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Background: Observational health data are collected in different formats and
structures, making it challenging to analyze with common tools. The
Observational Medical Outcome Partnership (OMOP) Common Data Model
(CDM) is a standardized data model that can harmonize observational health data.
Objective: This paper demonstrates the use of the OMOP CDM to harmonize
COVID-19 sero-surveillance data from the Nairobi Urban Health and
Demographic Surveillance System (HDSS).
Methods: In this study, we extracted data from the Nairobi Urban HDSS
COVID-19 sero-surveillance database and mapped it to the OMOP CDM. We
used open-source Observational Health Data Sciences and Informatics
(OHDSI) tools like WhiteRabbit, RabbitInAHat, and USAGI. The steps included
data profiling (scanning), mapping the vocabularies using the offline USAGI
and online ATHENA, and designing the extract, transform, and load (ETL)
process using RabbitInAHat. The ETL process was implemented using Pentaho
Data Integration community edition software and structured query language
(SQL). The target OMOP CDM can now be used to analyze the prevalence of
COVID-19 antibodies in the Nairobi Urban HDSS population.
Results: We successfully mapped the Nairobi Urban HDSS COVID-19 sero-
surveillance data to the OMOP CDM. The standardized dataset included
information on demographics, COVID-19 symptoms, vaccination, and
COVID-19 antibody test results.
Conclusions: The OMOP CDM is a valuable tool for harmonizing observational
health data. Using the OMOP CDM facilitates the sharing and analysis of
observational health data, leading to a better understanding of disease
conditions and trends and improving evidence-based population health strategies.
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1 Introduction

Population health studies play a key role in understanding

specific populations or groups’ health status, determinants, and

outcomes. Analyzing data from different sources is challenging

due to inconsistencies in structures, formats, definitions,

standards, coding systems, and database platforms. Data

harmonization is a key process that addresses these challenges by

standardizing and transforming data to enable seamless

integration and enhanced interoperability and ensure consistency

across diverse datasets for more accurate analysis, informed

decision-making, and a unified understanding of information

across different systems for meaningful comparisons and

analyses. The extract, transform, and load (ETL) pipeline is the

process embedded into the workflow, which does the

standardization and transformation tasks to put data in a

common standard, referred to as a common data model.

Population health data often include various indicators beyond

clinical records, such as socioeconomic factors, and environmental

and lifestyle data. The data may need to be aggregated, and

granularity of data such as community-level factors and

integrating population health outcomes are not comprehensively

addressed in traditional clinical data for which OMOP CDM was

intended. Adapting this to OMOP CDM to incorporate diverse

data types introduces complexities. Extension to the OMOP

Common Data Model is necessary to address these challenges,

and interoperability with other data standards and models used

in population health research must be carefully considered. Data

harmonization is vital in population health studies. It improves

data quality (1), enhances comparability across studies (2, 3), and

facilitates large-scale analyses. This paper provides insights into

the data harmonization process essential for transforming

data from a COVID-19 Sero-surveillance at Nairobi Urban

Health and Demographic Surveillance (NUHDSS) area into

Observational Medical Outcomes Partnership (OMOP) Common

Data Model (CDM), which is an open community data standard,

intended to standardize the structure, format, and content of

observational clinical data and to enable practical and effective

analyses that can produce consistent evidence for better

policymaking. This paper highlights the vital re-orientation

process performed to adopt and use the clinical-based OMOP

CDM in population studies.
1.1 Observational health data sciences and
informatics (OHDSI)

The availability of medical records, surveys, population

surveillance data, and other real-world data from the field of

medical care and public health systems gives many opportunities

for research and evidence-based understanding. However,

utilizing the potential of such vast data requires standardized

methods, collaborative efforts, and easy-to-access analytical tools.

The Observational Health Data Sciences and Informatics

(OHDSI) addresses many of these challenges and assists in

large-scale analytics of observational health data. OHDSI is an
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international, multi-stakeholder, interdisciplinary, open-source

collaborative that aims to improve health by empowering a

community to collaboratively generate evidence that promotes

better health decisions and better care (4).

OHDSI focuses on open science by promoting transparency

and reproducibility in research. Specifically, OHDSI supports the

development of open-source software tools for the community.

The Observational Medical Outcomes Partnership (OMOP)

Common Data Model (CDM) is one such effort, which facilitates

the harmonization of heterogeneous health data using

standardized terminologies and common data models. The

common data model and standardized vocabularies set the stage

for uniform analytics (5, 6).

To achieve the common data structure and leverage the use of

big data analytics tools, building ETL (extract, transform, and load)

is necessary for extracting source data, transforming it into a

standard format of the OMOP CDM data structure, and loading

it into the OMOP CDM database (7). The extract, transform,

and load process are a series of tasks designed to align source

data with the structure and terminology of the target database.

Supporting data harmonization typically involves two consecutive

phases, each handled by professionals with distinct expertise.

During the first phase, subject matter experts familiar with the

source data (e.g., EHR, claims, population health and mental

health data) identify the necessary data elements for extraction

and define mappings between the source and target data

elements. This step demands expertise in both source and target

data, encompassing domain knowledge of local population health

implementations and terminologies. In the second phase,

database programmers execute data transformation methods and

schema mappings to load data into the OMOP CDM-ready tables.
1.2 The source data

The study utilized archived secondary data from the African

Population and Health Research Center (APHRC) online microdata

portal (https://microdataportal.aphrc.org/index.php/catalog/138), it

provides metadata and a high-level overview of various research

outputs within the center, datasets can be accessible for further

research by requesting the portal managers. Data were collected

within Nairobi Urban Health and Demographic Surveillance

Systems (NUHDSS). The NUHDSS is a pioneer in urban-based

HDSS sites. It was created to fill an evidence gap in understanding

the challenges stemming from rapid urbanization, the growing

concentration of the urban poor, and health status within two

informal settlements (Korogocho and Viwandani) in 2002 (8).

The data was collected as part of a COVID-19 seroprevalence

survey within representative samples of the Kenyan population

approximately two years into the COVID-19 pandemic and

approximately one year after the rollout of the national COVID-19

vaccination program (9).

The primary sero-surveillance study sample comprised 870

individuals randomly selected from the NUHDSS database,

reflecting diverse socio-demographic characteristics, from whom

the blood samples were collected to ascertain the presence or
frontiersin.org
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TABLE 1 Overview of NUHDSS COVID-19 sero-survey data scan report.

Table Field Description Type Fraction empty N unique values
sero_results.csv Studyid Sero study id INT 0.0% 870

sero_results.csv q8_gender Individual q8_gender VARCHAR 0.0% 2

sero_results.csv q7_birth_date Individual’s date of birth VARCHAR 0.0% 745

sero_results.csv q7_age q7_age in complete years INT 0.0% 82

sero_results.csv Age_strata Individual’s q7_age strata VARCHAR 0.0% 15

sero_results.csv q9_location Individual location VARCHAR 0.0% 2

sero_results.csv q5_status Individual q5_status VARCHAR 0.0% 1

sero_results.csv Consent Individual consented VARCHAR 0.0% 1

sero_results.csv Replace Individual replaced VARCHAR 0.0% 2

sero_results.csv q6_education_level School level VARCHAR 0.0% 4

sero_results.csv q6_religion Religion VARCHAR 0.0% 5

sero_results.csv q10_covid_contact Suspected or confirmed COVID-19 VARCHAR 0.0% 4

sero_results.csv q10_contact_month Contact month VARCHAR 0.0% 11

sero_results.csv q10_contact_year Contact year VARCHAR 0.0% 3

sero_results.csv q11_fever History of fever/chills VARCHAR 0.0% 2

sero_results.csv q11_shortness_breath Shortness of breath VARCHAR 0.0% 2

sero_results.csv q11_pain Pain VARCHAR 0.0% 2

sero_results.csv q11_weakness General weakness VARCHAR 0.0% 2

sero_results.csv q11_diarrhoea Diarrhoea VARCHAR 0.0% 2

sero_results.csv q11_cough Cough VARCHAR 0.0% 2

sero_results.csv … … … … …

sero_results.csv Spikepos Antibodies present in sample VARCHAR 0.1% 3

sero_results.csv Latitude Latitude REAL 0.0% 2

sero_results.csv Longitude Longitude REAL 0.0% 2

TABLE 2 Sero-prevalence by various demographics characteristics.

Age categories Sero-negative Sero-positive Total

N= 539 N= 330 N= 869
less than 5 85 (15.77) 18 (5.45) 103 (11.84)

5–9 years 86 (15.96) 25 (7.58) 111 (12.76)

10–14 years 65 (12.06) 38 (11.52) 103 (11.84)

15–19 years 22 (4.08) 32 (9.7) 54 (6.21)

20–24 years 36 (6.68) 17 (5.15) 53 (6.09)

25–29 years 31 (5.75) 15 (4.55) 46 (5.29)

30–34 years 27 (5.01) 18 (5.45) 45 (5.17)

35–39 years 25 (4.64) 27 (8.18) 52 (5.98)

40–44 years 25 (4.64) 25 (7.58) 50 (5.75)

45–49 years 27 (5.01) 23 (6.97) 50 (5.75)

50–54 years 29 (5.38) 18 (5.45) 47 (5.4)

55–59 years 26 (4.82) 27 (8.18) 53 (6.09)

60–64 years 33 (6.12) 18 (5.45) 51 (5.86)

65 years and above 22 (4.08) 29 (8.79) 51 (5.86)

Gender
Male 285 (52.88) 173 (52.42) 458 (52.70)

Female 254 (47.12) 157 (47.58) 411 (47.30)
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absence of COVID-19 antibodies. In total, the dataset had

approximately 140 variables, and a subset (60%) of these variables

have been harmonized into OMOP CDM based on the success of

source-to-target mapping i.e., from the source codes to OMOP

CDM vocabularies using the ATHENA vocabulary repository, and

the availability of concepts in respective vocabulary sets.

The dataset was anonymized before uploading into the micro-

data portal in adherence with data protection guidelines.

Additionally cleaning, quality checks, and descriptive statistical

analysis were performed before the start of the actual harmonization

pipeline as shown on Table 1. It is important to highlight that

during the initial implementation of sero-surveillance at the primary

data collection stage, the researchers adhered to ethical standards

and approvals as expected by Kenya’s research governing body (10).

With a conventional basic descriptive analysis of the data. It

showed the majority of study participants were under the age of 35,

which is typical of informal settlements, with males slightly leading.

Overall, nearly half of the respondents had completed primary

school as their highest level of education as shown on Table 2.
Location
Korogocho 216 (40.07) 120 (36.36) 336 (38.67)

Viwandani 323 (59.93) 210 (63.64) 533 (61.33)

Education
No formal education 143 (26.53) 53 (16.06) 196 (22.55)

Primary 254 (47.12) 168 (50.91) 422 (48.56)

Secondary 121 (22.45) 93 (28.18) 214 (24.63)

Tertiary 21 (3.9) 16 (4.85) 37 (4.26)
2 Methods

2.1 Designing the data harmonization
workflow using OHDSI tools

Figure 1 shows data harmonization and integration workflows

for the NUHDSS data. The first step in the data harmonization

pipeline was an exploratory data analysis (EDA). In the OHDSI

suite of tools, WhiteRabbit performs scanning and profiling of the

source data. This stage yielded a comprehensive overview of the
Frontiers in Digital Health 03
source data content, encompassing details like data types,

occurrences of missing data, data dimension, and summary

statistics of numeric variables. WhiteRabbit accommodates various
frontiersin.org
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FIGURE 2

High-level overview of NUHDSS COVID-19 sero-survey data
mapped to OMOP CDM tables.

FIGURE 1

Harmonization pipeline architecture for NUHDSS COVID-19 sero-survey.
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data sources, spanning from flat files to relational databases. As a

result, seamless integration with any source data is facilitated (11).

EDA was followed by “mapping”, also referred to as ETL design.

During mapping a scan report produced by WhiteRabbit was

uploaded into Rabbit-in-a-Hat. This tool is Java-based and

platform-independent, serving as a valuable aid in the creation of
Frontiers in Digital Health 04
the ETL specification document. This step builds upon the

implementation guide already generated by the USAGI tool, which

mapped source codes to the standard OMOP CDM codes (12–14).

Figure 2 shows a detailed mapping of the source data to OMOP

CDM schema version 6.0 respective tables as defined by the source

data variables. Some of the notable tables mapped include person,

observation_period, visit_occurrence, visit_detail, condition_

occurrence, drug exposure, measurement, observation, specimen,

drug_era, dose_era, condition_era, location, provider, cdm_

source, and metadata (15).

It is best practice to anonymize data before harmonization. As

stated earlier, sero-survey data was anonymized. During the

anonymization, key personal identifiers had been removed from

the data prior to uploading on the APHRC microdata portal.

During mapping, the first table mapped to the OMOP CDM was

the person table which contained information regarding the

patient’s gender, date of birth, ethnicity, race, and other variables

like location code, provider code, and care_site code obtained

through linkage with other tables within the OMOP CDM (16).

Figure 3 shows how a subset of sero-survey data was mapped to

the person table. Study_id or row unique identifier in the source

data was mapped to person_source_value, gender was mapped to

gender_concept_id which has standardized codes for both males

and females. Lastly, the birth_date variable was used to generate

within the OMOP CDM person table year_of_birth,

month_of_birth and day_of_birth.

Figure 3 describes the mapping from the source to the OMOP

CDM’s person table. This was an important first step in mapping

as the study participants’ demographic details are populated into

this table.

The third stage involved downloading the OHDSI vocabulary

into the local database instance. ATHENA, an online OHDSI

vocabulary repository (12), was utilized to incorporate the current

vocabulary version in preparation for ETL development. This

process involved populating a vocabulary schema in a PostgreSQL
frontiersin.org
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FIGURE 4

ETL specification document extract from person table with some variables.

FIGURE 3

Mapping from source data to OMOP CDM person table.
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database from the OHDSI ATHENA repository. The applicable

standard vocabularies were obtained as comma-separated (csv) files

and then loaded into the corresponding tables within the

vocabulary schema using the SQL COPY command. Typically, this

is a one-time task, unless there are updates to the ATHENA

vocabularies. The mapping process generated an ETL specification

document used for ETL development.

Figure 4 is an extract of an ETL specification document for the

person table depicting the code-level mappings. The process above

was replicated for all the tables, and the resulting ETL specification

document was passed on for actual ETL development.

The mapping process for sero-survey data to the OMOP CDM

schema encountered some challenges. Some variables representing

vaccines given to young children and socioeconomic status (SES)

lacked clearly defined standard codes or concepts within the

OHDSI vocabulary and, therefore, were mapped to concept code

zero as the OHDSI standard for missing concepts. This problem
Frontiers in Digital Health 05
is not unique to this dataset mainly because concepts primarily

developed to annotate clinical data in Europe and America will

need localization when it comes to population health data

collected on the African content (17).

An ETL process involves combining data from multiple sources

into a centralized database (18). Data is extracted from different

sources and stored on a temporary schema. A transform step will

then consolidate the raw data in the temporary schema to

prepare it for the OMOP CDM respective tables, either through

data deduplication, data format revisions to match target schema,

splitting, cleansing, encryption, and joining data. Lastly, in the

loading step, transformed data is moved from the staging schema

to the target database schema. ETL uses a set of rules to clean

and structure the raw data, making it ready for data analysis and

machine learning applications (19).

Before the actual ETLs were executed on the survey data,

additional exploratory data analysis (EDA) was conducted to
frontiersin.org
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understand the demographics of the source data. This proved useful

during the quality checks on the final ETL, where both EDAs were

compared. The actual ETL workflow for the NUHDSS COVID-19

sero-survey started with data extraction. Here the archived data

from the micro-data portal was read into an R program.

R is a programming language and environment specifically

designed for statistical computing and graphics. It provides a

wide variety of statistical and graphical techniques, making it a

popular choice for data analysis and visualization. The data was

converted into comma-separated values for ease of use within the

ETL suite of tools. Pentaho data integration (PDI) and structured

query language (SQL) were used to orchestrate the workflows

that took the csv file and pipelined it to the OMOP CDM ready

tables. Pentaho Data Integration, commonly known as PDI and

previously referred to as Kettle, is an ETL tool encompassing a

suite of software applications tailored for creating data

workflows. These workflows can be executed either within server

environments or as standalone processes. PDI is characterized by

two primary components: Kitchen, serving as a runner for jobs

and transformations, and Spoon, a graphical user interface

specifically designed for the creation and configuration of these

jobs and transformations (20). With SQL all the OMOP CDM

table structures are generated using already available table

creation scripts provided by the OHDSI community, covering at

least major database engines both for on-premises and cloud

platforms (21, 22). In addition, the source dataset schema is

created mainly to serve as a staging database.

So, the source csv data was read into a table created within the

staging schema. Transformation of data in the staging database

using the SQL scripts and a combination of PDI transforms and

jobs created table structures in alignment with the respective

OMOP CDM tables. The provider, location, and care site tables

were generated and loaded, followed by a person, visit

occurrence, visit detail, condition occurrence, measurement,

observation, specimen, drug exposure, observation_period,

condition_era, drug_era, and dose_era as shown on Figure 5.

PostgreSQL was used here as the target database engine,

although OMOP CDM supports several database engines,

therefore promoting interoperability as an integral component of

the Findable Accessible Interoperable, and Reusable (FAIR)

principle in data systems.
FIGURE 5

Pentaho ETL pipeline with various transformations and jobs moving data to
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Harmonized data within the OMOP CDM version 6 was

migrated to CDM version 5.4 to allow for backward

compatibility with the OHDSI suite of tools. The migration

involved loading data from OMOP CDM 6.0 tables to respective

OMOP 5.4 tables, which required either data type alignment,

dropping column(s), and removing the required attribute on the

date and datetime fields. This was necessary to allow usage of the

OHDSI suite of tools currently supporting OMOP CDM versions

5.4 and 5.3. The data harmonization pipeline, along with detailed

documentation of the process, is available on GitHub (https://

github.com/APHRC-DSE/Sero-data-to-OMOP-ETL).
2.2 Data quality checks

After a successful ETL process, quality assurance of the

resulting common data model was undertaken. A team verified

an ETL design document to ensure that data was mapped to the

appropriate OMOP CDM tables and fields. This verification

resulted in documentation of the design phase. Next, SQL scripts,

Pentaho transformations, OMOP CDM tables, and the data were

verified for any mistakes or incorrect mappings.

After harmonization, data quality metrics were produced. They

encompassed various aspects, including the comparison of the total

number of individuals in the OMOP CDM person table with the

source data, and the same number of distinct individuals

reported in exposure and era tables. The last quality check on

the harmonized data was implemented using the OHDSI suite of

tools; ACHILLES and data quality dashboard (DQD) (23). DQD

is an open-source R library supported in OMOP CDM versions

5.4, 5.3, and 5.2. It runs a series of systematic checks on the

OMOP CDMready database instance and supports multiple

relational database management systems (RDBMS) including

PostgreSQL, Microsoft SQL server, Google Big Query and

Amazon Redshift popular for cloud deployment using the

OHDSI on cloud architecture. The tool applied over 3300 quality

checks on the OMOP CDM database, grouped into conformance,

completeness, and plausibility checks. For conformance checks

the aim was to ensure data adhered to the specified format and

standards. Completeness checked if data values were present, and

plausibility checked if a given measurement and a given unit
OMOP CDM v6.0.
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based on context were valid. Notable errors checked were: any

records after death date, persons lacking recorded year of birth,

missing gender, and more. The approach to correct the identified

quality issues involved examining the source data or ETL

pipeline to determine the appropriate fix (24–26).

Data analysis on OMOP CDM-ready tables took three forms.

First, the OHDSI ACHILLES R library was used to characterize

the data. Secondly, OHDSI ATLAS, a low code data analysis

workbench, was used to produce descriptive statistics on persons

and various symptom distributions. Thirdly, specialized libraries

and analysis packages tailored to individual OMOP CDM

instances expands the range of possibilities for developing

custom algorithms for descriptive and inferential analysis. In this

study, we used a combination of these approaches (27).
3 Results

As previously specified, a quality assessment for the process

and the output was carried out using the data quality dashboard
TABLE 3 Data quality dashboard for harmonized COVID-19 sero-survey.

Verification

Pass Fail Total % Pass Pass Fai
Plausibility 2,171 0 2,171 100% 287 0

Conformance 660 68 728 91% 106 0

Completeness 376 20 396 95% 15 2

Total 3,207 88 3,295 97% 408 2

FIGURE 6

ATLAS dashboard report for harmonized COVID-19 sero-survey.
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(DQD), this provided a mechanism to check the resulting

OMOP CDM for conformance, completeness, and plausibility,

and set the stage for ATLAS visualization. Data quality

assessment through the dashboard in Table 3 showed the

resultant quality of the ETL process that generated OMOP CDM

data had a 98% quality score. Additional quality checks to ensure

data reliability and consistency were carried out, cross-

referencing OMOP CDM aggregates against raw data aggregates

from the EDA.

Figure 6 shows ATLAS dashboard reports and visualizations of

the harmonized sero-survey data. We used the data sources module

in ATLAS to explore database characteristics created by ACHILLES.

The harmonized sero-survey data comprised 870 individuals, with

52% of respondents being males. The age distribution ranged from

0 to 70 years, with a predominant majority below 35 years, a

characteristic common in most informal settlements.

Figure 7 shows the prevalence of various conditions observed.

Notably, a significant number of individuals experienced cough,

headache, and fever with a single condition record per person

interviewed, this being a cross-sectional study.
Validation Total

l Total % Pass Pass Fail Total % Pass
287 100% 2,458 0 2,458 100%

106 100% 766 68 834 92%

15 88% 391 22 413 95%

408 100% 3,615 90 3,705 98%
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FIGURE 7

ATLAS condition occurrence report for harmonized COVID-19 sero-survey.

FIGURE 8

ATLAS data density plot on condition occurrence for harmonized COVID-19 sero-survey.
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The median number of reported conditions was two, though

some individuals reported as many as five conditions, as

indicated on Figure 8. This figure suggests that it was likely to

have a cough with headache or cough with fever, or any other

combination. There was no variation to report on observation

and measurement concepts for this data.

In addition to utilizing the ATLAS dashboard for visualization,

OMOP CDM databases offer the flexibility of programmatic access

through widely used data science scripting languages. R was

integrated with the OMOP CDMdatabase instance to visualize

the proportion of various conditions across age groups as shown

in Figure 9.
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The proportion of respondents who tested positive for SARS-

CoV-2 antibodies was 39%. The analysis could also be achieved

in ATLAS using its point-and-click interface to construct cohorts

with particular feature sets. Notably, the analysis of COVID-19

vaccination was omitted due to insufficient data records

pertaining to vaccination uptake in the available data.
4 Discussion

Utilizing the OMOP CDM for data harmonization offers

numerous benefits, its uniqueness lies in its use of OHDSI
frontiersin.org
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FIGURE 9

Proportion of conditions across age groups.
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vocabularies, which facilitate seamless interoperability with leading

health sector vocabulary standards. As long as the necessary

vocabularies are supported, studies can be integrated into the

OMOP CDM framework. Expanding these vocabularies further

extends the potential to harmonize data across a wide range

of domains.

In our study, converting COVID-19 sero-surveillance data

from the Nairobi Urban HDSS to the OMOP CDM facilitated

the uniformity of data, simplifying subsequent analysis through

available OHDSI tools and software packages. This

harmonization process not only standardized the data but also

enhanced its profiling and accessibility for researchers,

establishing a shared format for data encoding, structure, and

database software. Moreover, it enabled seamless data exploration

and visualization through the user-friendly ATLAS interface.

The Data Quality Dashboard (DQD) results showed that the

dataset’s quality for the OMOP CDM was at 98%, meeting most

of the quality checks built into the OHDSI DQD R package. This

was the outcome of a successful data migration process from the

source to the OMOP CDM: adopting the ETL approach for this

migration resulted in high-quality output.

Integrating data into the OMOP CDM, however, comes with its

share of challenges, with one of the primary concerns being the

inability to completely map all data to a standardized vocabulary

from the ATHENA repository. The vocabulary accessible through

the ATHENA repository is a continually evolving collection that

may lack definitions for numerous conditions across various

contexts. These vocabularies are classified into different domains

and sets, and they may not perfectly align with every aspect of

the source dataset.

More specifically, some variables from the source dataset

didn’t fit well in the OMOP CDM standardized concepts.

A few instances like the work missed due to the infection,

some childhood vaccinations like the Penta & BCG along with

the household levels variables from the social economic status

questionnaire didn’t map to the existing standardized concepts

in the OMOP CDM. This results into a potential data loss on

the final OMOP CDM, which could limit some downstream
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processes, including visualization, analysis, and modeling

referencing such variables.

One viable solution to address this issue involves extending the

existing sets by introducing new concepts tailored to different types

of studies. The ATHENA vocabulary repository is structured in a

hierarchical organization of concepts and classes. Therefore,

adding new concepts must be implemented methodically to

avoid disrupting this hierarchy. This hierarchy plays an

important role in data analysis, especially when using tools like

ACHILLES R scripts, and in visualizing the data through the

ATLAS interface. In this regard, the Implementation Network for

Sharing Population Information from Research Entities

(INSPIRE) network is at the forefront of championing the

development of vocabulary concepts for population health data

within the vocabulary working group OHDSI Africa chapter.

Another challenge encountered during the mapping process

from the APHRC COVID-19 sero-surveillance dataset pertained

to the restricted availability of variables and values within the

source data. This limitation posed hurdles in comprehensively

representing and capturing the characteristics of the data, as

certain essential variables and values were either absent or

insufficiently documented. This challenge highlighted the

importance of careful data collection designs to ensure that

comprehensive and meaningful insights could be derived from

the dataset. Lastly, incomplete data on COVID-19 vaccine uptake

hindered further analysis.
5 Future direction

The Implementation Network for Sharing Population

Information from Research Entities (INSPIRE) (17), is actively

engaged in extending the OMOP CDM to include data elements,

particularly concepts, that are not currently captured by the

existing ATHENA vocabulary set. This effort aims to improve the

CDM’s comprehensiveness and facilitate the integration of a

broader range of data sources. The process of filling the gaps

between the existing terminologies and concepts used for Africa-
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specific variables like ethnicity, housing conditions, socioeconomic

status, etc., and the OMOP CDM vocabularies is ongoing.

Additionally, the INSPIRE team is collaborating closely with

ministries across various African nations to secure access to

COVID-19 datasets. These datasets will be processed and

integrated into the OMOP CDM, enabling deeper analysis and

comparisons on a pan-African scale. This initiative holds immense

potential for uncovering regional trends, identifying areas of

concern, and informing effective public health strategies, through

the adoption of federated analytics where analysis algorithms are

brought to the data, eliminating the need for physical data sharing.
6 Conclusion

The utilization of the OMOP CDM to harmonize COVID-19

sero-surveillance data from the Nairobi Urban HDSS has proven

to be a good experience in mapping surveillance data into a

standardized model for observational population health. It

achieved data standardization which ensured consistency in data

representation, enabling better analysis and data accessibility by

adhering to a standard format, facilitating easier retrieval and

utilization by different user groups, and opening opportunities

for wider collaboration and knowledge sharing. The integration

of population demographics with COVID-19 vaccination, and

COVID-19 testing data into a standardized format provided a

platform for improved analysis and interpretation of public

health data. As we continue to work on COVID-19 data, the

OMOP CDM will undoubtedly play a crucial role in

standardizing it across studies for effective public health

strategies. Population health data standardization in Africa is a

catalyst for improving health outcomes. By addressing challenges

and investing in standardization, African countries can build a

robust health data ecosystem that enhances decision making,

drives innovation, and strengthens the continent’s readiness to

tackle emerging health challenges.
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