessible to

underserved populations (34).
5 Overcoming barriers to data science
integration in the global south

5.1 Identifying key barriers

The Global South faces several significant barriers to the

integration of data science in healthcare, particularly in oncology.

Key challenges include:
5.1.1 Limited supercomputer infrastructure in the
global south

Here is a brief breakdown of supercomputer power distribution

in the Global South by region. Computing power is often quantified

by “flops”, where one flop indicates the ability to perform one

floating point operation per second. For reference, the values

below can be compared to the most powerful supercomputers in

the world such as El Capitan8 in the United States with 1,742

petaflops (1.74e + 18 flops) based on the Top500 supercomputer

list in 2024. Unfortunately, there is not a quality report comparing

AI task processing speeds which can differ significantly from

traditional metrics. For example, the Aurora system9 which ranks

number three on the Top500 list may be the world’s fastest

computer for AI tasks. And those computers which could be used

for AI tasks may be used for predictive modeling of phenomena

such as weather instead. Because of this, some of the descriptions

below may over- or under-estimate the systems’ usefulness for

integrating AI in tumor boards. Also of note, it is believed that

China does not publish complete supercomputer specifications for

all its systems to public sources.

• South America is home to 10 notable supercomputers, the

largest of which is the Pégaso10 cluster owned by Brazil oil
8See https://asc.llnl.gov/exascale/el-capitan, Last accessed: January 11,

2025.
9See https://www.anl.gov/aurora, Last accessed: January 11, 2025.
10See https://www.bnamericas.com/en/news/petrobras-latest-supercomputer-

goes-fully-operational, Last accessed: January 11, 2025.
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giant Petrobras11 with 19 petaflops, or 1.9e + 16 flops. This

company owns six out of the ten supercomputers on the

continent and mostly uses them for tasks such as geophysical

exploration. Brazil is rapidly developing AI infrastructure, but

the rest of South America lags behind partly due to

political instability.

• On the African continent, only Morocco hosts a supercomputer

of competitive power, Toubkal12, with 3.15 petaflops. Africa is

far behind in developing this infrastructure, but countries

which are making headway include Morocco, South Africa,

Nigeria, and Angolo, among others. These countries can pave

the way to fast track the broader continent to a fair and

equitable AI revolution.

• Southeast Asia is strategically located between regions of AI

progress including South Asia, East Asia including China,

South Korea, and Japan, Australia, and some connections with

the United States. Singapore is currently the clear leader in

developing high performance computing infrastructure in the

region, especially with the recent launch of the ASPIRE 2A+13

with 20 petaflops of processing power and a recent

announcement of $270 million in additional investment.

While other countries in the region are highly promising for

the development of such resources, including Thailand,

Indonesia, and the Philippines, many new projects will be

needed to realize this potential.

5.1.2 Resource constraints
• Limited Education and Training: There is a shortage of data

scientists and healthcare professionals trained in advanced

data analytics in LMICs. Many healthcare workers lack the

skills necessary to operate complex AI systems, hindering the

adoption of data science in clinical practice (17).

• Insufficient Investment in Health Data Systems: Health

systems in LMICs often suffer from underfunding, with

limited investment in digital health infrastructure. This lack of

financial support prevents the development of integrated

health data systems that could facilitate the use of AI and ML

in cancer care (111).

5.1.3 Ethical considerations
• Trust and Privacy of AI Tools: Trust and privacy have been

identified as barriers to using AI to improve healthcare in

LMICs. Specifically, some of the centers attempting to use AI

have been concerned with transparency and security, such as

when using x-rays to diagnose Tuberculosis (112, 113).

• Combatting Exploitation and Unintended Consequences:

While AI has the potential to improve healthcare in low-
11See https://petrobras.com.br/en/quem-somos/perfil, Last accessed:

January 11, 2025.
12See https://toubkal.um6p.ma/, Last accessed: January 11, 2025.
13See https://www.nscc.sg/aspire-2a-plus/, Last accessed: January 11, 2025.
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resource communities and is championed as a means for

global health justice (114, 115), data mobilization in LMICs

also holds the potential to exacerbate historical exploitation

and increase inequalities. For example, the data wealth

disparity between developed and developing countries may

contribute to a data-centric neocolonialism in which centers

of influence collect data from LMICs without payment or

informed consent and use them to develop products which

are then sold to LMICs (116, 117). Additionally, AI tools

could be used to further ostracise certain people groups within

a society such as ethnic minorities, the incarcerated, and

women. Yu and Zhai suggest a concept called the “AI

Deployment Paradox” to describe this risk and recommend

flexible and tight regulation and persistent engagement with

local stakeholders to address it.

5.1.4 Risks of over-reliance on AI
A major issue with the power of AI is that practitioners may

become overly reliant on it, leading to automation bias. This can

result in harmful outcomes like incorrect decisions,

overdiagnosis, overtreatment, and defensive medicine (118).

These issues arise because AI systems, despite being advanced,

can still make mistakes or miss important nuances in a patient’s

condition. And so, the clinician’s supervision is crucial

for ensuring the best possible care. On the other hand, patients

may also distrust AI and most of them are expressing discomfort

with physicians who are solely relying on AI for medical care.

This is mainly influenced by factors such as education,

knowledge, and experiences on AI. For example, in pain

management or surgical procedures, some patients are skeptical

about using AI because they believe that it will only worsen their

condition or offer no significant benefits. They are also reluctant

in using AI chatbots for mental health support without a

therapist’s involvement because they believe that AI does not

offer any emotional support. However, those people with higher

education and more experiences in using AI generally view AI as

a helpful tool for improving patient care. Thus, skepticisms may

have arised from limited understanding and data privacy

concerns (119).

In addition, patients are more than just their health—they have

unique needs, wishes, and values. Healthcare is built on a special

relationship between doctors and patients, focused on respect,

privacy, fairness, and care. This relationship should support

patients’ choices and protect them from harm. Thus, medical AI

should align with these principles (118). Like in many medical

schools, they present a story about a woman who visits her

doctor to receive her biopsy results. Turns out, she has metastatic

cancer and was told she has only a few months to live. While the

diagnosis and prognosis are precise, backed by copious evidence,

it was revealed that the “doctor” delivering the news is actually

an AI program with little emotional engagement. Although most

oncologists do not fear being replaced by AI, some may be

concerned that companies and healthcare professionals might

fully rely on AI in the name of efficiency or profit. Thus, data

scientists should be aware of the role they might play in this. As
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data scientists may become more involved in tumor boards, they

should emphasize how AI can enhance the patient experience by

ensuring they feel genuinely cared for.
5.1.5 Professional culture gaps between
oncologists and data scientists
• Epistemic and Communication Gaps: Data scientists and

clinicians have distinct areas of expertise: data scientists focus

on technical aspects such as data analysis, AI modeling, and

algorithms, while clinicians prioritize patient care, medical

experience, and clinical judgment. These differing approaches

can lead to challenges in working together, as they may not

fully comprehend each other’s priorities, techniques, strengths,

or limitations. Communication challenges arise when data

scientists and clinicians struggle to share insights clearly.

Data scientists may find it difficult to explain complex

algorithms, while clinicians may not convey the nuances of

patient care, leading to confusion and difficulties in reaching

data-driven healthcare decisions. To bridge these gaps, both

groups need to understand each other’s roles and work

together more effectively. Data scientists can simplify their

explanations to make their findings more accessible to

clinicians, while clinicians can help data scientists grasp

the complexities of patient care. This collaboration ensures

that AI and data tools are applied in ways that truly

benefit patients (120).

• Necessary Shifts of Perspective: For successful collaboration

between oncologists and data scientists, a cultural shift is

necessary. Oncologists must view data science as a valuable

tool to enhance patient care, while data scientists should gain

a deeper understanding of clinical challenges. Clear

communication and mutual trust are vital, with data scientists

simplifying their findings and oncologists embracing data-

driven insights. Both groups should actively learn from each

other’s expertise. This collaboration can lead to more

informed decision-making and improved patient outcomes by

integrating clinical knowledge with data-driven tools.

5.2 Opportunities for overcoming obstacles

5.2.1 Federated learning
Federated learning (FL) is a shared global model training

framework that keeps data localized and addresses privacy

concerns associated with sensitive and fragmented datasets (84,

121–124). Previously, model training has involved aggregating

data from various centers all together, but in FL, each center

completes part of the overall operation without its own data

being accessible to other centers. Examples of implementation

include improving hospital mortality prediction (125) and

monitoring air pollution (126). As discussed, many medical and

medical research centers in developing countries lack the

infrastructure for high-bandwidth data transfers and processes

with high computational cost. We see FL as a potential solution

to this problem because the local operations conducted require

less-intensive data transfers and lower computational costs.
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Nvidia14, a primary leader in the production of AI-capable

hardware, has taken a keen interest in FL, which bodes well for

LMICs as they partner with Nvidia to increase their

computing infrastructure.
5.2.2 Low-cost AI models
Low-cost AI models play a crucial role in addressing the unique

challenges faced by LMICs, where resource constraints often limit

access to advanced technologies. These models, designed to operate

efficiently on low-power devices or with limited computational

resources, have demonstrated significant potential across various

domains. For instance, Zehra et al. (127) highlight strategies for

implementing cost-effective AI-driven digital pathology, enabling

earlier and more accessible diagnoses in resource-constrained

healthcare systems. Similarly, Gangavarapu (128) introduces a

multilingual medical AI model tailored to reduce health

disparities in low-resource regions, emphasizing adaptability and

equitable access. Beyond healthcare, initiatives like MAIScope

(129), a portable AI-powered microscope, showcase how low-cost

solutions can automate disease diagnoses in remote settings,

bridging critical gaps in healthcare delivery. Divyashree et al.

(130) aim to build an affordable healthcare system by integrating

low-cost sensors, IoT, and AI to deliver real-time monitoring and

diagnostic solutions, making healthcare more accessible and

reliable for underserved populations. Such efforts underscore the

necessity of designing AI models that not only meet technical

requirements but also align with the socioeconomic realities of

LMICs. As López et al. (131) argue, integrating these solutions

into LMIC ecosystems requires collaboration and innovation

to overcome barriers like data quality and infrastructure

limitations, paving the way for sustainable AI adoption in

underserved regions.

These examples further emphasize how low-cost AI models can

address systemic challenges in LMICs. For instance, frugal machine

learning (FML) emphasizes hardware, model, and data efficiency,

enabling AI to be more accessible and sustainable without

compromising performance (132). Similarly, field-programmable

gate array (FPGA)-based reconfigurable clusters, as demonstrated

by Rupanetti et al. (133), offer scalable and cost-effective

solutions for machine learning applications in resource-

constrained environments, improving parallel processing

capabilities. Wearable devices have shown promise in reducing

reliance on expensive ICU equipment, while leveraging AI for

adaptive decision-making (130, 134). Such approaches not only

enhance accessibility but also bridge gaps in healthcare delivery,

ensuring that even under-resourced communities benefit from

cutting-edge technology. These initiatives highlight the

transformative potential of low-cost AI to improve quality of life,

support local infrastructure, and promote equity in technology

adoption worldwide.
14See https://www.nvidia.com/en-us/, Last accessed: January 11, 2025.
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5.2.3 The role of government, NGOs, and the
private sector

To ensure the successful integration of data science in cancer

care, coordinated efforts from multiple sectors are required:

• Government Support: Governments must play an active role in

prioritizing investments in health data systems and

infrastructure. Policymakers can create enabling environments

by establishing regulations that encourage innovation,

ensuring data privacy and security, and providing funding for

digital health initiatives (135).

• NGO Involvement: Non-governmental organizations (NGOs)

can act as intermediaries between healthcare systems and

international donors, advocating for increased investment in

health technologies. NGOs can also contribute to capacity-

building efforts by funding training programs and supporting

community engagement (136).

• Private Sector Engagement: Private companies, especially

those in the technology and healthcare industries, can

provide expertise and funding for the integration of

AI and data science in oncology. These companies can

offer scalable solutions, such as cloud-based data storage

and AI platforms, that are more accessible in resource-

constrained settings (137).

5.2.4 Opportunities for leapfrogging traditional
models of cancer care

Despite the challenges, the Global South has a unique

opportunity to leapfrog traditional models of cancer care by

adopting AI and data science technologies:

• Leapfrogging Traditional Infrastructure: LMICs can bypass

the need for costly physical infrastructure by adopting cloud-

based solutions and mobile health (mHealth) applications.

These technologies allow healthcare providers to access and

analyze data remotely, making cancer care more scalable and

accessible in underserved regions (34).

• Real-World Data and AI: By leveraging real-world data

(RWD) collected through mobile health platforms, wearables,

and telemedicine, LMICs can build datasets that feed into

AI-driven cancer care models. These models can then be

used to develop context-specific treatment strategies that

reflect the unique challenges and disease patterns in

these regions (33, 34).

• Innovative Diagnostics and Treatment Models: AI-driven

diagnostic tools can improve early detection rates by analyzing

imaging and pathology data with high accuracy. Additionally,

AI can help personalize treatment plans based on local disease

profiles and available resources, enabling more targeted cancer

therapies (51).

5.2.5 Fostering growth and embracing change
Adopting data science and artificial intelligence (AI) in

healthcare, especially in LMICs, presents exciting opportunities

for growth and development. Embracing these new

methodologies can help healthcare professionals enhance their

work, while also recognizing that change can be challenging.
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Several theories can guide this transition, supporting healthcare

professionals as they explore new approaches and thoughtfully

adjust established practices.

• Transformational Learning Theory: Transformational learning,

as outlined by Mezirow (138), offers a way to approach change

with openness and reflection. In healthcare, this means taking

the time to evaluate long-standing methods and consider how

data-driven technologies might complement or enhance them.

This theory emphasizes that by reflecting on their practices and

outcomes, professionals can make thoughtful shifts toward

integrating AI and data science. Transformational learning can

help healthcare teams embrace these technologies as useful

tools in improving patient care and outcomes, especially when

applied within tumor boards where personalized, data-driven

decisions can have a profound impact.

• Diffusion of Innovations Theory: Everett Rogers’ Diffusion of

Innovations Theory (139), explains how new ideas and

technologies are gradually adopted within a community. In

the context of healthcare, early adopters of AI and data

science—often those who are passionate about innovation—

can inspire others to consider these tools. As more

professionals witness the positive outcomes that data science

can offer, such as improved diagnosis and treatment, the

enthusiasm for adopting new methods grows naturally. This

collaborative and gradual process allows professionals to learn

from each other and integrate AI into their work at a pace

that feels comfortable and achievable.

• Unlearning and Relearning: In any field, letting go of

established ways can feel daunting. However, the concept of

unlearning and relearning (140) recognizes that professionals

are constantly growing and evolving. In healthcare, this means

acknowledging the strengths of traditional methods while

remaining open to new possibilities that data science and AI

provide. Training programs, workshops, and collaborations can

help ease the transition by providing hands-on experiences and

support. Rather than viewing this as abandoning old practices,

it’s an opportunity to build on them by integrating new

knowledge that can further enhance patient care.

• Growth Mindset: Carol Dweck’s Growth Mindset Theory

(141) highlights the importance of viewing challenges as

opportunities for growth. In healthcare, professionals who

approach AI and data science with a growth mindset are

likely to see these tools as a way to expand their skills and

improve their ability to care for patients. Encouraging a

growth mindset across teams fosters a culture where

professionals feel supported in learning new techniques,

making the adoption of AI and data science a shared journey

toward better healthcare.
5.3 Proposed capacity-building roadmap

This section outlines a comprehensive capacity-building

roadmap aimed at training and integrating data scientists into

tumor boards in LMICs. By leveraging academic partnerships,
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virtual training modules, and regionally aligned certification

programs, this framework addresses resource constraints, skills

gaps, and infrastructural challenges unique to these settings. It

provides a scalable and adaptable pathway for equipping LMIC

healthcare systems with the expertise needed to harness data-

driven cancer care innovations effectively.

5.3.1 Needs assessment and stakeholder
engagement

Capacity-building initiatives must begin with a thorough

understanding of the specific challenges faced by LMIC

healthcare systems. Surveys and focus groups should be

conducted with tumor boards, healthcare providers, academic

institutions, and government stakeholders to identify current

gaps in skills, resources, and infrastructure. For example, many

LMICs lack access to annotated clinical datasets, computational

tools, and trained personnel for data-intensive tasks.

Building a consortium of stakeholders, including international

academic institutions, regional healthcare organizations, and

private sector partners, ensures the initiative is contextually

relevant. Engagement with patient advocacy groups further aligns

training programs with community-centered healthcare goals.

5.3.2 Foundational framework development
A foundational framework provides the competency

benchmarks necessary for effective training and professional

development. Drawing on global standards like the EDISON

Data Science Competence Framework (43–46), this roadmap

emphasizes interdisciplinary knowledge across oncology, data

analytics, and machine learning. Specific competencies include

tumor biology modeling, predictive analytics, and ethical

considerations in data sharing.

Frameworks must also consider the sociocultural and economic

contexts of LMICs, ensuring alignment with local healthcare

priorities and available resources. Regional collaboration, such as

through ASEAN or African Union initiatives, can drive the

development of frameworks tailored to shared challenges.

5.3.3 Curriculum and resource development
Curriculum development is pivotal in equipping data

scientists with both theoretical and practical skills. Academic

partnerships can facilitate the co-creation of open-access

curricula, emphasizing modular and flexible learning paths.

Virtual training platforms like Coursera or edX, tailored

for low-bandwidth environments, can provide asynchronous

learning opportunities.

Hands-on training should be prioritized by integrating real-

world case studies relevant to tumor board decision-making.

Open-source computational tools and healthcare datasets, such as

simulated tumor registries, enable practical skill acquisition even

in resource-constrained settings.

5.3.4 Pilot programs and infrastructure building
Pilot programs serve as a testing ground for scaling training

initiatives. These programs should be launched in select LMIC

regions with strong healthcare and academic infrastructure, such
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as regional centers of excellence. Initial efforts could focus on

equipping hospitals with basic computational resources and

infrastructure and engaging local experts as trainers and mentors.

Collaborative public-private partnerships can address

infrastructure gaps by providing access to cloud computing and

storage solutions. Pilot sites must incorporate robust evaluation

metrics to refine program delivery and outcomes.

5.3.5 Certification and accreditation
Formal certification ensures that trained data scientists are

recognized for their competencies, facilitating their integration

into tumor boards. Developing a unified certification framework

for specific regions [e.g., ASEAN, South Asian Association for

Regional Cooperation (SAARC), African Union] enhances

portability and consistency of credentials across borders. The

creation of tiered certifications (basic, intermediate, advanced)

allows for progressive skill development.

International accreditation bodies, such as ACM or WHO, can

partner with regional institutions to standardize training programs.

Accredited training centers within LMICs can sustain capacity-

building efforts and encourage local leadership in data

science education.

5.3.6 Scaling and continuous improvement
Scaling capacity-building efforts requires an iterative approach

that incorporates feedback from pilot programs. Successful models

can be expanded to additional LMICs, leveraging lessons learned to

optimize training methodologies. Continuous engagement with

stakeholders ensures curricula remain aligned with evolving

healthcare and technological landscapes.

Regular updates to learning materials, such as new case studies

or AI tools, maintain the relevance and quality of training

programs. Regional and global funding initiatives must be

actively pursued to sustain long-term capacity building.

Through this capacity-building roadmap initiative, LMICs can

transform their healthcare systems into hubs of data-driven care,

realizing the promise of equitable cancer treatment and

research worldwide.
6 Conclusion

The need for data scientists in tumor boards is growing rapidly

across the globe, with AI and machine learning playing an

increasingly vital role in cancer care. Data scientists provide the

expertise needed to analyze complex datasets, enabling healthcare

teams to make data-driven decisions that enhance treatment

outcomes. In resource-rich countries, this integration is already

proving transformative.

However, the potential impact of data science in the Global

South is even more profound. By investing in digital health

infrastructure, education, and collaboration, LMICs can leverage

AI to improve cancer care in ways that were previously

unattainable. Data science offers opportunities to overcome

traditional healthcare barriers, enabling more personalized,

accessible, and cost-effective cancer treatments.
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To achieve this vision, global investment in data science is

crucial, particularly in resource-constrained settings.

Governments, NGOs, and the private sector must collaborate to

support the integration of data scientists into cancer treatment

teams, providing the infrastructure, training, and resources

needed for success. The future of cancer care in the Global South

depends on the capacity to harness the power of data science,

and the time to act is now.
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