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Background: Acute lung injury is a common respiratory emergency that
seriously affects the life, health and quality of life of patients, especially after
the global COVID-19 pneumonia. The application of nanotechnology in acute
lung injury is promising. In response to the knowledge explosion resulting
from rapid publication growth, we applied bibliometric analysis to explore the
research profile and thematic trends in the field.
Methods: Articles and reviews related to nanotechnology in acute lung injury
from 2004 to 2023 were searched. Java-based Citespace, VOSviewer, and
R software-based Bibiometrix were used to systematically evaluate
publications by spatiotemporal distribution, author distribution, subject
categories, topic distribution, references, and keywords.
Results: A total of 1,347 publications were included. The number of papers related
to nanotechnology in acute lung injury has grown exponentially over the past 20
years. China was the most productive country out of all 53 countries, followed
by the United States. The Chinese Academy of Sciences was the most
productive institution with 76 papers. PARTICLE AND FIBRE TOXICOLOGY was
the most productive journal. The top five high-frequency keywords were
inflammation, oxidative stress, toxicity, in vitro, respiratory-distress-syndrome.
And the top five emerging keywords were delivery, covid-19, extracellular
vesicles, therapy, sars-cov-2. Drug delivery are the focus of current research.
Two emerging research areas represented the development trends: novel
nanocarriers with higher efficiency and lower biotoxicity, and the other is
research related to impact of nanomaterials in the progression of acute lung injury.
Conclusion: The field of nanotechnology in acute lung injury has been in a
period of rapid development in the last three years. Delivery,targeted delivery
and exosm have been the focus of current research in this field. Two
emerging research areas represented the development trends:novel
nanocarriers with higher efficiency and lower biotoxicity such as extracellular
vesicles, exosomes and solid lipid nanoparticles, and the other is research
related to impact of nanomaterials in the progression of acute lung injury.
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Introduction

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are serious

respiratory diseases (1). They present as acute and widespread pulmonary inflammation,

impaired gas exchange, and hypoxemia, usually due to pulmonary or systemic factors,

including pneumonia, aspiration trauma, and chest trauma (1–4). According to early

studies, the mortality rate for ARDS was once as high as 50–60 percent (2). In recent
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years, studies have shown that, owing to improvements in

mechanical ventilation strategies, this rate has fallen to between 35

and 46 percent (4). However, treatment of ALI and ARDS is

primarily supportive, to maintain oxygenation and reduce lung

damage (5–8). This leads to the possibility that patients who

survive may experience a permanent decline in lung function,

including restrictive or obstructive pulmonary hypoplasia (9–11).

Particularly after the global COVID-19 pneumonia infection, a

proportion of surviving patients still suffer from some degree of

sclerosis and fibrosis of the lung tissue, which severely affects the

quality of life (12–15). Therefore, early recognition and treatment

were essential to improve prognosis in acute lung injury and

ARDS. Nowadays, new therapeutic approaches were constantly

being explored, especially stem cell therapy (16–20) and specific

drug treatments (21–25).

Nanotechnology is a rapidly growing field. It can diagnose,

treat, and prevent diseases by manipulating substances on the

nanoscale (26–28). In the field of medicine, nanotechnology has

an extremely wide range of applications including but not

limited to drug delivery (29–31), diagnosis (32–34), imaging

(35–37), therapy (28, 38–41), organizational engineering (27, 42),

as well as infection control (43–46) and prevention (26, 47, 48).

Presently, significant research on designing nanotechnology has

been carried out and has made some research progress in the

field of acute lung injury (31, 49–53). It is believed that shortly,

nanomedicine can become an indispensable treatment in the

field of acute lung injury.

Bibliometrics is a discipline that studies the quantitative

process and law of scientific literature, which uses mathematics,

statistics, and other methods to quantitatively analyze the

production, distribution, dissemination, and use of scientific

literature as a means of revealing the dynamics and law of

scientific and technological development (54–56). In this study,

we provide a comprehensive bibliometric analysis of the

application of Nanotechnology in the field of acute lung injury

from January 2004 to December 2023, providing a scientific

performance of countries, institutions, authors, journals, and

references, presenting collaborative networks and research trends

from a global perspective.
Materials and methods

Data source and search strategy

Science Citation Index Expanded (SCI Expanded) of the Web of

Science Core Compendium (WoSCC) was chosen as the data source.

The search strategy was as follows: Topic = (nanoparticle* OR

nanomedicines* OR nano* OR nanometer* OR nanomaterial* OR

nanotechnology* OR nanoparticulate* OR nanocrystalline material*

OR nanocomposites* OR nanoaggregates* OR nanocrystal* OR

nano particle* OR nanocarrier* OR nanotherapeutic*) AND

topic = ((ALI) OR (ARDS) OR (acute lung injury) OR (acute lung

disease) OR (acute respiratory distress syndrome) OR (respiratory

distress syndrome)) AND language = (English) AND publication

year = (2004–2023). The author conducted a literature search and
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downloaded data in plain text or UTF-8 format. In addition, we

have excluded specific types of publications and only include

original articles and reviews. The literature and data search were

completed on March 10th, 2024, to avoid bias caused by

database updates.
Data analysis and visualization

We summarized the bibliometric indicators of publications,

including authors, affiliated institutions, countries, number of

articles, journals, keywords, references, and collaborations.

Citation, G-index, and H-index were used to evaluate the

academic impact of authors or journals. Journal categories (Q1,

Q2, Q3, and Q4) and impact factors (IF) were excerpted from

the 2023 Journal Citation Report.

We conducted a comprehensive analysis using the Java-based

Citespace (version 6.3.R1), the Java program VOS Viewer (version

1.6.18), the R software-based Bibiometrix (version 3.0), and the

integrated online analysis platform (https://bibliometric.com/).

Citespace (version 6.3.R1) was utilized to visualize and

demonstrate the structure, patterns, and dissemination of scientific

knowledge. The nodes in the maps represented institutions, while

the connections between nodes represented collaborations. The

gauge of the lines indicated the magnitude of the relationship, and

the color denoted the year of initial occurrence.

Knowledge networks of nanotechnology in acute lung injury

were assessed by using co-citation analysis, co-occurrence

analysis, co-authorship analysis, citation burst detection,

collaborative networks, and biplot overlap of journals of journals.
Ethics statement

This study is primarily literature-based and quantitatively

analysed using mathematical and statistical methods, and does

not involve human participants, human specimens or tissue,

vertebrate animals or cephalopods, vertebrate embryos or tissues,

field research. The primary data for this study were sourced from

previously published studies, all of which had already obtained

ethical approval from their respective ethics committees.

Consequently, no additional ethical approval was deemed

necessary for the current study. All literature searches were

conducted in Web of Science.
Results

General information about bibliometric
analysis

Table 1 describes the basic information of our bibliometric

analysis. In the past 20 years, 1,347 publications on the

application of nanotechnology in acute lung injury have been

published in 524 journals. These publications were written by

8,520 authors, including 1,114 original papers and 233 reviews,
frontiersin.org
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TABLE 1 Main information about bibliometric analysis.

Description Results

Main information about data
Timespan 2,004:2,023

Sources (Journals, Books, etc.) 524

Documents 1,347

Annual Growth Rate % 12.74

Document Average Age 5.31

Average citations per doc 34.31

References 72,712

Document contents
Keywords Plus (ID) 3,959

Author’s Keywords (DE) 3,575

Authors
Authors 8,520

Authors of single-authored docs 18

Authors collaboration
Single-authored docs 19

Co-Authors per Doc 8.44

International co-authorships % 30.36

Document types
Article 1,114

Review 233

FIGURE 1

Annual publication trends in the world (A) and in the top ten most product

Zhang et al. 10.3389/fdgth.2025.1472753
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with 72,712 references cited. The average number of citations per

document per year was 34.31. As shown in Figure 1A, the

exponential growth in the number of publications in recent years

indicates potential development in this field. The last three years

alone accounted for 46.6% (628/1,347) of the publications.
Publication performances: countries

We evaluated the performance of these countries in

publications based on the nationality of the corresponding

authors. Fifty-three countries have published papers on this

topic. As shown in Table 2, China was the country with the

highest productivity (n = 388, 28.8%), followed by the United

States (n = 324, 24.1%). The top ten countries with the highest

productivity include one from North America, one from South

America, five from Asia, and three from Europe. The number of

publications in these countries has exploded, with China

performing outstandingly in the past three years (Figure 1B). The

United States has the highest number of citations [n = 16,324,

average article citation (AAC) = 50.40], followed by China

(n = 9,617, AAC=24.80) and France (n = 2,130, AAC = 73.40).

Mexico has the highest citation count of 127.00.
ive countries (B).
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TABLE 2 Top 20 productive countries and citations per country.

Sort by NP Country Articles
(%)

SCP MCP(%) Sort by total
citations

Country Total
citations

Average article
citations

1st CHINA 388 (28.8) 320 68 (17.5) 1st USA 16,324 50.40

2nd USA 324 (24.1) 247 77 (23.8) 2nd CHINA 9,617 24.80

3rd GERMANY 61 (4.5) 34 27 (44.3) 3rd FRANCE 2,130 73.40

4th INDIA 61 (4.5) 41 20 (32.8) 4th GERMANY 2,021 33.10

5th JAPAN 49 (3.6) 43 6 (12.2) 5th JAPAN 2,005 40.90

6th IRAN 40 (3.0) 28 12 (30.0) 6th UNITED KINGDOM 1,214 50.60

7th KOREA 37 (2.7) 29 8 (21.6) 7th INDIA 1,154 18.90

8th FRANCE 29 (2.2) 18 11 (37.9) 8th KOREA 1,061 28.70

9th BRAZIL 27 (2.0) 20 7 (25.9) 9th BRAZIL 898 33.30

10th ITALY 25 (1.9) 11 14 (56.0) 10th ITALY 861 34.40

11th CANADA 24 (1.8) 13 11 (45.8) 11th DENMARK 770 32.10

12th DENMARK 24 (1.8) 10 14 (58.3) 12th MEXICO 762 127.00

13th UNITED KINGDOM 24 (1.8) 9 15 (62.5) 13th SWEDEN 732 43.10

14th AUSTRALIA 22 (1.6) 8 14 (63.6) 14th CANADA 644 26.80

15th EGYPT 19 (1.4) 13 6 (31.6) 15th SWITZERLAND 618 34.30

16th SWITZERLAND 18 (1.3) 8 10 (55.6) 16th IRAN 595 14.90

17th SWEDEN 17 (1.3) 11 6 (35.3) 17th SPAIN 573 38.20

18th SPAIN 15 (1.1) 8 7 (46.7) 18th IRELAND 572 95.30

19th SAUDI ARABIA 14 (1.0) 3 11 (78.6) 19th AUSTRALIA 421 19.10

20th AUSTRIA 12 (0.9) 3 9 (75) 20th AUSTRIA 378 31.50

NP, number of publications; MCP, multiple countries publications (inter-country collaboration); SCP, single country publications (intra-country collaboration).

Zhang et al. 10.3389/fdgth.2025.1472753
We have built a global collaborative network for

nanotechnology in acute lung injury. Figure 2A shows that

although there was cooperation among many countries, the

number of collaborative publications was still relatively

low. We mapped our cooperation to a global map and found

that the cooperation areas were mainly concentrated in

North America, Europe, East Asia, and Oceania. The

collaboration was primarily focused on the United States-

China (Figure 2B).
Publication performances: institutions

CHINESE ACADEMY OF SCIENCES was the most

productive institution with 76 publications. Ranked second

through fifth were HARVARD UNIVERSITY (n = 71),

EGYPTIAN KNOWLEDGE BANK (EKB, n = 69),

HELMHOLTZ ASSOCIATION (n = 59), and UNIVERSITY OF

PENNSYLVANIA (n = 59). Seven of the top ten institutions

were from the United States, one from China, one from Egypt,

and one from Germany, demonstrating the significant influence

of North America in this field (Figure 3A).

We conducted a co-authorship analysis of institutions with at

least five publications (Figure 3C). The National Research Centre

for the Working Environment had the highest total link strength

(TLS) at 44, the second through fifth places were the Technical

University of Denmark (n = 41), CHINESE ACADEMY OF

SCIENCES (n = 41), University of Copenhagen (n = 34), and

Shanghai Jiao Tong University (n = 26). Based on further

indications from the collaborative network, we did not find an

obvious core institution for the cluster, suggesting that inter-

institutional collaboration was not close (Figure 3B).
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Publication performances: authors

The top ten most cited authors are shown in Table 3 and the

most prolific authors are in Table 4. Curiously, it’s hard to find a

clear consistency between the number of publications and the

total citations. DONALDSON K was the most cited author

(TC = 1,760, NP = 4). REED KL, WARHEIT DB, and WEBB TR

rank second in total citations (TC = 1,553, NP = 2). VOGEL

U was the most prolific author (TC = 755, NP = 20). WANG

Y ranks second in productivity (TC = 159, NP = 16). This proves

that four papers researched by DONALDSON K were of high

academic standard and reference value. Meanwhile, REED KL,

WARHEIT DB, and WEBB TR might be co-authors of the same

two high-level publications. As shown in Figure 4A, collaborative

network analysis revealed eight author clusters, with Vogel U and

Rothen-Rutishauser B located at the center of their respective

clusters. We also analyzed the changes in the works of top

authors over time (Figure 4B). Thirteen of the 20 authors have

been deeply involved in this field for over a decade. Notably,

most of the authors have experienced a scholarly explosion after

2014, with a staggering number of publications and citations.
Highly contributive journals

The most productive journal published on nanotechnology in

acute lung injury was PARTICLE AND FIBRE TOXICOLOGY.

It published 41 related publications and received 2,433

citations. The JOURNAL OF CONTROLLED RELEASE (n = 27,

citations = 1,115) and ACS NANO (n = 26, citations = 1,514) were

second and third. Three of the top ten most productive journals

belonged to JCR Q1 and four to JCR-Q2 (Table 5). This proves
frontiersin.org
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FIGURE 2

The country distribution (A) and international collaboration (B) of publications in the field of nanotechnology in acute lung injury.
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that most of the journals on this topic have a high academic

impact. Setting the minimum number of citations to 20 in

the journal co-citation network (Figure 5), JOURNAL OF

CONTROLLED RELEASE had the highest total link strength

(TLS) of 124,338. The second through fifth places were PLOS

ONE (TLS = 99,759), ACS NANO (TLS = 96,112), PROCEEDINGS
Frontiers in Digital Health 05
OF THE NATIONAL ACADEMY OF SCIENCES OF THE

UNITED STATES OF AMERICA (TLS = 95,500) and

BIOMATERIALS (TLS = 83,959). The visualization of the density

of co-citation networks revealed that ACS NANO, PARTICLE

AND FIBRE TOXICOLOGY, PROCEEDINGS OF THE

NATIONAL ACADEMY OF SCIENCES OF THE UNITED
frontiersin.org
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FIGURE 3

Publication performance of the institution: the top ten most productive institutions (A); inter-institutional collaboration network (B); and co-authorship
analysis of institutions (C).

Zhang et al. 10.3389/fdgth.2025.1472753
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TABLE 3 Top Ten most cited authors.

Authors TC H-index G-index NP Country
DONALDSON K 1,760 4 4 4 UK

REED KL 1,553 2 2 2 USA

WARHEIT DB 1,553 2 2 2 USA

WEBB TR 1,553 2 2 2 USA

CASTRANOVA V 1,443 9 9 9 USA

SHVEDOVA AA 1,377 8 8 8 USA

CASSEE FR 1,344 9 10 10 Netherlands

LI B 1,323 5 7 7 China

WANG ZJ 1,227 12 13 13 USA

LAURENCE BR 1,164 1 1 1 USA

NP, number of publications; TC, total citations.

TABLE 4 Top Ten most prolific authors.

Authors TC H-
index

G-
index

NP Country

VOGEL U 755 15 20 20 Denmark

WANG Y 159 7 12 16 China

ROTHEN-RUTISHAUSER B 737 13 15 15 Netherlands

LI J 494 8 15 15 China

WALLIN H 639 13 14 14 Denmark

ZHANG Y 345 9 14 14 China

WANG ZJ 1,227 12 13 13 USA

JACOBSEN NR 560 11 13 13 Denmark

LIU Y 353 7 13 13 China

LI Y 336 8 12 12 China

Zhang et al. 10.3389/fdgth.2025.1472753
STATES OF AMERICA, JOURNAL OF CONTROLLED RELEASE

and PLOS ONE in the core position.

Dual map overlay of journals shows the distribution of

topics (Figure 6). The citing journals are on the left, and the

cited journals are on the right. The labels represent the

disciplines covered by the journals, and the colored path

represented the citation relationship. We can see the most

important six paths. The two purple citation paths indicate that

research in Chemistry/Materials/Physics journals and Molecular/

Biology/Genetics journals were frequently cited by Chemistry/

Materials/Physics journals. The four yellow citation paths

indicate that research in Chemistry/Materials/Physics journals,

Molecular/Biology/Genetics journals, Environmental/Toxicology/

Nutrition journals and Healthy/Nursing/Medicine journals were

frequently cited by Molecular/Biology/Immunology journals.
Highly contributive papers

Table 6 lists the top ten most cited articles. These highly cited

studies were published from 2004 to 2020, with 8 of them

published after 2010. The most cited paper was written by

WARHEIT DB (57) and published in 2004, which compared

pulmonary toxicity of single-wall carbon nanotubes in rats. We

constructed a co-citation reference network (Figures 7A,B). It

consists of the four highest clusters of TLS publications written

by LENZ AG(TLS = 257), Oberdörster G(TLS = 151), MATTHAY
Frontiers in Digital Health 07
MA(TLS = 158), and HOFFMANN M(TLS = 51). Figure 7C

shows the top 20 references with the strongest citation burst. The

journal with the greatest contribution was PART FIBRE

TOXICOL, with a total of 4 publications, followed by TOXICOL

APPL PHARM, J AEROSOL SCI, and PLOS ONE, all with a total

of 2 publications. The citation explosion occurred after 2014 and

experienced rapid turnover.
Keyword co-occurrence

VOSviewer parameters were as follows: Method (Linlog/

modularity) and a minimum number of occurrences of a

keyword: 20. There were 6,892 keywords, with 95 keywords

meeting the thresholds. For each of 95 keywords, the total

strength of co-occurrence links with other keywords was

calculated. Keywords with the greatest total link strength were

selected. The keyword co-occurrence network graph (Figure 8A)

displays that the thicker the connection between nodes, the

higher the frequency of two keywords appearing together.

Keywords formed four clusters, representing the four main

research directions nanotechnology and acute lung injury.

The red cluster mainly includes acute lung injury, respiratory-

distress-syndrome, delivery, covid-19, drug-delivery, lung injury,

extracellular vesicles, therapy, nanomedicine, exosomes, drug

delivery, model, sars-cov-2, inhibition, cancer, sepsis, pulmonary

surfactant, lipopolysaccharide, ards, nanotechnology, mesenchymal

stem-cells, pathogenesis, curcumin, pulmonary delivery,

microvesicles, release, acute respiratory distress syndrome,

infection, targeted delivery, liposomes, stromal cells, receptor,

formulation, nanocarriers, polymeric nanoparticles, coronavirus,

pneumonia, stem-cells, ali, protein, design, and lung-cancer.

The green cluster mainly contains nanoparticles, toxicity, in vitro,

lung, exposure, particles, inhalation, mice, air-liquid interface,

epithelial-cells, cytotoxicity, carbon nanotubes, intratracheal

instillation, pulmonary toxicity, nanoparticle, responses,

nanomaterials, ultrafine particles, particulate matter, nanotoxicology,

air-pollution, lung inflammation, rats, silver nanoparticles,

deposition, size, alveolar macrophages, translocation, and system.

The blue cluster mainly comprises inflammation, oxidative

stress, cells, activation, expression, macrophages, mechanisms,

injury, apoptosis, disease, nf-kappa-b, fibrosis, antioxidant,

cytokines, asthma, autophagy, obstructive pulmonary-disease, and

gene-expression.

The yellow cluster mainly consists of in vivo, biodistribution,

gold nanoparticles, pulmonary inflammation, neutrophils,

and pharmacokinetics.

In addition to nanoparticles (TLS = 2,357) and acute lung

injury (TLS = 1,784), keywords with higher frequency in this

study include inflammation (TLS = 1,808), oxidative stress

(TLS = 1,364), toxicity (TLS = 1,040), in vitro (TLS = 1,030),

respiratory-distress-syndrome (TLS = 674), activation (TLS = 634),

covid-19 (TLS = 626), particles (TLS = 616), drug-delivery

(TLS = 605), and inhalation (TLS = 601). Among these keywords,

all of these TLS appeared more than 600 times, indicating that

they were the focus of research.
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FIGURE 4

Publication performance of the authors: the inter-author collaboration network (A); and top authors’ production over time (B).

TABLE 5 The top ten most productive journals.

Sort by number of articles Relevant sources Articles TC H-Index JCR IF (2023)
1st PARTICLE AND FIBRE TOXICOLOGY 41 2,433 83 Q1 10

2nd JOURNAL OF CONTROLLED RELEASE 27 1,115 237 Q1 10.8

3rd ACS NANO 26 1,514 310 Q1 17.1

4th INTERNATIONAL JOURNAL OF NANOMEDICINE 25 655 100 Q2 8

5th INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 22 423 114 Q2 5.6

6th NANOTOXICOLOGY 22 586 72 Q3 5

7th FRONTIERS IN PHARMACOLOGY 21 268 62 Q2 5.6

8th PLOS ONE 21 942 268 Q3 3.7

9th TOXICOLOGICAL SCIENCES 20 2,362 164 Q3 3.8

10th ACS APPLIED MATERIALS & INTERFACES 18 280 169 Q2 9.5

Zhang et al. 10.3389/fdgth.2025.1472753
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FIGURE 5

Publication performance of the journals: co-citation network (A); and density visualization (B).
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FIGURE 6

A dual-map overlap of the research journals.

TABLE 6 Top Ten articles related to nanotechnology in acute lung injury.

Articles DOI Year Global citations Local citations
WARHEIT DB, 2004, TOXICOL SCI 10.1093/toxsci/kfg228 2004 1,164 18

DONALDSON K, 2010, PART FIBRE TOXICOL 10.1186/1743-8977-7-5 2010 662 22

SHVEDOVA AA, 2008, AM J PHYSIOL-LUNG C 10.1152/ajplung.90287.2008 2008 511 15

PAUR HR, 2011, J AEROSOL SCI 10.1016/j.jaerosci.2011.06.005 2011 228 48

CHU DF, 2015, ACS NANO 10.1021/acsnano.5b05583 2015 189 26

UPADHYAY S, 2018, TOXICOL SCI 10.1093/toxsci/kfy053 2018 163 18

ZHAO H, 2018, NANOSCALE 10.1039/c8nr00838h 2018 160 12

KLEIN SG, 2013, PART FIBRE TOXICOL 10.1186/1743-8977-10-31 2013 147 18

RAO L, 2020, P NATL ACAD SCI USA 10.1073/pnas.2014352117 2020 146 11

GAO J, 2017, BIOMATERIALS 10.1016/j.biomaterials.2017.05.003 2017 134 14

Zhang et al. 10.3389/fdgth.2025.1472753
The temporal evolution of keywords was shown in Figure 8B.

The more yellow color indicates that the keyword was more

emerging. The top ten high-frequency emerging keywords were

delivery (TLS = 654), covid-19 (TLS = 626), extracellular vesicles

(TLS = 410), therapy (TLS = 376), sars-cov-2 (TLS = 354),

exosomes (TLS = 332), cancer (TLS = 291), sepsis (TLS = 285),

inhibition (TLS = 281), and mesenchymal stem-cells (TLS = 218).

Additionally, we conducted keyword trend analyses (Figure 8C).

The research hotspots in the last three years were delivery/drug-

delivery/inflammation (2021), exosomes/solid lipid nanoparticles/

covid-19 (2022), resistance/pneumonia/alzheimers-disease (2023).
Keyword burst detection

Combined with Keyword explosion detection, we further

analyzed the popularity trend of keywords. Figure 9 intuitively

shows the stage hotspots and development directions of

nanotechnology and acute lung injury research from the time

dimension. The blue line denotes the time axis while the red

segment on the blue time axis demonstrates the burst detection,

indicating the start year, end year, and burst duration. The top

25 keywords with the strongest citation bursts in nanotechnology
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and acute lung injury were carbon nanotubes (2004), pulmonary

toxicity (2004), ultrafine particles (2008), particles (2008), air

pollution (2008), intratracheal instillation (2009), respiratory tract

(2010), mice (2011), in vivo (2011), epithelial cells (2011), surface

area (2011), inhalation exposure (2012), mouse lung (2013), rats

(2014), walled carbon nanotubes (2014), cardiovascular disease

(2015), endothelial cells (2016), cytokine storm (2020), stromal

cells (2021), targeted delivery (2021), spike protein (2021),

pulmonary drug delivery (2021), exosm (2021), solid lipid

nanoparticles (2021), and delivery (2021). Targeted delivery

(2021–2024), exosm (2021–2024), and delivery (2021–2024) were

the current research frontiers in nanotechnology and acute lung

injury, and they were already in an explosive period.
Conclusion

We provided an insight into the global knowledge landscape

and trends in nanotechnology in acute lung injury through

bibliometric analysis. China was a leader in this field. Delivery,

targeted delivery and exosm have been the focus of current

research in this field. Two emerging research areas represented

the development trends:novel nanocarriers with higher efficiency
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FIGURE 7

Highly contributive papers: a co-citation network (A) and density visualization (B) of references; and the top 20 references with the strongest citation
bursts (C).
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FIGURE 8

Cluster analysis (A), temporal evolution (B), and trends (C) of the keywords.
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and lower biotoxicity such as extracellular vesicles, exosomes and

solid lipid nanoparticles, and the other is research related to

impact of nanomaterials in the progression of acute lung injury.

This report could serve as a reference and guide for more in-

depth studies in the future.
Frontiers in Digital Health 12
Discussion

This study systematically presents the global research overview

and macro patterns of publications in the field of nanotechnology

in acute lung injury by spatiotemporal distribution, author
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FIGURE 9

Burst detection of the keywords.
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distribution, subject categories, topic distribution, references, and

keywords. It was expected that this study will serve as a reference

and guide for analyzing the current status of the field and for

more in-depth research in the future.

Our findings show a significant increase over the past 20 years.

Although the use of nanotechnology in acute lung injury is not

new, we have been faced with a dramatic increase in the

literature over the past three years (46.6%, 628/1,347). China

(n = 388, 28.8%) was the most productive country out of all 53

countries, followed by the United States (n = 324, 24.1%). The

top ten countries with the highest productivity include one from

North America, one from South America, five from Asia, and

three from Europe. The United States has the highest number of

citations [n = 16,324, average article citation (AAC) = 50.40],

followed by China (n = 9,617, AAC = 24.80) and France

(n = 2,130, AAC = 73.40). Mexico has the highest citation count

of 127.00. The global collaborative network for nanotechnology

in acute lung injury showed that although there was cooperation

among many countries, the number of collaborative publications

was still relatively low. We mapped our cooperation to a global
Frontiers in Digital Health 13
map and found that the cooperation areas were mainly

concentrated in North America, Europe, East Asia, and Oceania.

The collaboration was primarily focused on the United States-

China. As a result, China and the United States are international

leaders in this field and have developed a deep level of co-

operation. It is easy to understand, as the development of high

technology is closely related to economic power.

Furthermore, seven of the top ten institutions in terms of

publications were from the United States, one from China, one

from Egypt, and one from Germany, demonstrating the

significant influence of North America in this field. However, the

Chinese Academy of Sciences was the most published institution

with 76 papers. This indicates that Chinese research institutions

were also making important contributions in this field. It also

shows that other Chinese research organisations have a greater

potential for development. Deeper multi-agency co-operation is

likely to be one of the main directions for the future.

Analysis of high-frequency keywords reflects the hotspots in a

particular research field. We explored the evolution of research

concepts and hot-spots in the field through keyword co-
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occurrence analysis and burst detection. Cluster analysis based on

keywords, finally forming a cluster of four colors. Then, according

to the analysis of the top 25 keywords with the strongest citation

bursts, the research hotspots and frontiers in nanotechnology

and acute lung injury were determined. The present study

revealed that nanoparticle drug delivery was the most important

and cutting-edge application of nanotechnology in acute lung

injury, and it was foreseeable that a greater number of

investigations would focus on this area in the future.

Nanomedicine is an interdisciplinary science that combines

nanoscience, nano-engineering, and nanotechnology with life

sciences (57–60). The field of nanomedicine aims to utilize the

nature and physical properties of nanomaterials to diagnose and

treat diseases at the molecular level (61). Until now,

nanotechnology has been an extremely wide range of

applications including but not limited to drug delivery (29–31),

diagnosis (32–34), imaging (35–37), therapy (28, 38–41),

organizational engineering (27, 42), as well as infection control

(43–46) and prevention (26, 47, 48). Nanomaterials were a key

part of nanomedicine. There were many types of nanomaterials,

many of which can replicate the functions of some spherical

biomolecules. For example, liposomes (62), different polymer

nanostructures (63), protein structures (64), carbon dots (65),

nanodiamonds (66), carbon nanotubes (67), graphene, and

inorganic nanomaterials such as mesoporous silica (MSNP) (68),

superparamagnetic iron oxide nanomaterials (SPIONs) (69), and

quantum dots (QDs) (70). These nanomaterials have different

applications in the field of medicine due to their

different properties.

Meanwhile, researchers have continuously optimised the

composition and structure of nanomaterials to obtain

nanocarriers with higher drug delivery efficiency and lower

biotoxicity. And the effect of nanomaterials in disease

progression has also been intensively researched (31, 49–53). In

the progression of ARDS, excessive production of reactive

oxygen species (ROS) can lead to uncontrolled inflammatory

responses. A 2023 study found that the functional nanomaterial

Molybdenum nanodots (MNDs), with superior properties such

as ultra-small size, good biocompatibility and excellent ROS

scavenging ability, could protect lung tissue by inhibiting the

activation of NOD-like receptor protein 3 (NLRP3) (52). The

oxidative stress, inflammation, protein permeability, and

histological severity of ALI mice were significantly improved by

intratracheal administration (52). Cerium oxide nanoparticle

(CNP) carriers, constructed in another study in 2021, can

deliver unstable therapeutic drugs such as anti-inflammatory

microRNA-146a locally to injured lungs via intratracheal

administration without systemic absorption (49). CNP-miR146a

improves lung biomechanics in acute lung injury after

bleomycin exposure by altering leukocyte recruitment, reducing

inflammation and oxidative stress, and reducing collagen

deposition (49). Liposomes prepared using the thin-film

aqueous method can bind to the epigenetic regulatory protein

BRD4 to construct BRD4 siRNA and cationic lipid complexes

(71). BRD4 siRNA liposomes (BRD4-SIRNA-LP) inhibit lung

inflammatory cells, lipopolysaccharide (LPS) -induced
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neutrophil infiltration and mast cell aggregation, and LPS-

induced cytokine storms and inflammatory signaling pathways,

and improve lung compliance (71).

Carbon nanotubes are one of the most common nanomaterials.

According to Figure 9, we discovered the use of carbon nanotubes

in acute lung injury as early as 2004. Carbon nanotubes present a

wide range of application prospects due to their unique structure

and excellent mechanical, electrical and chemical properties.

It has attracted great attention from many scientists in the fields

of materials, physics, electronics, chemistry, etc., and has become

the research frontier and hotspot in the field of international new

materials (72). Furthermore,magnetic nanoparticles recently in

few decades have proved as an effective advanced drug delivery

system for its elevated magnetic responsiveness, biocompatibility,

elevated targeted drug delivery effectiveness. In the presence of

an external magnetic field, the drug can be easily targeted to

the active site. Owing to their easy execution towards drug

delivery application, extensive research has been carried out in

this area (73).

In the wake of the COVID-19 pandemic, vaccination has

emerged as the most effective method of disease prevention, and

public confidence in vaccines depends on their safety and

efficacy (74). Among them, the delivery of proteins and DNA/

RNAs has become an important challenge (74, 75).The field of

vaccine development is entering a new nano-era. In July 2020,

the SARS-CoV-2 vaccine portfolio included 158 vaccine

candidates (74, 75). Approximately 20 of these agents were in

advanced stages of development, including mRNA-based

vaccines, adenovirus-based vaccines, and pathogen-specific

vaccines (74, 75). In the summer of 2020, experimental vaccines

showing promising results in clinical trials were based on

inactivated or attenuated live viruses, protein subunits, virus-like

particles, viral vectors, and chemically synthesized nanoparticles

(NPs, liposomes) delivered with DNA and mRNA (75). So far

dozens of COVID-19 vaccines are in clinical trials or have passed

clinical trials (76–80). And according to the keyword trend chart

(Figure 8C),We find that COVID-19 becomes a popular keyword

in 2022, which indicates that 2022 is an output year for COVID-

19-related scientific research.

In addition to synthetic nanoparticles, bioderived nanoscale

extracellular vesicles have also become a research hotspot

(81–83). Compared with synthetic nanoparticles, extracellular

vesicles (EVs) have good biocompatibility, low immunogenicity,

natural cell targeting, and complex biomolecular loading capacity

(84–86). Exosomes isolated from conditioned cultures of

lentivirus-transfected mouse pulmonary microvascular

endothelial cells (MPMVECs) were found to be useful for

intratracheal injections for the treatment of lipopolysaccharide

(LPS)-induced ALI in mice (87). Studies have found that

inhalation of exosomes can improve pulmonary edema and

inflammation, reduce the number of cells and protein levels in

bronchoalveolar lavage fluid (BALF), and reduce the expression

of pro-inflammatory cytokines such as IL-1 beta, TNF-α and IL-

6 (87). In another study, neutrophil membrane-engineered Panax

ginseng root-exosome (N-exo)-loaded microRNA (miRNA)

182-5p (N-exo-miRNA 182-5p) was found to have a favourable
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therapeutic effect on acute lung injury (ALI) in sepsis (88). The

study found that N-exo-miRNA 182-5p significantly improved

ALI by targeting and modulating the NOX4/Drp-1/NLRP3

signaling pathway in vivo and in vitro (88).

In addition, through the above studies, we found that in the

treatment of lung diseases, aerosol inhalation has become an

indispensable drug delivery route (49, 52, 87). Aerosol inhalation

delivers drugs directly to the lungs and airways. Compared with

the intravenous route, aerosol inhalation of the drug mainly acts

locally, reducing the amount entering the systemic circulation,

which may reduce systemic side effects (85–90). Thus, biogenic

extracellular vesicle nebulized inhalation has great potential for

the treatment of acute lung injury.

It should be noted that our study still has some limitations. First,

although WoSCC is the most commonly used data source for

bibliometric analysis. However, ignoring publications from other

databases may lead to selection bias. Therefore, more rigorous

analyses should be conducted in the future using more databases.

Second, only SCI-Expanded articles and reviews in English were

included in this study. Next, open-source journals have an impact

on both citations and publication sit require a certain amount of

time for an article to reach a high academic impact after

publication. Finally, bibliometric analyses were usually conducted

annually, and some recently published literature was not included

in the assessment. Given the rapid growth of the field, more

findings may emerge in future updated studies.
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