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Objective: The COVID-19 pandemic has placed unprecedented strain on
healthcare systems, mainly due to the highly variable and challenging to
predict patient length of stay (LOS). This study aims to identify the primary
factors impacting LOS for patients before and during the COVID-19 pandemic.
Methods: This study collected electronic medical record data from Zhongnan
Hospital of Wuhan University. We employed six machine learning algorithms
to predict the probability of LOS.
Results: After implementing variable selection, we identified 35 variables
affecting the LOS for COVID-19 patients to establish the model. The top three
predictive factors were out-of-pocket amount, medical insurance, and
admission deplanement. The experiments conducted showed that XGBoost
(XGB) achieved the best performance. The MAE, RMSE, and MAPE errors
before and during the COVID-19 pandemic are lower than 3% on average for
household registration in Wuhan and non-household registration in Wuhan.
Conclusions: Research finds machine learning is reasonable in predicting LOS
before and during the COVID-19 pandemic. This study offers valuable
guidance to hospital administrators for planning resource allocation strategies
that can effectively meet the demand. Consequently, these insights contribute
to improved quality of care and wiser utilization of scarce resources.

KEYWORDS
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1 Introduction

The rapid global spread of the coronavirus disease (COVID-19) since 2019 has posed a

significant threat to healthcare systems worldwide (1). One of the key challenges resulting

from the surge in infections is the increased demand for hospital beds (2). However,

hospital beds are limited; if the demand for beds exceeds hospital capacity, this will

severely reduce the quality of care provided (3). For example, during the early stages of

the outbreak, many people died in Wuhan due to infection because they were not

admitted to hospital. Therefore, accurately predicting the demand for hospital beds is

crucial to proactively expand capacity and indicate the effectiveness of public health
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interventions (4). Another important aspect to consider is the

length of stay (LOS), which refers to the cumulative duration of

a patient’s hospitalization between consecutive admissions and

discharges within a specific timeframe (5). Most hospitals face

the challenge of providing timely patient care while maintaining

optimal resource utilization, especially during the COVID-19

pandemic (6). We aim to forecast the LOS before and during the

COVID-19 pandemic, considering the evolving circumstances

caused by COVID-19. By predicting LOS, we can better

understand and anticipate the resource requirements for efficient

and effective healthcare services amidst the pandemic.

Previous research on factors influencing LOS has predominantly

relied on traditional statistical models, simulation models, and other

similar approaches (7). With the advancements in artificial

intelligence techniques, machine learning has gained significant

popularity in LOS prediction (8). However, LOS is a multifaceted

metric impacted by various factors, such as individual

demographics, diverse treatment strategies, and discharge plans,

which can extend LOS beyond the target range (9). Hence, it is

crucial to develop personalized and accurate LOS prediction

models considering these influential factors. These models are

pivotal in enhancing hospital resource allocation and informing

healthcare decisions. In line with this objective, this paper

focuses on analyzing the impact of medical insurance utilization

on LOS for the residents of Wuhan during the COVID-19

pandemic, starting with examining medical insurance-related

factors. By delving into the factors associated with medical

insurance, we can gain valuable insights into how it affects LOS

for individuals affected by the pandemic.

In 2005, the World Health Organization (WHO) encouraged

its members to achieve the goal of universal health coverage,

where all people have access to quality primary health

care services, including promotion, prevention, treatment,

rehabilitation, and palliative care, without having to endure

financial hardship (10). In China, using the health care

component of medical insurance supplements inadequate long-

term care services (11). Due to the low quality of primary health

care in China, patients have not used expensive tertiary hospitals

(12). For this reason, many countries, including China, have taken

adequate measures to expand their health coverage. Since good

health care resources are concentrated in provincial capitals and

most people from non-capital cities will visit provincial capitals,

we will analyze the use of medical insurance by patient’s

household registration is in Wuhan compared to those in non-

household registration is in Wuhan.

Several studies emphasize that insurance type and coverage

significantly influence hospital LOS (13). Patients with private

insurance often experience shorter stays due to streamlined

discharge planning and access to post-acute care facilities. In

contrast, those with public insurance or uninsured patients may

face longer stays due to socioeconomic factors or limited post-

discharge options (14). For example, Clarke et al. (15) observed

that uninsured patients frequently experience delays in care

transitions, leading to extended LOS. Hospital reimbursement

models tied to insurance play a pivotal role in LOS. Prospective

payment systems, such as diagnosis-related groups, incentivize
Frontiers in Digital Health 02
hospitals to minimize LOS without compromising care quality.

On the other hand, fee-for-service models may inadvertently

encourage longer stays, as hospitals are compensated per service

provided (16). These economic drivers underscore the necessity

of predictive models that account for insurance-related factors to

optimize LOS predictions.

Disparities in insurance coverage can lead to heterogeneity in

LOS prediction outcomes. For instance, patients with inadequate

insurance may exhibit irregular hospital utilization patterns,

challenging algorithms’ predictive accuracy. Toth et al. (17)

highlight that integrating insurance status with social

determinants of health in prediction models can improve their

reliability, particularly for underserved populations. The COVID-

19 pandemic has further illuminated the connection between

LOS and insurance. Galvani et al. (18) revealed that uninsured or

underinsured patients were less likely to seek early medical care

during the pandemic, leading to increased severity at admission

and, consequently, longer LOS. These findings suggest the need

for dynamic models to adapt to such crises and reflect changes

in healthcare utilization patterns (19). Understanding the

interplay between insurance and LOS has critical policy

implications. Policymakers can use insights from predictive

models to design interventions that address inequities in

healthcare access and optimize LOS management. For instance,

targeted strategies to enhance post-acute care access for publicly

insured or uninsured populations can reduce unnecessary

hospital days and improve overall system efficiency.

To date, extensive research on COVID-19 has primarily centered

around epidemiological investigations, diagnostics, treatments, and

prevention and control strategies (20). However, there needs to be

published studies explicitly focusing on the development of

machine learning models to estimate LOS for COVID-19 patients

in Wuhan throughout the three-year pandemic, which is the core

focus of this study. Motivated by this research gap, the primary

objective of this study was to estimate the duration of LOS for

COVID-19 inpatients by utilizing fundamental hospitalization

data. This involved analyzing a range of variables to create a

comprehensive model that could predict LOS with greater

accuracy. By doing so, the study aimed to provide valuable

insights into the factors influencing the duration of hospitalization,

which could help healthcare providers optimize resource

allocation, improve patient management strategies, and enhance

overall hospital efficiency during the ongoing pandemic.

The aim was to systematically compare different event onset

time models for individualized LOS prediction, thus contributing

to the efficient allocation of healthcare resources during the

COVID-19 pandemic. To achieve this, we employed six distinct

machine learning models, and their performance was thoroughly

evaluated and compared. In summary, the research presented in

this paper strives to accomplish the following: Firstly, this paper

compared predictions made during non-pandemic periods with

those made during pandemic periods, highlighting a shift in

people’s prioritization of their health status. Secondly, the

primary objective of this study is to develop machine learning

models that can effectively predict and estimate the duration of

hospitalization for COVID-19 patients in Wuhan, which aid
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health authorities in efficiently managing their resources and

providing crucial guidance for accepting new patients. Finally,

this research aims to contribute to a deeper understanding of the

interplay between medical insurance utilization and LOS,

ultimately paving the way for improved resource management

and more informed healthcare strategies.
2 Methods

2.1 Data collection and preprocessing

Our study was conducted after collecting electronic medical

record data from Zhongnan Hospital of Wuhan University, which

is the largest regional teaching hospital in Wuhan. Since the

beginning of the pandemic, this hospital has been the leading

center for receiving and treating COVID-19 patients from Wuhan.

The data were collected from electronic medical queries to identify

patient records. With China’s full reopening in December 2022,

the data were collected from January 2017 to December 2022,

mainly reflecting before and during the COVID-19 pandemic.

Data have been collected using a structured form. It contains

clinical and demographic data for 158,854 patients from 2017 to

2019 and 217,970 patients who visited the hospital before COVID-

19. We divided the data into Wuhan and non-Wuhan medical

insurance because the reimbursement rate varies from place to

place, and patients can only be reimbursed in their domicile.

Sample selection is an effective technique that is used to

determine the most meaningful variables, reduce the dimensions

of the dataset, and improve the efficiency of ML algorithms. In

this study, we identified 35 variables that were valid on the

electronic medical record as effective predictors of LOS in patients

with COVID-19 before and during the COVID-19 pandemic. Each

patient record contains 35 variables collected at admission and in

the patient’s medical history, and each patient’s record is updated

daily. These characteristics include a wide range of basic patient

information, clinical and demographic data containing

comorbidities, laboratory results, and symptoms, and detailed

variables shown in Table 1. In contrast, the sea of data contains
TABLE 1 Patient demographics and clinical characteristics.

Variables Unit Minimum M
Age Year 0.0

Less than 1 year of age Year 0.0

Newborn birth weight g 0.0

Newborn admission weight g 0.0

Account payment amount RMB −3835.5
Out-of-pocket amount RMB −6800.0 7

Total surgical level Level 0.0

Average surgical level Level 0.0

Total healing level Level 0.0

Average level of healing Level 1.0

Total incision level Level 0.0

Average level of incision Level 0.0

Number of surgeries Times 1

Number of diagnosed conditions Times 2

Medical insurance RMB −6885.0 7
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category-based variables, as specified in Table 2. For the altered

data, we directly coded, for example, hospital departments, which

have 91 categories, we directly coded from 1 to 91, and so on.

We also cleaned the data. Meanwhile, in Table 3, we also

calculated the confidence intervals of each variable. Identify and

remove duplicates in datasets to avoid bias and redundancy.

Apply techniques like min-max normalization or z-score

standardization to make data comparable. Correct misspellings,

incorrect entries, or impossible values. Use smoothing techniques

or data filters to eliminate unnecessary data variations. Ensure

uniform formatting across datasets. We also handle missing

values. Remove rows with missing values. Suitable for datasets

with minimal missing data. Remove features with high

percentages of missing data. Replace missing values with the

feature’s mean, median, or mode.
2.2 Machine learning methods

In this study, three linear regression algorithms and three

ensemble learning algorithms are used to predict LOS, and the

different models’ performance is compared. Figure 1 illustrates

the steps of the proposed method. Thank you for your

suggestion. We have added the section on data cleaning and

missing values. The details are as follows:

2.2.1 Linear regression algorithm
Three classical machine learning regression models were

employed in this study before and during the COVID-19

pandemic prediction. The selected models include linear

regression, linear lasso regression, and linear ridge regression. The

advantage of these methods is that the modeling is fast, does not

require very complex calculations, and still runs fast despite the

large amount of data. Interpretation of each variable can be given

based on the coefficients (21). Linear regression models are widely

used in supervised machine learning and are particularly effective

in identifying linear relationships to predict target attributes (22).

The parameters of the linear regression model (LR) (23) can be

minimized using a flat method in the LASSO regression model (LA)
edian Maximum Mean Variance
55.0 105.00 52.58 17.54

0.0 11.5 0.01 0.24

0.0 6,000 149.93 679.93

0.0 9000.0 33.83 322.53

0.0 94545.0 386.75 1365.15

793.52 1776393.38 13925.49 20798.21

4.0 72.0 6.1 5.2

2.33 6.0 2.37 0.92

4.0 80.0 6.09 6.46

1.0 4.0 2.31 1.43

1.0 45.0 2.07 2.84

1.0 3.0 0.8 0.81

2.0 23 2.62 1.95

6.0 32 6.49 3.03

470.96 1245234.9 15039.77 24334.6
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TABLE 2 Categorical variables for patients.

Variables Number of
categories

Category description

Gender 2 Male or female

Admission department 91 Infectious Diseases Ward
Infectious diseases ward, department of general medicine, department of traditional chinese medicine (integrated
traditional chinese and western medicine) ward, hematology ward, etc.

Nationality 30 China, the United States, Spain, etc.

Ethnicity 33 Han, Mongolian, Hui, Tibetan, Uighur, Miao, etc

Career 15 Farmer, retired personnel, civil Servants, Other, etc.

Marriage 2 Married, unmarried

Place of origin-province 36 Hebei, Shanxi, Liaoning, Jilin, Heilongjiang, Jiangsu, Zhejiang, Anhui, Fujian, etc.

Blood type 5 Not checked, AB, A, Unknown, O, etc.

RH (Blood type) 5 Positive, not checked, negative

Rehospitalization program 5 To live, not to live, others, etc.

Current address 35 Wuhan, Huangshi, Yichang, Xiangyang, etc.

Household address 43 Wuhan, Huangshi, Yichang, Xiangyang, etc

Relationship between contact person
and patient

95 Father and son, mother and son, dependents, none, etc.

Admission route 4 Direct admission, transfer, continued hospitalization, etc.

Allergy drug flagging 4 Allergenic, non-allergic, others, etc.

Quality of the first page of the case 4 Poor, average, excellent, etc.

Condition at admission 4 Poor, average, excellent, etc.

Type of surgical patient 4 Need surgery, no, other, etc.

Category of medical insurance 51 Municipal medical insurance, non-medical insurance, targeted poverty alleviation, others, etc.

Type of insurance 16 Ordinary hospitalization, extraordinary hospitalization, others, etc.

TABLE 3 Confidence intervals for each variable.

Variables Bias-corrected confidence intervals (95%) Percentile confidence interval (95%)

Lower limit Upper limit Lower limit Upper limit
Age 0.0129, 0.1822 0.0076, 0.1869

Less than 1 year of age 0.0032 0.1890 −0.0035 0.1670

Newborn birth weight −0.0022 0.1867, −0.0080 0.1576

Newborn admission weight 0.0025 0.1847 −0.0104 0.1755

Account payment amount 0.0078 0.1730 0.0093 0.1595

Out-of-pocket amount 0.0153 0.1853 −0.0001 0.1687

Total surgical level 0.0113 0.1660 0.0043 0.1678

Average surgical level −0.0005 0.1805 0.0044 0.1815

Total healing level 0.0160 0.1972 0.0004 0.1817

Average level of healing 0.0075 0.1992 −0.0251 0.1799

Total incision level 0.0057 0.1872 0.0159 0.1665

Average level of incision 0.0026 0.1887 0.0021 0.1814

Number of surgeries 0.0109 0.1862 0.0012 0.1694

Number of diagnosed conditions 0.0063 0.1876 0.0200, 0.1735

Medical insurance 0.0085 0.2082 −0.0008 0.1747
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(24), which is a type of linear regression known as “minimum

absolute shrinkage and selection operator”. Similarly, the ridge

regression (RR) model, a different kind of predictive regression

model, utilizes coefficients to solve for standard linearity (25). It is

worth noting that L1 regularization, used in Lasso regression,

applies a penalty instead of the L2 regularization penalty employed

in ridge regression. In this algorithm, we mainly use the scikit-

learn package of python for analysis.

2.2.2 Ensemble learning
Ensemble learning combines multiple weakly supervised

models to obtain a more robust and comprehensive supervised
Frontiers in Digital Health 04
model (26). The fundamental concept behind ensemble learning

is that even if a weak classifier produces incorrect predictions,

the collective wisdom of other weak classifiers can correct

those errors (27). In this study, we will utilize the following

three algorithms:

Bagging (BG) is a technique proposed by (28), that involves

creating a new training set by randomly selecting a subset of

training samples from the original set, allowing for replacement

(put-back sampling). Each subset is then used to train a sub-

model. By aggregating the predictions of these sub-models, we

can achieve a more accurate and robust final forecast. AdaBoost

(AB) is one Boosting (29), which is an important integrated
frontiersin.org
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FIGURE 1

Architecture of proposed model.

TABLE 4 XGBoost classifier parameters.

Parameter Default Description
learning_rate 0.3 Shrink the weights on each step

n_estimators 100 Number of trees to fit.

objective binary:
logistic

logistic regression for binary classification

booster gbtree Select the model for each iteration

nthread max Input the system core number

min_child_weight 1 Minimum sum of weights

max_depth 6 Maximum depth of a tree.

gamma 0 The minimum loss reduction needed for
splitting

subsample 1 Control the sample’s proportion

colsample_bytree 1 Column’s fraction of random samples

reg_lambda 1 L2 regularization term on weights

reg_alpha 0 L1 regularization term on weights

Liu et al. 10.3389/fdgth.2024.1506071
learning technique that can enhance a weak learner with only

slightly higher prediction accuracy than random guesses into a

strong learner with high prediction accuracy. A new weak

classifier is added in each iteration until a predefined small

enough error rate is reached or a pre-specified maximum

number of iterations is reached to determine the final

strong classifier.

XGBoost (XGB) is a boosting algorithm based on Friedman’s

efficient and scalable implementation of gradient model boosting

(30). It introduces a regularized model framework to control

overfitting and improve performance. Regularization includes a

cost term that encourages many variable weights to approach

zero, thereby reducing overfitting. Penalty regularization

effectively mitigates overfitting without sacrificing predictive

power (31). An essential aspect of boosting is that each new

model is built upon the errors of the previous iterations, with

each decision tree adjusted based on the model’s residuals. By

leveraging these ensemble learning techniques, we aim to

leverage the collective strength of multiple weak models to create

a more accurate and robust prediction model for LOS prediction.

XGBoost also includes several essential hyperparameters, and

their descriptions can be found in Table 4. The XGBoost objective

function incorporates a regularization concept, which plays a

crucial role in selecting predictive functions and managing the

model’s complexity. By combining the loss function with the

regularization term, we obtain the complete objective function of

XGBoost. This objective function effectively balances the model’s

predictive power, governed by the loss function, and its simplicity,

controlled by the regularization term. We can formally express the
Frontiers in Digital Health 05
objective function of XGBoost as demonstrated in Equation (1):

Obj ¼
Xn
i¼1

L(ŷi, yi)þ
Xk
i¼1

R(fi ) (1)

where L represents the loss function, which assesses the

model’s compatibility with the training data. The predicted label

is denoted by f, while y represents the actual label. Furthermore,

R(f) plays a pivotal role in penalizing the complexity of the

functions within the training tree. In this algorithm, we also use

the scikit-learn package of python for analysis.
frontiersin.org
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2.2.3 Model’s performance analysis
Commonly used regression performance metrics have been

employed to evaluate the prediction results of the model. The

metrics utilized for assessment include mean absolute error

(MAE), root mean square error (RMSE), and mean absolute

percentage error (MAPE) (32). In the context of these metrics,

lower values of MAE and RMSE indicate better performance

with fewer errors. These metrics are defined as in Equations 2–4:

MAE ¼ 1
N

XN
I¼1

jŷi � yij (2)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
I¼1

(ŷi � yi)
2

vuut (3)

MAPE ¼ 1
N

XN
I¼1

(
(ŷi � yi)

yi
, 100) (4)

In the equations provided, yi presents the observed LOS and ŷi
represents the the predicted LOS for a given sample. N stands for

the total number of samples in the dataset. It’s important to note

that all these metrics are oriented negatively, meaning that a

lower value indicates a better model performance.

The MAE and RMSE are used to measure the model’s

average prediction error of remaining useful life. The values of

these two metrics can range from 0 to positive infinity. RMSE

is computed as the square root of the mean squared difference

between the true LOS and the predicted LOS. It is always

nonnegative, and an RMSE of zero suggests a perfect fit to the

data. However, achieving an RMSE of zero is rarely attainable

in practice and can often indicate overfitting of the model to

the training data.

On the other hand, the MAPE is a variant of MAE. It

quantifies the absolute error normalized over the data and is a

widely used metric due to its interpretability. Specifically, a

MAPE of 30% means that the model, on average, approximates

the target value with an accuracy of 70%, calculated by

subtracting 30% from 100%. This provides a straightforward

way to understand the model’s performance in terms of

percentage accuracy.
2.2.4 Variable importance
Traditional methods such as stepwise regression, grey relational

analysis, or correlation analysis can be used to evaluate the

explanatory power of independent variables on the dependent

variable. However, when multiple independent variables exhibit

multicollinearity, these methods may not perform well, resulting

in the retention of certain variables that negatively affect cost

prediction, thereby increasing estimation errors. Using variable

importance methods can more accurately select independent

variables for highly correlated data and small sample sizes. He

et al. (33) proposed that not only reflects the importance of

independent variables to the model but also the extent to which

the dependent variable is explained. The value of the j-th
Frontiers in Digital Health 06
independent variable for the dependent variable can be

expressed V as in Equation (5):

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
Rd (Y ; t1 . . . th)

Xh
i¼1

Rd (Y ; t1)w
2
ij

vuut (5)

Here, k represents the number of independent variables, wij

denotes the weight of the i-th variable in the j-th component, h

indicates the total number of components, Y represents the

dependent variable, Rd (Y;t1,…th) denotes the explanatory power

of t1 to th on Y, and Rd (Y;t1) represents the explanatory power

of ti on Y as shown in Equations (6–7).

Rd (Y ; ti) ¼ r2(Y ; ti) (6)

Rd (Y ; t1 . . . th) ¼
Xh
t¼1

Rd (Y ; ti) (7)

The correlation coefficient between the principal component ti
and the dependent variable Y is denoted as r(Y ; t1).

Since the explanatory power of xj on depends on its

transformation through tj, the stronger the explanatory power of

ti on Y, the stronger the explanatory power of xj on Y will be,

and the larger the value will become. The value represents the

extent to which an independent variable affects the model’s fit

(33). Therefore, if all independent variables have the same

explanatory power for Y, the value should be 1; otherwise, a

lower value indicates weaker explanatory power of that

independent variable on the dependent variable. A value less

than 1 suggests that the variable is less critical and may be

considered for removal. However, it is not recommended to

eliminate all independent variables with values less than 1

automatically; instead, it is advisable to discard the variable with

the smallest value first. If the predictive model has been

optimized, this process can be repeated on more minor variables

until no further optimization occurs. Therefore, the method can

be used to select independent variables.
3 Results

3.1 Prediction results analysis

The model that achieved the lowest values in these metrics was

considered the best prediction model. Table 5 presents Wuhan city

household registration results, utilizing three linear regression

models and three integrated learning models. The integrated

learning models outperformed the linear regression models in

terms of prediction accuracy. Integrated learning incorporates

individual classifiers, which provide reasonable bounds and

reduce the overall error rate, resulting in improved prediction

results. Notably, XGB performed the best among the six

algorithms, consistently achieving lower errors. This model is

capable of parallel computation, further minimizing errors.
frontiersin.org
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TABLE 5 The results from different models for prediction LOS of household registration in Wuhan before and during the COVID-19.

Methods Years Medical insurance Without medical insurance

MAE RMSE MAPE MAE RMSE MAPE
LR 2017 37.15 6.09 0.48 45.96 6.78 0.57

2018 34.06 5.84 0.6 37.83 6.15 0.64

2019 28.28 5.32 0.62 37.63 6.13 0.68

2020 56.21 7.5 0.71 64.05 8 0.75

2021 23.01 4.8 0.74 29.09 5.39 0.81

2022 40.65 6.38 0.84 51.9 7.2 0.91

LA 2017 38.04 6.17 0.48 46.29 6.8 0.57

2018 34.56 5.88 0.61 38.02 6.17 0.65

2019 28.79 5.37 0.65 37.92 6.16 0.7

2020 56.45 7.51 0.72 64.42 8.03 0.76

2021 23.55 4.85 0.77 29.51 5.43 0.82

2022 40.82 6.39 0.84 51.83 7.2 0.9

RR 2017 37.16 6.1 0.48 45.96 6.78 0.57

2018 34.05 5.84 0.6 37.82 6.15 0.64

2019 28.28 5.32 0.62 37.63 6.13 0.68

2020 56.2 7.5 0.71 64.05 8 0.75

2021 23.01 4.8 0.74 29.09 5.39 0.81

2022 40.62 6.37 0.84 51.81 7.2 0.9

AB 2017 31.76 5.64 0.41 37.89 6.16 0.5

2018 25.16 5.02 0.44 32.16 5.67 0.58

2019 21 4.58 0.46 32.65 5.71 0.6

2020 40.28 6.35 0.5 51.53 7.18 0.63

2021 15.23 3.9 0.47 19.69 4.44 0.61

2022 19.71 4.44 0.51 24.57 4.96 0.63

BG 2017 32.25 5.68 0.4 38.5 6.21 0.48

2018 24.92 4.99 0.42 32.28 5.68 0.55

2019 23.02 4.8 0.43 30.92 5.56 0.55

2020 40.23 6.34 0.47 52.49 7.25 0.57

2021 15.32 3.91 0.45 19.91 4.46 0.56

2022 23.73 4.87 0.52 30.31 5.51 0.62

XGB 2017 28.62 5.35 0.34 37.35 6.11 0.4

2018 23.67 4.87 0.36 30.13 5.49 0.45

2019 20.34 4.51 0.37 32.54 5.7 0.45

2020 35.65 5.97 0.41 45.64 6.76 0.49

2021 13.4 3.66 0.38 17.34 4.16 0.46

2022 17.37 4.17 0.43 21.81 4.67 0.51
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Furthermore, when comparing the periods before and during

the COVID-19 pandemic, we observed a noticeable increase in

errors associated with medical insurance. On average, there was a

threefold increase in errors, which can be attributed to many

people staying at home during the pandemic and not utilizing

their medical insurance. Comparing individuals who use medical

insurance with those who do not, we found that the error rate

was lower for those who used medical insurance. This trend is

particularly evident in Figure 2, where the MAE indicator

supports this finding. Moreover, when considering RMSE, it is

obvious that the errors were lower for individuals with medical

insurance than those without. Specifically, the errors were 0.79

for 2020, 0.5 for 2021, and 0.5 for 2022, respectively. These

results suggest that medical insurance is a critical variable in

predicting LOS.

Table 6 presents the results for individuals with non-Wuhan

household registration, and the overall findings are consistent

with those shown in Table 5. The results indicate that the XGB
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model, which represents integrated learning, outperforms the

linear regression model regarding prediction accuracy. The minor

error obtained by XGB further emphasizes the superiority of this

model, with metrics such as MAE (26.33), RMSE (5.13), and

MAPE (0.44). Figure 3 shows a higher overall error for non-

Wuhan domiciles than for Wuhan domiciles. This disparity

arises from the fact that China’s medical insurance

reimbursement system is based on domicile. Non-Wuhan

domiciles incur higher medical expenses when seeking treatment

at Wuhan Central South Hospital, increasing patient costs. It is

worth noting that many countries, including China, have

implemented adequate measures to expand medical coverage.

However, due to regional economic disparities, the percentage of

medical insurance reimbursement varies across different areas

(34). We recommend that China focuses on improving its

medical insurance system in the future.

Additionally, our research reveals that patients’ insurance

spending on medical visits has increased significantly because of
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FIGURE 2

The histogram of the average value of MAE is non-household registration in Wuhan before and during the COVID-19.

TABLE 6 The results from different models for prediction LOS of non-household registration in Wuhan before and during the COVID-19.

Methods Years Medical insurance Without medical insurance

MAE RMSE MAPE MAE RMSE MAPE
LR 2017 48.76 6.98 0.53 58.11 7.62 0.59

2018 46.23 6.8 0.6 57.7 7.6 0.64

2019 55.72 7.46 0.7 62.9 7.93 0.75

2020 70.53 8.4 0.78 83 9.11 0.84

2021 54.05 7.35 0.87 60.71 7.79 0.94

2022 44.07 6.64 0.9 51.58 7.18 0.95

LA 2017 48.19 6.94 0.53 58.4 7.64 0.59

2018 47.03 6.86 0.61 57.82 7.6 0.65

2019 56.16 7.49 0.71 63.51 7.97 0.76

2020 70.88 8.42 0.79 83.26 9.12 0.84

2021 54.58 7.39 0.87 61.29 7.83 0.94

2022 44.92 6.7 0.91 52.07 7.22 0.95

RR 2017 48.68 6.98 0.53 58.06 7.62 0.59

2018 46.25 6.8 0.6 57.69 7.6 0.64

2019 55.72 7.46 0.7 62.9 7.93 0.75

2020 70.52 8.4 0.78 83 9.11 0.84

2021 54.04 7.35 0.87 60.71 7.79 0.94

2022 44.07 6.64 0.9 51.58 7.18 0.95

AB 2017 38.95 6.24 0.41 47.31 6.88 0.5

2018 37.51 6.12 0.45 49.53 7.04 0.55

2019 30 5.48 0.48 42.89 6.55 0.6

2020 43.92 6.63 0.53 59.01 7.68 0.69

2021 33.05 5.75 0.55 37.08 6.09 0.68

2022 24.57 4.96 0.57 31.18 5.58 0.71

BG 2017 41.78 6.46 0.4 52.26 7.23 0.48

2018 38.1 6.17 0.43 49.87 7.06 0.53

2019 30.03 5.48 0.46 41.78 6.46 0.57

2020 41.58 6.45 0.5 55.49 7.45 0.63

2021 30.26 5.5 0.52 37.12 6.09 0.62

2022 24.97 5 0.53 31.23 5.59 0.65

XGB 2017 36.96 6.08 0.36 44.37 6.66 0.41

2018 34.02 5.83 0.38 43.01 6.56 0.46

2019 25.96 5.1 0.41 35.93 5.99 0.49

2020 38.15 6.18 0.44 49.93 7.07 0.54

2021 26.33 5.13 0.44 31.57 5.62 0.53

2022 19.68 4.44 0.45 26.08 5.11 0.55
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FIGURE 3

The histogram of the average value of MAE is non-household registration in Wuhan before and during the COVID-19.
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the significant impact of the COVID-19 pandemic on Wuhan. This

situation has led patients to pay greater attention to their health,

resulting in increased medical insurance expenditures and longer

LOS. Conversely, it is evident that after 2020, the situation in

Wuhan gradually improved as the pandemic subsided, and the

country’s economy also recovered. Consequently, more investment

was made in medical insurance, benefiting more patients.
3.2 Variable importance analysis

Figures 4, 5 display the contribution of each variable to the

model’s gain in patients with Wuhan and non-Wuhan household

registrations. The highest percentage indicates the importance of

the prediction. The most influential features in the XGB model

for LOS prediction are medical insurance and the out-of-pocket

amount, in that order. As Chen et al. (30) mentioned in the

boosting tree model, the gain of each feature is considered, and

the average increase provides the overall vision of the entire model.

In China, patients still prioritize tertiary hospitals because they

believe large comprehensive hospitals offer better medical

resources. This phenomenon makes managing the availability of

hospital beds a challenging task, especially when the actual

hospital service level needs to meet expectations (35). Zhongnan

Hospital of Wuhan University is one of the largest tertiary

hospitals in Wuhan. Many patients have multiple comorbidities,

and the average age is relatively high. These factors make it

difficult to predict the LOS and partially compensate for the

limitations of single-center studies. Furthermore, the imbalance in

the Chinese economy leads to different reimbursement rates for

medical insurance. This article measures the differences in medical

insurance between Wuhan and non-Wuhan household

registrations. It finds that patients without Wuhan household

registration spend more money. This paper highlights the need for

the government to effectively allocate medical insurance resources

and provide adequate care for patients in more remote areas.
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The model identifies medical insurance as the most influential

variable, indicating that the type and extent of coverage

significantly impact LOS. Patients with comprehensive medical

insurance may experience shorter hospital stays due to reduced

financial barriers and quicker access to necessary treatments.

This finding underscores the importance of economic coverage in

healthcare. By prioritizing insurance as a predictor, the model

suggests that patients’ experiences and outcomes are closely tied

to their insurance status, prompting considerations for

policymakers to enhance insurance equity, especially for

economically disadvantaged groups.

The second most important feature is out-of-pocket expenses,

highlighting how financial strain influences patient behavior and

treatment outcomes. Patients facing higher personal costs may

delay care or seek fewer intensive treatments, potentially

extending their LOS. The model’s emphasis on this variable

reveals a critical connection between financial responsibility and

healthcare decisions. This suggests that interventions to reduce

out-of-pocket costs, such as subsidies or better reimbursement

policies, could positively influence patient outcomes by

shortening LOS. The differentiation between Wuhan and non-

Wuhan household registrations points to the geographical and

economic disparities in healthcare access and spending. Patients

without Wuhan household registration incur higher costs,

reflecting the inequalities in medical resource distribution and

insurance coverage across regions. This insight provides a clear

understanding of how socioeconomic factors shape healthcare

experiences. It indicates that patients from non-Wuhan areas face

additional barriers to care, emphasizing the need for targeted

policies to ensure equitable access to healthcare resources.

The discussion of patient preference for tertiary hospitals

highlights a broader cultural and systemic phenomenon in China,

where patients perceive larger hospitals as offering better care.

This preference can lead to higher resource demand in these

institutions, complicating bed management and potentially leading

to increased LOS. The model’s results can inform hospital
frontiersin.org
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FIGURE 4

Importance of each variable for household registration.
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FIGURE 5

Importance of each variable for non-household registration.
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management strategies. Understanding that patients prioritize

comprehensive hospitals can guide administrators in resource

allocation and operational plans to meet demand without

compromising care quality. The analysis thoroughly explains how

these factors affect patient outcomes by highlighting critical

variables such as medical insurance, out-of-pocket expenses, and

geographic disparities. This interpretative clarity is essential for

guiding policymakers and healthcare administrators in making

informed decisions to enhance healthcare access, reduce LOS, and

improve overall patient care quality.
4 Discussion

4.1 Comparative analysis

The main findings of this study emphasize the crucial role that

machine learning plays in predicting and managing patients’ LOS,

especially after incorporating an analysis of variable importance (36).

By using these machine learning models, hospitals can better predict

patient LOS, thereby optimizing resource allocation, improving

healthcare service efficiency, and reducing medical costs. However,

the study also reveals that during this process, the number of

admissions decreased (37). This finding aligns with other studies in

the literature, which indicate a significant increase in hospital

admissions in Wuhan during the COVID-19 pandemic (38).

Notably, the accuracy of predictions made by integrated learning

methods significantly surpasses that of traditional machine learning

methods. Integrated learning enhances the stability and precision of

predictions by combining the strengths of multiple models (39). This

result not only demonstrates the potential of integrated learning in

handling complex medical data but also lays a foundation for its

broader application in the healthcare field in the future.

Furthermore, the predictive results highlight that patients with

Wuhan residency exhibited more significant medical needs and

complexities during the pandemic compared to non-residents (40).

This indicates that Wuhan’s healthcare system faced more

significant challenges during the pandemic, requiring more complex

and intensive medical interventions for residents. Consequently,

hospital admission decisions were more cautious and precise,

consistent with findings from other studies (41). From both

economic and clinical perspectives, the COVID-19 pandemic has

driven the development of new management strategies, particularly

in the management of stroke patients, providing valuable insights

for addressing similar public health crises in the future. Compared

to our previous analysis, which focused solely on pre-pandemic

hospitalizations, the relative increase in weight during the pandemic

has been further confirmed (42). This suggests that during a

pandemic, the burden on the healthcare system and the allocation

of resources become more critical than ever before. For patients, the

results of linear regression analysis indicate a significant reduction

in LOS, leading to increased bed utilization. This finding suggests

that the healthcare system’s response capabilities were significantly

enhanced during the pandemic.

Eftekhar et al. (43) Studies in the U.S. have extensively applied

machine learning models, such as logistic regression and neural
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networks, to predict LOS in diverse healthcare settings. These

studies often emphasize the role of clinical variables, such as

comorbidities, and demographic factors, while highlighting

challenges in data standardization across hospitals. Nowroz et al.

(44) focus on integrating electronic health records with ML

techniques to refine LOS predictions. European studies often

benefit from robust healthcare data systems, enabling

comparative analyses across institutions, but face challenges

related to GDPR compliance in data sharing. Al-Hanawi (45)

usually addresses the unique characteristics of healthcare systems,

such as the influence of seasonal pilgrimages on hospital

admissions and LOS predictions. Compared with other countries,

our research still highlights the background of local research in

China, emphasizing the unique socioeconomic, cultural, and

policy-driven factors that influence the study context. For

instance, the distinct healthcare policies, population density, and

the government’s robust public health interventions during the

COVID-19 pandemic create a research environment that is

notably different from that of Western or other Asian countries.

Furthermore, integrating traditional Chinese medicine with

modern healthcare practices, the rapid digitalization of healthcare

services, and China’s unique economic recovery strategies provide

a rich and distinct backdrop for our analysis. These factors make

our findings particularly relevant to China’s context and offer

insights that could inspire comparative studies in other regions.
4.2 Implication for research

In this study, we harnessed machine learning techniques to

predict patients’ hospitalization durations before and during the

pandemic for household registration in Wuhan and non-

household registration in Wuhan. Beyond accurately forecasting

patients’ LOS, this paper contributes to the body of literature on

sustainable healthcare and clinical decision support systems across

two critical dimensions: theory and methodology. Theoretically, we

introduced an innovative paradigm for predicting hospital LOS

that involves validating patients’ LOS both before and during the

pandemic. In terms of methodology, we strongly emphasized the

significance of the XGB prediction method.

We underscored the importance of our approach by conducting

comparative analyses across different timeframes, shedding light on

the practicality and realism of constructing predictive models.

Additionally, our approach to variable selection underscores the

significance of treating healthcare variables as interrelated records.

Notably, demographic information about patients emerged as one

of the most pivotal predictors of LOS (46). The role of patients’

health insurance status is particularly important as a critical

predictor, emphasizing the need for greater collaboration and

information sharing between governmental bodies and healthcare

institutions. Such partnership can yield more comprehensive

medical histories, facilitating easier tracking and refinement of

predictions. Our research accentuates the pressing need for

hospitals to enhance their predictive capabilities. By doing so, they

can access more data to inform decisions across various facets of

patient healthcare provision. As our discussions have shown, these
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efforts have the potential to bring economic advantages to hospitals

and improvements in health outcomes, enhanced patient service,

and, ultimately, more sustainable operations.
4.3 Implication for practice

Machine learning enables us to leverage patient information

and hospitalization data to effectively determine clinical strategies

at an early stage (47), thereby optimizing LOS. Using machine

learning algorithms, relevant healthcare administrators, medical

professionals, patients, and their families can benefit from

guidance and support (48). This approach facilitates the

provision of routine care and efficient information, including

social medical insurance funding and treatment options. One

significant advantage of accurately predicting LOS during a

pandemic is that it allows hospital administrators to plan the

required beds and staff more effectively. Furthermore, it enables

identifying patients who may require a longer LOS, thus directly

improving the quality of care.

Additionally, it aids in the rational allocation of scarce resources.

To evaluate the performance of our prediction model, we employ

metrics such as MAE, MAPE, and RMSE, among others. These

metrics provide a more direct and convincing assessment for

physicians compared to other methods. Our proposed model can

assist clinicians in addressing various challenges associated with

timely patient discharge following disease outbreaks. While

machine learning has demonstrated remarkable performance in

handling image, text, and speech data (49), it may encounter

overfitting issues when dealing with unstructured data. XGB has

emerged as the most accurate and effective algorithm among the

models we have explored.

Machine learning models are prone to biases based on the

data they are trained on. If the training data predominantly

represents a specific population (e.g., patients from Wuhan), the

model may generalize poorly to other populations, leading to

inequitable treatment recommendations. This raises ethical

concerns about fairness and equity in healthcare, as marginalized

or underrepresented groups may not receive optimal care based on

model predictions, potentially exacerbating existing disparities. If

healthcare providers rely solely on machine learning outputs without

considering clinical judgment, it may lead to suboptimal care or

neglect of individual patient needs. Current policies may need to be

better equipped to handle the complexities and implications of

algorithmic decision-making in clinical settings. The study highlights

disparities in medical insurance and access to healthcare resources,

suggesting that financial inequities influence LOS.
4.4 Limitation and future work

The input features of our model heavily rely on admission

predictions, which can be challenging to generate, especially

when hospitals have patients with diverse diseases. However,

leveraging past information on LOS can help reduce uncertainty.

For instance, patients with different diseases often exhibit distinct
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peak occupancy times before and during the COVID-19

pandemic. Therefore, our model utilizes accurate bed admission

predictions as a crucial step in LOS prediction. Another key

aspect is understanding the causes of regional and sub-regional

heterogeneity in patients. We can enhance our understanding of

predictive models by matching this information with known

variations in factors such as socioeconomic status and

comorbidities. Future research could focus on further exploring

the factors that influence patient prognosis.

In our study, we utilized six machine learning algorithms,

and the results demonstrated that XGB exhibited solid

predictive performance, especially in specific years. Moreover,

the critical variables computed by the algorithms before and

during the COVID-19 pandemic improved the alignment of

the model-predicted bed occupancy with the timeline (50).

However, this assumption may lead to overestimating bed

occupancy in other cases. With the advancement of artificial

intelligence techniques, we can incorporate deep learning

prediction methods in future iterations.

Regarding the data, we acknowledge that we limited ourselves

to collecting data from a single hospital during the COVID-19

pandemic. As time has progressed, there may have been changes

in factors such as discharge policies, clinical care practices, and

admission statuses, which could impact the accuracy of our

predictions. Additionally, the small sample size and inherent

randomness of the results pose challenges in estimating these

temporal changes accurately. However, considering our focus on

LOS for COVID-19 patients, we did not exclude them from our

data. To ensure robustness, future efforts should expand the data

sample to include more hospital data.

We know that the data we are using now needs to be

improved, which may constrain the generalizability and scope

of our findings. However, as our research progresses, we are

committed to incorporating a larger and more diverse dataset to

enhance the robustness and accuracy of our analysis. By

expanding the volume and variety of data, we aim to explore

additional dimensions of the problem, uncover deeper insights,

and validate our conclusions across broader scenarios. This

approach will not only strengthen the reliability of our results

but also pave the way for a more comprehensive understanding

of the subject matter.
5 Conclusion

Machine learning is a valuable tool that can aid hospital

administrators in making early clinical decisions, mitigating

associated risks, and optimizing the allocation of healthcare

resources. This study focuses on predicting LOS in hospitals

before and during the COVID-19 pandemic. By accurately

assessing the patient load, hospitals can improve the

management of patient admissions, leading to reduced

fluctuations in bed occupancy. In this study, we examined six

different algorithmic survival models for predicting LOS. These

models allow for a deeper understanding of patient-specific LOS

distributions. Our findings indicate that the patient’s medical
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insurance status is a critical predictor variable, regardless of

whether the patients are from Wuhan or non-Wuhan regions.

Moreover, the selected models demonstrate variations in

prediction performance. However, we have also observed that

incorporating features derived from text and images in

electronic medical records can enhance LOS prediction.

Exploring this avenue further could be a potential direction for

future research.
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