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Smart medical report: efficient
detection of common and rare
diseases on common blood tests
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Introduction: The integration of AI into healthcare is widely anticipated to
revolutionize medical diagnostics, enabling earlier, more accurate disease
detection and personalized care.
Methods: In this study, we developed and validated an AI-assisted diagnostic
support tool using only routinely ordered and broadly available blood tests to
predict the presence of major chronic and acute diseases as well as rare disorders.
Results: Our model was tested on both retrospective and prospective datasets
comprising over one million patients. We evaluated the diagnostic
performance by (1) implementing ensemble learning (mean ROC-AUC.9293
and mean DOR 63.96); (2) assessing the model’s sensitivity via risk scores to
simulate its screening effectiveness; (3) analyzing the potential for early
disease detection (30–270 days before clinical diagnosis) through creating
historical patient timelines and (4) conducting validation on real-world clinical
data in collaboration with Synlab Hungary, to assess the tool’s performance in
clinical setting.
Discussion: Uniquely, our model not only considers stable blood values but also
tracks changes from baseline across 15 years of patient history. Our AI-driven
automated diagnostic tool can significantly enhance clinical practice by
recognizing patterns in common and rare diseases, including malignancies.
The models’ ability to detect diseases 1–9 months earlier than traditional
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clinical diagnosis could contribute to reduced healthcare costs and improved
patient outcomes. The automated evaluation also reduces evaluation time of
healthcare providers, which accelerates diagnostic processes. By utilizing only
routine blood tests and ensemble methods, the tool demonstrates high efficacy
across independent laboratories and hospitals, making it an exceptionally
valuable screening resource for primary care physicians.

KEYWORDS

blood test analysis, chronic diseases, rare diseases, machine learning, prevention and
control, classification
1 Introduction

Chronic workforce shortages, unequal distribution of

healthcare professionals, and rising labor costs present significant

challenges for most healthcare systems worldwide. In recent

years, technological advancements have aimed to mitigate these

pressures. The broad adoption of digital databases, modern

diagnostic testing and screening, and the expansion of digital

communication channels created the opportunities to redistribute

the workload of skilled medical professionals. This technological

transformation of the available tools of healthcare systems

combined with pandemic-induced restrictions, has led to the

accelerated transition and acceptance of virtual medicine.

Laboratory follow-ups, in particular, offer an ideal environment

for virtual healthcare encounters. Routine tests can be performed

in remote, controlled environments, convenient for the patient,

and communication between healthcare providers (HCPs) and

the patient can be performed via digital platforms.

Despite this, the diagnostic process remains largely reliant on

the clinical judgment of HCPs, based on the diagnostic test

results. While clinical pathology/laboratory medicine physicians

perform and report these tests, the direct communication with

HCPs is typically limited to critical or emergency situations,

leaving most non-emergency cases without in-depth interpretive

support. This creates a gap where a more comprehensive and in-

depth analysis of laboratory results could greatly aid HCPs in

reaching accurate diagnosis.

However, such detailed evaluation support is currently

impractical at the clinical-pathologist level due to the sheer

volume of patients and tests conducted. Therefore, other means

of evaluating laboratory results are sorely needed.

Diagnostic errors and delays, which occur in 15%–20% of all

patient-doctor encounters (1, 2) are significant concerns in

modern medicine, contributing to delayed diagnoses and

misdiagnoses, making them the sixth leading cause of death in

the United States (3). Interestingly, while diagnostic errors

persist, laboratory error rates are exceptionally low, estimated at

just .33% (ranging from .1% to 3.0%) (4); indicating that

laboratory test results are reliable and high-quality source of

information that could be leveraged to improve diagnostic

processes through technology such as artificial intelligence (AI).
; AST, aspartate transaminase
id-stimulating hormone; UD
t.
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Blood tests are among the most common and cost-effective

diagnostic tools in medicine. They provide vital information on a

wide range of physiological conditions, from routine screenings to

complex disease monitoring. However, interpreting the growing

number of specialized tests can be challenging due to human

limitations, particularly when test results are borderline or

inconclusive. Diagnostic errors in medicine are of a complex origin

and are mostly classified as no-fault, system-related, or cognitive

errors. Cognitive errors are primarily due to the false processing of

available information and often account for the most severe

misdiagnoses (2). Moreover, many rare diseases are notoriously

difficult to diagnose, often resulting in delayed recognition. For

instance, a study of late-onset Pompe disease showed that 48% of

patients were incorrectly diagnosed in the past, with an increased

mean time to diagnosis of 10.5 vs. 2.5 years (from symptom onset) (5).

Blood tests were chosen as the focal point for this AI application

due to their ubiquity, low cost, and vital role in diagnostic processes.

Furthermore, their high reliability presents an ideal foundation for

applying machine learning algorithms to enhance diagnostic

accuracy and aim to provide evidence that such tools will

transform clinical diagnostic processes, improving diagnostic

accuracy and enabling earlier diagnosis. Our objectives were to

1. Train and test our ensemble learning model to diagnose rare and

common chronic diseases on widely available, low-cost blood tests.

2. Evaluate the diagnostic performance of the AI and the

possibility for earlier diagnosis.

3. Implement our AI-based diagnostic support tool in practice

and evaluate in-practice performance vs. performance on

retrospective data.
2 Related work

Artificial intelligence (AI) has the potential to revolutionize

the interpretation of blood tests and improve diagnostic

accuracy. Since the emergence of deep learning technologies in

2012, AI has rapidly advanced within healthcare, with

substantial applications in areas such as medical imaging and

image-based diagnosis. More recently, additional field genome

interpretation and biomarker discovery, and patient monitoring

have also gained increased importance (6). However, in
; AUC, area under curve; BUN, blood urea nitrogen; DOR, diagnostic odds ratio;
CC, University of Debrecen Clinical Center; UMAP, Uniform Manifold
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laboratory medicine, as reviewed in Santos-Silva et al. (7), AI

advancements have been focusing on narrow diagnostic areas,

and include only one or few specific laboratory parameters (7).

These AI developments included the evaluation of bacterial

infection on hospital admission (8), predicting bacteremia in

maternity patients (9), classifying outcomes in malaria infection

based on hematological parameters (10), or supporting clinical

pathologists in flow cytometry evaluations (11, 12), and

detection of Alzheimer’s disease based on specific data about

the state of the brain and patient’s metadata (13). The primary

disadvantage of these models is the narrow diagnostic focus,

which makes them less efficient to implement and utilize on

large numbers of patients and conditions. For a detailed

description and comparison of the mentioned literature, see

Table 1. We argue that the main challenges in the field of AI-

based blood test analysis are:

• How to achieve robustness despite limitations in the

available data?

• How to identify a general attribute set that can be used across

different disease classes that are physiologically connected to

the blood work?

• How to define a set of machine learning methods suitable for

preprocessing and inference?

In this paper, we primarily focus on these questions with the

intention to create a solution to evaluate routine blood tests

across a broad spectrum of diseases, thereby decreasing the
TABLE 1 Comparison of different results of AI based disease or infection det

Summary Data
Santos-Silva et al. (7) Review of AI methods for

common blood tests
n/a n

Rawson et al. (8) Detection of bacterial
infections

160k patients, microbiological
and blood tests (CRP, WCC,
ALT, BIL, ALL)

S

Mooney et al. (9) Detection of bacterial
infections during pregnancy
and postpartum

129 patients, full blood count,
prevalence 3%

R
L
R

Morang et al. (10) Detection of different
Malaria

2,207 patients, hematological
parameters (RBC, Platelet,
Lymphocyte)

3
re
(P

Lu et al. (11) Diagnosis of immunological
disorders

379 patients, cytometry (3-tube,
10 color flow panels) with
21 antibodies

L

Alcazer et al. (12) Acute Leukaemia subtype
detection

1,410 diagnosed patients, 19
(mainly) routine parameters are
used

G
R

Loveleen et al. (13) Detection of Alzheimer’s
disease

150 patients (age 60–96y), meta
data (gender, education, mental
state), MRI evaluation

S
D
k
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human professional workload within the interpretation of

screening tests and providing a broadly used method for risk

mitigation of medical decisions and differential diagnosis.
3 Methods

The development leveraged 15 years and 1.3 million complete,

uncleaned, but anonymous patient medical record data (2000–

2015, directly from the HIS - Hospital Information system) in

cooperation with the University of Debrecen Clinical Center

(UDCC), County Hospitals of Szabolcs-Szatmár-Bereg (CHSSB)

and UDCC’s contractual software developer partner (Aesculab

Medical Solutions - Black Horse Group Ltd.). The sites involved

in the research were the following: UDCC, the András Jósa

University Hospital, and additional smaller hospitals in

neighboring cities, five hospital units, and their outpatient centers

(all together referred to as CHSSB). Table 2 shows the diseases,

the number of patients included in the retrospective study, and

the descriptive statistics for each group.

Due to the cardinality of the patients, and the variability of the

contextual factors regarding age, sex, occupation, and availability of

the healthcare system, we developed a framework to preprocess the

data. As a result, we managed to identify disease groups where we

met all the necessary conditions to apply machine learning while

achieving a reliable, reproducible, and scalable system. The

dataset we used contained data from multiple hospitals and
ection.

Methods Evaluation Notes
/a n/a A balanced summary of multiple

studies of AI disease classification
with common blood tests

VM 10-fold CV
AUC: 0.84
Sens.: 0.89
Spec.: 0.63

Strengths: Early detection (72 h)
Limitations: only SVM

egression Trees,
DA, kNN, SVM,
F, CART

70–30 split
Best method CART:
Sens.: 0.28
Spec.: 0.94
PPV: 0.13
NPV: 0.97

Strengths: strong machine
learning methodology
Limitations: small dataset, no
AUC results

layer ANN,
gression models
LS, MARS)

Acc.: 80%/96%
(uncomplicated/severe
Malaria)
AUC: 0.866/0.983
F-score: 0.747/0.947

Strengths: very high
performance
Limitations: no boosted trees,
limited size of patients

R, DeepFlowTM Correlation between manual
analysis and AI assisted
model, r > 0.9

Strengths: high correlation
Limitations: highly specific and
small data

LM, Naive Bayes,
F, XGB

10-fold CV, best method
XGB:
AUC: 0.67–0.97

Strengths: high performance,
wide variety in data due to
different sources, strong methods
Limitations: authors compare
only different subtypes

VM, MLP, LR,
ecision Trees (DT),
NN

AUC: 0.72–0.79 (best SVM)
Acc.: 80–100% (best DT)
Recall: 0.60–0.79 (best DT)

Strengths: strong machine
learning, good performance
Limitations: authors evaluate
their models on the training set,
limited attribute set
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TABLE 2 Descriptive statistics of the ensemble training set.

Patient # (N ) Patient rate (%) Patients’ age
(years)

Male to female ratio Patients 18 + yo.

All patients incl. all healthy individuals 1,163,723 100.00% 38.12 ± 23.37 44.64% 77.37%

Thyroid diseases 73,143 6.29% 49.32 ± 18.37 16.70% 94.85%

Liver diseases 42,404 3.64% 54.23 ± 15.39 60.56% 98.24%

Kidney diseases 54,214 4.66% 61.08 ± 20.62 43.59% 96.17%

Inflammatory bowel diseases 41,954 3.61% 30.91 ± 26.96 45.36% 59.08%

Lipid metabolism disorders 79,589 6.84% 59.16 ± 13.24 45.05% 99.53%

Nutritional anemias and disorders 16,669 1.43% 44.90 ± 26.69 33.87% 79.20%

Anemias other than nutritional 76,790 6.60% 48.11 ± 29.27 44.70% 77.47%

Diabetes mellitus (type 1 and 2) 75,028 6.45% 61.33 ± 15.07 47.14% 97.62%

Systemic autoimmune disorders 18,070 1.55% 53.20 ± 17.13 21.05% 96.22%

Gallbladder and pancreatic disorders 49,357 4.24% 57.50 ± 17.85 36.82% 98.46%

Disorders involving immune mechanism 10,757 0.92% 22.20 ± 23.06 50.20% 44.89%

Cardiovascular diseases 238,062 20.46% 60.58 ± 15.44 45.52% 99.34%

Leukemias and lymphomas 7,167 0.62% 59.14 ± 18.34 49.15% 94.83%

Malignancies of the digestive system 18,007 1.55% 65.90 ± 12.30 55.79% 99.89%

Patients with multiple diseases (comorbidities) were included in each disease category.

Németh et al. 10.3389/fdgth.2024.1505483
laboratories. One of our biggest challenges was to make the data

comparable and to find robust models that are as insensitive to

data from different sources as possible.
3.1 Creating the set of disease cases

Identifying valid disease labels before applying machine

learning methods was essential for the disease classification

software. This labeling procedure had to be primarily machine-

driven due to the vast amount - tens of thousands - of medical

cases. We used a multilevel structure of mainly machine-led and

partly manual labeling validation procedures. The first layer of

disease categorization was the ICD-10 coding within each patient

visit record, which is mandatory in the Health Information

System (HIS) database. Each medical case had at least one

applied disease code in the HIS. Therefore, we labeled each case

with our defined disease group, disease, or sub-disease labels

based on the ICD-10 code(s) of the given case in the HIS.

Records from the early 2000s used the ICD-9 framework, but the

transition to the ICD-10 already occurred at the institutional

level before accessing the datasets; thus, we did not need to

address any transitional issues. Both the primary and additional

diagnoses were labeled. As a subsequent layer, we leveraged

available textual anamnestic data to (1) remove non-similar

miscategorized cases and (2) find additional disease cases that

missed the proper ICD coding. We used the classic data mining

library of regular expressions (regex), the statistical descriptors

term frequency-inverse document frequency (TF-IDF) and bag-

of-words (14), and mathematical methods such as cosine

similarity matrices and a neural network, the bidirectional

encoder representations from transformers (BERT) model (15).

This is a crucial step, as this procedure can alter the number of

labeled disease cases by 10%–50%. Manual case validation was

the last step of the labeling process and is usually considered

verification (for diseases of massive case occurrence); however,

this process is also a significant step in identifying rare diseases
Frontiers in Digital Health 04
(along with similarity calculations due to their heavy

underdiagnosis), see Figure 1. Each medical case/patient can have

multiple conditions and thus may be categorized into multiple

disease categories. Each patient has one binary condition for each

disease group — “yes” or “no”— but a single patient can have

multiple “yes” calls for the different diseases, see Figure 2.
3.2 Machine learning models

The core elements of the system are disease-specific machine

learning models. These models were trained on historical medical

data originating from two major hospitals. The models were

selected by a validation procedure with four distinct steps. The

first objective during selecting the final models was to identify a

subset of the available laboratory tests we aim to include. First,

we defined candidate laboratory tests, then we dismissed disease-

specific tests, e.g., TSH, or expensive tests. Due to statistical

reasons, we also excluded rare laboratory tests. In the second

phase, we selected a subset of diseases as possible candidates for

analysis directly from blood tests. In the third phase, we trained

machine learning models for all candidate diseases using the full

set of laboratory tests. In the last step, we identified a subset of

70 laboratory tests and a set of disease groups where the models

show very high performance with low variance. For a detailed list

of blood tests see Table 3.

The data shown in the article are based on a random 50–50 split

between training and testing for machine learning for software

development. The sampling procedure was always repeated 30

times. The data are presented as the average of the different models

and train-test data. All the raw data were split for training

purposes; the split was made to account for temporal and regional

differences in the dataset. For time-based separation, we usually

used a five- to eight-year split depending on the participating

hospital, partially due to HIS needs (system changes) and to

achieve more homogenous ata. The most common time separations

were 2000–2005, 2000–2008, 2007–2015, 2006–2010, and 2011–
frontiersin.org
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FIGURE 2

Distribution of patients by number of comorbidities. The maximum number of simultaneous diseases was ten (out of the 14 categories). Zero
comorbidity indicates a healthy patient (without suspected or reported diagnosis).

FIGURE 1

Layers of validation procedures starting from mass categorization based on HIS data and timely assignment (bottom of the pyramid) toward
refinement with modern data mining tools and manual validation. BERT, bidirectional encoder representations from transformers; DM, data
mining; MD, medical doctor; ML, machine learning; TF-IDF, term frequency-inverse document frequency.

Németh et al. 10.3389/fdgth.2024.1505483
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TABLE 3 List of blood test results used for the AI.

Blood count WBC, RBC, HGB, HCT, MCV, MCH, MCHC, PLT,
RDW, MPV, PDW, NEU, LYM, MONO, EO, BASO

CH metabolism GLUC, FRUC

Kidney function UREA, CREA, eGFR

Metabolic breakdown
products

UA, tBIL, dBIL

Ions Na, K, Cl, Ca, Mg, P

Protein parameters TP, ALB

Inflammatory markers hsCRP, ESR, MPXI

Iron panel Fe, TRF, FER

Lipid panel CHOL, TG, HDL-C, LDL-C

Enzymes AST, ALT, GGT, ALP, LDH, CK, LIP, AMY

Hormones sTSH

ALB, albumin; ALP, alkaline phosphatase; ALT, alanine transaminase; AMY, amylase; AST,
aspartate aminotransferase; BASO, basophil count; Ca, calcium level; CHOL, cholesterin

level; CK, creatine kinase; Cl, chloride level; CREA, creatinine level; CRP, C-reactive

protein; dBIL, direct bilirubin concentration; eGFR, estimated glomerular filtration rate;

EO, eosinophil count; ESR, erythrocyte sedimentation rate; Fe, iron level; FER, ferritin
level; FRUC, fructosamine level; GGT, gamma-glutamyl transferase level; GLUC, glucose

level; HCT, hematocrit; HDL-C, high-density lipoprotein concentration; HGB, hemoglobin

concentration; K, potassium level; LDH, lactate dehydrogenase level; LDL-C, low-density

lipoprotein concentration; LIP, lipase level; LYM, lymphocyte count; MCH, mean cellular
hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean

corpuscular volume; Mg, magnezium level; MONO, monocyte count; MPXI, mean

peroxidase index; MPV, mean platelet volume; Na, sodium level; NEU, neutrophil count;

P, phosphate level; PDW, platelet distribution width; PLT, platelet count; RBC, red blood
cells count; RDW, red cell distribution width; tBIL, total bilirubin concentration; TG,

triglyceride level; TP, total protein level; TRF, transferrin level; TSH, thyroid stimulating

hormone level; UA, uric acid level; UREA, urea nitrogen level; WBC, whole blood count.

Németh et al. 10.3389/fdgth.2024.1505483
2015. Regional separation was used to separate data from the two

leading county hospitals (UDCC and CHSSB), smaller hospitals

(CHSSB data), and clinical departments. The training was carried

out on the intersections of the separated data, and the resulting

performance metrics are the averages of the best-performing

models with the restriction that the final ensembles must always

contain test- trains on different regional separated data (trained

on one hospital/department and tested on another) with different

laboratories involved. For more details about the preparation

steps for machine learning see Supplementary Appendix A and for

a detailed framework structure see Supplementary Appendix B.

The disease representation learned by the mathematical

models was used to classify patients into one or multiple disease

groups. For an extended description of the learned representation

and the machine-learning models of disease classification, see

Supplementary Appendix C. To visualize the quality of the

learned representation, we showed that the patients with

different diagnoses align in space using the UMAP (16)

framework, see Figure 3A,B.

Our evaluation procedure included various performance

metrics, namely, the receiver operating characteristic (ROC) area

under the curve (AUC) (14, 17), diagnostic odds ratio (DOR)

(18), accuracy, and sensitivity (14); for their definitions and

additional details about the evaluation process, see

Supplementary Appendix D. After identifying the best

hyperparameters per method, we combined the outputs of the

best methods for each classifier with an ensemble layer based on

adaptive boosting. The final model for a single disease was a

linear combination of the six base machine learning methods of

all the disease models, see Figure 4.
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3.3 Validating in real practice

Validating in a different clinical environment has been carried

out with the aid of Synlab Hungary Ltd. and Medisave Ltd. across

Synlab’s selected private health facilities in nationwide Hungary

to test how a routine blood test interpretation and diagnostic

support tool may perform in a real environment involving patients

and laboratories of various regions. The test was performed in 2023

and included anonymous data of 8,278 patients in an outpatient

setting, who agreed to participate at the time of their independent

phlebotomy. Every AI-generated medical report has been

thoroughly evaluated by at least two medical professionals before

the patient received it and in case of any discrepancy between the

AI and MD interpretation, the patient acquired written

information about the discrepancy and recommendation by the

MD. MDs had the opportunity to stop any AI interpretation being

sent out in case they considered the discrepancy significant. MDs

first evaluated all patients’ blood test results for potential diseases,

choosing from three possible states for each disease group: “disease

is present”, “disease not present”, or “cannot be decided”. Then

they reviewed each AI-generated interpretation at both individual

disease levels, with “agree”, “disagree” or “cannot be decided”

options to choose from, and rated the AI’s performance on the

report in general on a 1–5 Likert scale. When the AI interpretation

showed the risk for a present rare disease, all concerned patients

were offered a medical consultation and follow-up testing, out of

which 103 ones were carried out (70 for potential rare disease

patients and 33 other patients). Significance was always calculated

with 95% C. For data protection reasons and retaining anonymity

of data processing the AI considered only the actual blood test

result of the patient for the prediction in this testing setup, even if

previous test results were available. During the training (model

build) of the AI, multiple blood tests related to the same person

were used for consideration.
4 Results

We evaluated the performance of the ensemble system on

retrospective data via three main approaches. Details of all the

approaches can be found in Table 4 and Table 5. The generated

performance statistics describe the models’ effectiveness in making

aggregated predictive decisions tested on retrospective non-training

data. We mapped the continuous zero-one logistic score to a one-

to-five scale risk score. Sensitivity shows a monotonic increase in

this risk score with respect to the probability of the disease being

present. This confirms that our model estimates the risk and that

is coherent with the real risk. Finally, early detection scores assess

the possibility of evaluating the risk of the analyzed disease groups

earlier than the clinically validated diagnosis.
4.1 Detection quality

On a diagnostic time scale, the disease appears at an unknown

time point, while diagnostic tests lead to an established clinical
frontiersin.org
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FIGURE 3

(A and B) The software transforms the blood test results (dots) into a multidimensional feature space to separate major hematological conditions
(leukemia and lymphoma - blue, immune disease - yellow, anemia of non-nutritional origin - green). 2D (A, on the left) and 3D (B, on the right)
visualization via UMAP. The colors indicate the above mentioned medical conditions. We note that we only selected patients with a single
confirmed condition (no comorbidities present) for visualization purposes to clearly show where a patient was assigned.
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FIGURE 4

Overview of the framework’s tree structure. Comparative (competitive) and consensual decisions are being built up for the final diagnosis of the
selected disease group.

TABLE 4 Average model performance statistics of the used ensemble modelsa.

Avg.
AUC

Avg.
DOR

Avg.
acc.

Avg.
sens.

Avg.
specificity

Avg.
FPR@0.95

TPR

Avg. positive
predictive

value
(precision)

Avg. negative
predictive

value

Thyroid diseases 0.9368 73.54 93.03% 79.27% 95.60% 16.88% 0.8664 0.9339

Liver diseases 0.9124 48.32 93.54% 62.59% 98.12% 27.24% 0.7963 0.9593

Kidney diseases 0.9718 112.40 95.01% 80.11% 97.67% 6.43% 0.8582 0.9796

Lipoprotein metabolism disorders 0.9302 49.86 93.82% 80.79% 93.78% 22.62% 0.8584 0.9611

Diabetes mellitus 0.9412 62.13 92.12% 77.46% 96.78% 22.19% 0.8788 0.9405

Non-infected inflammatory bowel diseases 0.8859 72.04 93.48% 42.72% 95,90% 19.26% 0.8075 0.9407

Nutritional anemias 0.9264 64.40 94.66% 68.78% 95.61% 9.15% 0.8476 0.9283

Other anemias 0.9358 50.13 91.95% 79.38% 96.47% 12.59% 0.8460 0.9422

Systemic autoimmune disorders 0.9317 126.39 94.66% 66.38% 98.02% 7.68% 0.8739 0.9498

Gallbladder and pancreatic disorders 0.8847 62.29 93.30% 60.02% 97.88% 32.81% 0.8234 0.9510

Other immune disorders 0.9049 93.89 94.50% 63.65% 99.10% 4.12% 0.8855 0.9540

Cardiovascular diseases 0.9246 34.60 91.13% 79.40% 93.29% 30.57% 0.8420 0.9137

Leukemias and lymphomas 0.9739 376.88 96.83% 81.14% 99.49% 4.82% 0.9516 0.9789

Adenocarcinomas of the digestive sys. 0.9514 251.33 95.48% 62.94% 98.75% 22.42% 0.8222 0.9785

aAverage performance statistics of the models used by the software tested on the control population at UDCC (University of Debrecen Clinical Center) and CHSSB (County Hospitals of

Szabolcs-Szatmár-Bereg). Performance metrics include Receiver Operating Characteristic (ROC) Area Under Curve (AUC)8,10, diagnostic odds ratio (DOR)12, accuracy, and sensitivity8.

Accuracy is defined as the proportion of correctly classified patients in the population. sensitivity rate is the proportion of correctly classified patients with a specific condition in the
population. The ROC curve is defined by the point pairs of true positive rates (sensitivity) and false positive rates (1-specificity, where specificity is the proportion of correctly classified

patients within the population of the patients without the specific condition) at different threshold settings. The AUC can be interpreted as the probability of classifying a patient with a

specific condition with higher confidence than a patient without the condition. The average FPR@ 0.95 TPR is defined as the FPR (false positive rate, 1- Specificity), that is, the

percentage of people who are negative but still classified as positive, at which 95% of positive patients are screened (at which sensitivity is 95%).
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diagnosis only at a later time point. The tool generally considered

only medical cases with a valid diagnosis at the model training

stage (only blood tests related to a given diagnosis, either based

on HIS data or timely, were used for training). However, we

observed that if a broad history of multiple blood tests is

available to a person and used for model training, the

prediction (ROC-AUC) performance increases significantly, on

average +0.0272 ± 0.0213.
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Table 5 shows that the sensitivity increases monotonously and

proportionately with increasing prediction score (projected to one-

to-five), which reinforces the hypothesis that the binary classification

works well; the higher the prediction score is, the greater the actual

chance of disease presence in a single medical case. As the

classification system uses “relevant” medical cases (a set of medical

cases that results in a specific diagnosis) during clinical disease

progression, by using only routine blood tests, see Table 6 for
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TABLE 5 Risk score analysis and early detection scores of the used ensemble modelsa.

Avg. tested recall by risk score Early detection scores

1 2 3 4 5 Avg. LOP
(30+)

Avg. LOP
(90+)

Avg. LOP
(180+)

Avg. LOP
(270+)

Thyroid diseases 3.39% 28.82% 58.13% 69.28% 85.42% −1.15% −3.35% −4.70% −4.66%
Liver diseases 1.37% 8.85% 33.11% 44.68% 74.58% −3.99% −5.45% −6.68% −10.26%
Kidney diseases 2.53% 29.93% 50.92% 76.87% 91.06% no loss no loss no loss −2.84%
Lipoprotein metabolism disorders 4.08% 24.28% 39.97% 57.19% 97.91% −1.63% −4.13% −6.52% −5.19%
Diabetes mellitus 4.51% 24.31% 35.44% 59.01% 94.66% no loss −2.10% −2.17% −1.93%
Non-infected inflammatory bowel diseases 0.35% 4.79% 11.14% 27.35% 36.86% −3.33% −3.30% −4.97% −4.89%
Nutritional anemias 2.24% 8.25% 26.05% 41.30% 65.08% no loss no loss no loss no loss

Other anemias 4.30% 29.22% 46.38% 61.47% 82.20% no loss no loss −3.23% −5.68%
Systemic autoimmune disorders 2.83% 30.04% 49.89% 72.68% 85.11% no loss no loss no loss −4.43%
Gallbladder and pancreatic disorders 1.39% 7.36% 14.41% 39.83% 77.60% −6.04% −6.10% −8.72% −7.61%
Other immune disorders 0.89% 5.29% 8.89% 38.89% 79.31% no loss no loss no loss −6.96%
Cardiovascular diseases 7.68% 26.56% 40.62% 64.08% 85.38% −3.17% −6.57% −6.52% −5.96%
Leukemias and lymphomas 1.63% 22.39% 54.90% 70.57% 87.65% no loss no loss no loss −7.36%
Adenocarcinomas of the digestive sys. 1.05% 12.71% 20.13% 40.61% 54.17% −1.25% −3.10% −5.84% −20.35%

aCalculated average recall for every risk category score calculated by the software (on UDCC and CHSSB control populations). The higher the risk category score (one to five), the higher the
estimated probability of the disease. Meaning of the percentages - given percentage of people receive a proven clinical diagnosis with having a “similar” blood test during the diagnosis period.

Early detection scores are calculated based on a set of patients (control group) before they receive a clinical diagnosis. The models are tested to determine if they can provide the received

diagnosis earlier only using early blood test results. LOP (loss of performance) scores are calculated between 30 and 365 (30+) and 90–365 (90+) days before the received diagnosis, and

average losses are calculated as a ratio of the relevant average ROC-AUC scores vs. the original model performances. “No loss” in cells means that the performance loss of early detection
is less than 0.50%, i.e., no significant loss can be detected. Percentage differences below 1.3 ppts between the early detection scores are not significant.

TABLE 6 Percentage of patients with available blood test results on specific days before the establishment of the diagnosis.

30 + days before 90 + days before 180 + days before 270 + days before
Thyroid diseases 9.3% 7.8% 6.5% 5.4%

Liver diseases 18.2% 14.2% 12.1% 10.6%

Kidney diseases 9.9% 8.1% 6.8% 5.7%

Lipoprotein metabolism disorders 16.9% 14.5% 12.8% 11.4%

Diabetes mellitus 9.7% 7.8% 6.8% 6.0%

Noninfective inflammatory bowel diseases 15.8% 12.3% 10.4% 9.2%

Nutritional anemias 21.3% 16.6% 14.0% 12.1%

Other anemias 32.1% 21.7% 15.5% 11.1%

Systemic autoimmune disorders 5.6% 4.4% 3.2% 2.5%

Gallbladder and pancreatic disorders 19.1% 16.6% 14.8% 13.2%

Other immune disorders 15.5% 11.2% 9.1% 7.8%

Cardiovascular diseases 11.9% 9.9% 8.5% 7.5%

Leukemias and lymphomas 2.1% 1.4% 1.0% 0.6%

Adenocarcinomas of the digestive system 3.2% 2.4% 2.0% 1.4%
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availability of the blood tests in the data, the software can categorize the

clinical manifestations of the examined diseases during this period in

time (we also carried out detailed testing outside of our time window

for early detection). The classification works well for straightforward

diagnoses (e.g., kidney, thyroid, or lipid metabolism disorders),

hematology (traditionally performed mainly from a complete blood

count panel), and complex diseases. We observed a clear

presentation pattern for these pathologies during disease

progression, where prediction is possible without disease-specific

testing. For many disease groups (primarily for more complex ones,

i.e., inflammatory bowel diseases and rare diseases), the classification

performance may also vary due to the higher rate of underdiagnosis

and misdiagnosis. The ensemble method outperformed the

individual methods. For the performance of the individual methods

see Table 7 and Table 8. Additionally, we report the Precision-Recall

curve for all diseases, see Figure 5.
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4.2 Early detection

When evaluating the possibility of early detection, we used

only “non-relevant” medical cases (lab tests), which cannot be

directly associated with the studied disease manifestation.

Approximately 10% of patients had “non-relevant” cases

30–360 days before the studied diagnosis was established.

This number is generally greater for patients with widespread

chronic diseases, complications of other (chronic) diseases, or

diseases for which diagnostic procedures are less

straightforward. This low number could be due to the low

participation rate in screening programs and the fact that our

data source healthcare institutes mainly provide more

advanced care and fewer screening visits. Despite these

limitations, thanks to the large sample size, we still gained

useful insight into early screening analysis.
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TABLE 8 Performance of logistic regression, elastic network, and Bayes network.

Avg. AUC Avg. DOR Avg. acc. Avg. sens.

logR ENR BN logR ENR BN logR ENR BN logR ENR BN
Thyroid diseases 0.8190 0.8781 0.7933 13.59 20.76 17.32 83.4% 80.7% 88.2% 70.5% 87.1% 83.8%

Liver diseases 0.7879 0.8637 0.8108 11.73 17.90 9.48 89.6% 81.7% 84.3% 66.1% 73.7% 75.7%

Kidney diseases 0.8915 0.9487 0.8933 30.40 57.15 22.35 91.7% 89.6% 88.7% 52.5% 85.0% 78.4%

Lipoprotein metabolism disorders 0.8397 0.8966 0.8103 11.23 25.50 13.27 82.5% 82.7% 77.8% 80.9% 88.6% 91.6%

Diabetes mellitus 0.8401 0.9013 0.7923 14.64 30.23 18.30 84.1% 84.2% 77.9% 75.8% 77.8% 86.0%

Non-infected inflammatory bowel diseases 0.7191 0.8117 0.8334 7.68 11.77 19.66 89.5% 78.3% 89.6% 59.3% 70.9% 85.9%

Nutritional anemias 0.8269 0.8681 0.8201 12.84 17.17 10.59 83.9% 80.7% 81.0% 76.5% 76.9% 69.5%

Other anemias 0.8248 0.8716 0.8046 15.21 16.60 9.36 83.7% 80.9% 81.5% 76.6% 78.5% 66.5%

Systemic autoimmune disorders 0.8195 0.7999 0.7606 14.20 8.19 5.37 91.5% 78.2% 89.5% 70.0% 71.0% 79.5%

Gallbladder and pancreatic disorders 0.7325 0.8186 0.7797 8.71 9.99 6.72 89.1% 78.4% 83.3% 64.4% 70.9% 64.3%

Other immune disorders 0.8537 0.8138 0.7519 32.70 19.21 9.60 93.7% 80.2% 84.1% 53.4% 66.8% 64.2%

Cardiovascular diseases 0.8388 0.8623 0.8032 178.5 14.13 11.71 77.1% 80.1% 74.4% 77.6% 83.8% 83.7%

Leukemias and lymphomas 0.8977 0.9336 0.8980 119.49 105.03 110.02 94.5% 90.8% 91.7% 62.1% 79.1% 75.7%

Adenocarcinomas of the digestive sys. 0.7860 0.8777 0.8622 8.66 17.07 18.51 89.5% 85.6% 84.3% 71.0% 79.3% 89.5%

TABLE 7 Performance of XGBoost, neural network and SVM models.

Avg. AUC Avg. DOR Avg. acc. Avg. sens.

XGB NN SVM XGB NN SVM XGB NN SVM XGB NN SVM
Thyroid diseases 0.9179 0.8704 0.8591 37.19 18.21 89.60 88.4% 81.9% 78.3% 74.4% 79.5% 91.1%

Liver diseases 0.9003 0.8442 0.8486 33.74 13.81 29.11 91.7% 82.2% 80.3% 60.7% 74.7% 82.4%

Kidney diseases 0.8605 0.9326 0.9439 24.62 51.44 65.11 91.7% 89.3% 89.1% 55.6% 83.1% 87.0%

Lipoprotein metabolism disorders 0.8711 0.8857 0.8845 30.33 25.56 21.79 88.7% 82.9% 81.0% 55.2% 86.5% 98.9%

Diabetes mellitus 0.9270 0.8899 0.8906 52.04 23.97 31.57 89.7% 83.9% 82.3% 74.3% 78.7% 86.4%

Non-infected inflammatory bowel diseases 0.8458 0.7700 0.7681 28.80 6.810 11.34 90.7% 77.3% 74.3% 52.3% 63.8% 73.9%

Nutritional anemias 0.8983 0.8347 0.8568 27.79 13.64 15.09 87.6% 80.2% 79.2% 71.4% 75.8% 80.9%

Other anemias 0.9077 0.8637 0.8615 29.57 18.19 17.66 87.5% 81.9% 79.3% 73.8% 80.3% 80.6%

Systemic autoimmune disorders 0.6571 0.8129 0.7769 48.19 10.39 6.84 91.7% 80.6% 75.0% 55.3% 69.3% 92.2%

Gallbladder and pancreatic disorders 0.8638 0.8114 0.8091 34.47 9.02 49.07 90.8% 78.6% 75.7% 55.4% 72.5% 75.4%

Other immune disorders 0.8788 0.8052 0.7938 59.20 12.17 46.32 92.4% 81.6% 77.8% 54.6% 69.3% 78.2%

Cardiovascular diseases 0.8688 0.8926 0.8591 24.22 20.99 14.73 83.4% 82.2% 78.2% 81.0% 82.2% 89.0%

Leukemias and lymphomas 0.9507 0.9272 0.9239 279.9 177.39 356.36 96.1% 90.8% 89.4% 73.5% 78.7% 78.7%

Adenocarcinomas of the digestive sys. 0.9083 0.8626 0.8482 49.48 25.56 42.84 91.7% 83.3% 80.3% 61.2% 78.4% 93.9%

Németh et al. 10.3389/fdgth.2024.1505483
4.3 Rare disease detection

Among the seven rare disease categories, all had reasonably

high ROC-AUC values. Diseases with direct or semidirect

markers within routine blood work are of exceptionally high

value (dyslipidaemias, hepatic and metabolic diseases,

hematologic disorders), which is mainly in line with the findings

of common disease groups. Even diseases that require special

blood testing (e.g., Wilson disease, Cushing’s syndrome, or

Addison’s disease) show a clear pathologic pattern on routine

bloodwork that can be used for educated prediction. Table 9

shows the aggregated average performance of the software for

each rare disease.
4.4 Importance of different blood tests

Furthermore, with reverse engineering logic, we determined the

importance of each laboratory parameter in our AI’s diagnosis of

each disease group. The data suggest that our AI considers those
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parameters (laboratory tests) important in confirming or

excluding the diagnoses that are also part of the clinical

diagnostic definitions in the medical literature, and human

medical professionals also consider them in their clinical

reasoning. These findings indicate that the AI has revealed

similar pathophysiological changes in diseases that have been

identified through decades of medical research.

We calculated the importance of individual blood tests in the

decision-making of AI in a multistep process in which models

were tested multiple times with one or more tests missing from

the training. Based on the decrease in the average model

performance (ROC-AUC), we created an importance ranking

for all the blood tests used: tests whose absence created a

greater loss in performance received a higher importance rank.

The rank is an average based on the multiple training runs of

multiple models. The ranking is described with the score of

relative importance, where 100 is the value for the most

important test (calculated separately for each examined disease

group), and the rest of the tests are represented with a value as

a percentage compared to the most important one. High
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FIGURE 5

Precision-recall curve of the ensemble method for different
diseases.

TABLE 9 Estimated performance for the selected rare diseases.

Number of
patients
(N )a

Average
ROC-AUC

score
Familial Chylomicronemia Syndrome (FCS) 21 0.9951 ± 0.0194

Familial Hypercholesterolemia (FH) 459 0.9664 ± 0.0103

Primary Biliary Cholangitis (PBC) 477 0.9449 ± 0.0109

Caroli disease 25 0.8853 ± 0.0971

Gaucher disease 162 0.8836 ± 0.0343

Gilbert’s syndrome and similar conditionsb 2,730 0.9455 ± 0.0079

Bartter syndrome and similar conditions 28 0.8604 ± 0.0841

Hemochromatosis 500 0.9527 ± 0.0134

Wilson’s disease 141 0.8627 ± 0.0267

Coagulation defects (acquired or hereditary)c 2,271 0.9139 ± 0.0065

Cryoglobulinemia 189 0.9333 ± 0.0223

Pompe disease and similar conditions 51 0.8990 ± 0.0578

Still’s disease and similar autoimmune
conditions

117 0.9237 ± 0.0346

Cushing’s syndrome 334 0.8601 ± 0.0235

Addison’s disease 483 0.8893 ± 0.0163

aDue to the high risk of under or misdiagnosis, rare disease cases were re-evaluated both

automatically and manually. As within the scope of the study, there was no possibility to

confirm each clinical diagnosis with patient visits, the number of cases is an estimation.
bGilbert’s syndrome is not a rare condition but is very similar to rare, inherited disorders of
bilirubin metabolism (e.g., Crigler–Najjar syndrome), which makes it useful to manage as

one group.
cHereditary factor VIII, IX, XI deficiencies, hereditary deficiencies of other clotting factors,

hemorrhagic disorders due to circulating anticoagulants, acquired coagulation factor deficiencies.
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relative importance of a test means that in case that test is missing

(e.g., the test was not ordered) then the AI’s performance to

recognize the disease drops significantly.

The average relative importance, Table 10, of the individual

blood test results was measured for all disease groups. The

categories show how important the individual test is, on average,

for deciding the presence or absence of the disease group.
4.5 Prevalence

When comparing the test results on the data of model build

to the validation in a different clinical environment, we see

that the results not only deliver the same performance measures

but sometimes even outperform them, see Table 11. The disease

prevalences were similar to the train population. Anomalies can

be found for lipid disorders, cardiovascular diseases, nutritional

anemias, and immune diseases. Except for non-inflammatory

bowel diseases and cardiovascular diseases, medical doctors fully

agreed with well above 95% of the diagnostic proposals of the

AI on the individual disease groups. The average report score

(on a 1–5 Likert scale) was 4.82. The average scores received by

laboratory and clinical practitioners are 4.86 and 4.76,

respectively, which means a slight, but significant difference in

favor of clinical pathologists when adjudging the performance

of the AI.
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TABLE 10 The average relative importance of individual blood tests in diagnosing each disease group.

Very important Important Not important
Thyroid diseases sTSH Ca, P PDW, MPXI, LIP,

AMY

Liver diseases AST, ALT, GGT PLT, GLUC, TG, tBIL, FER PDW, LDL-C

Kidney diseases eGFR, Mg, UREA, CREA, hsCRP CK, sTSH, LDH FER, TRF, LIP

Lipoprotein metabolism disorders CHOL, TG ALP, GLUC, CREA, MPV, LDL-C Mg, LIP, kBIL

Diabetes mellitus GLUC, FRUC TG, eGFR FER, TRF, kBIL

Noninfective inflammatory bowel
diseases

GLUC, FE, AMY, LIP, tBIL MCH, MCHC, RBC, UREA, ALB, CRP, TRF, GGT, MONO, NEU Cl, HDL-C

Nutritional anemias Fe, HGB, MCV MCH, MCHC, RDW, FER, TRF, CK, RBC, P, tBIL, UREA, Na –

Other anemias HGB, HTC, MCH, MCHC MCV, RDW, Fe, P, NEU Mg, AMY, LIP,
FRUC

Systemic autoimmune disorders MCHC, RDW, tBIL, CK, MONO, sTSH MCH, UA, GLUC, HDL-C, HTC, ALP, CHOL, CREA, CRP,
MPXI, RBC, K, Mg, GPT, ESR

–

Gallbladder and pancreatic
disorders

GGT, LIP, AMY tBIL, eGFR, kBIL, LDH, ALP, ESR, K, CREA, CK, MONO PDW, MPXI, Fe, EO

Disorders involving immune
mechanism

MCH, LIM, CREA, GGT, RBC, WBC,
MCHC, GLUC, CRP

TP, K, Ca, CHOL, MONO, ALT –

Cardiovascular diseases ALP, eGFR, GLUC, CHOL, MPV, RBC, CK UREA, ALB, tBIL, TP, Ca, RDW, MCHC –

Leukemias and lymphomas WBC, LIM, RDW, TP, LDH, ESR MONO, NEU, UA, PLT, BASO FRUC

Adenocarcinomas of the digestive
system

RDW, LIM, CRP, RBC LDH, ALP, GLUC, GGT, MONO, K –

Explanation of the columns: (1) Very important: The relative importance of the given blood test for the examined disease group is greater than 70. (2) Important: The relative importance of the

given blood test for the examined disease group is between 40 and 70. (3) Not important: The relative importance of the given blood test for the examined disease group is lower than 1. All the

other parameters with an average relative importance between 1 and 40 were considered intermediate and are not shown in the table.

TABLE 11 General patient statistics and common disease results of the pilot software testing carried out in synlab blood testing facilities across Hungary
(all regions) in 2023 with 8,278 outpatients. Every AI-interpreted and evaluated report was cross-evaluated by at least one clinical pathologist and one
clinical internist.

Patients
(N )

Total
patients

Patients
(%)

Avg.
age

Std.
age

Patients
(male %)

Avg.
report
scorea

Fully
agree
(%)b

Est.
sens.c

Est.
spec.c

Thyroid diseases 487 8,278 5.88% 48.4 ±14.7 30.6% 4.81 99.6% 0.99 0.99

Liver diseases 407 8,278 4.92% 51.4 ±14.6 46.7% 4.84 98.7% 0.96 0.99

Kidney diseases 316 8,278 3.82% 63.9 ±17.5 52.2% 4.88 99.3% 0.96 0.99

Lipid metabolism disorders 3,135 8,278 37.9% 51.1 ±13.2 50.0% 4.72 99.9% 0.99 1.00

Diabetes mellitus 373 8,278 4.51% 59.1 ±14.5 60.1% 4.79 98.7% 0.98 0.99

Noninfective inflammatory bowel diseases 328 8,278 3.96% 34.6 ±11.8 20.9% 4.85 85.4% 0.97 0.98

Nutritional anemias 521 8,278 6.29% 41.3 ±15.5 19.2% 4.93 98.8% 0.98 1.00

Other anemias 274 8,278 3.31% 50.2 ±18.1 32.1% 4.94 100.0% 0.99 1.00

Systemic autoimmune disorders 17 8,278 0.21% 27.2 ±11.4 21.2% 4.91 100.0% 0.93 0.98

Gallbladder and pancreatic disorders 207 8,278 2.50% 58.0 ±17.0 45.9% 4.65 96.6% 0.96 0.99

Disorders involving immune mechanism 0 8,278 0.00% 0.00 ±0.00 0.00% n.a. n.a. n.a. n.a.

Cardiovascular diseases 747 8,278 9.02% 59.8 ±14.3 48.3% 4.81 94.3% 0.91 0.99

TOTAL 8,278 8,278 100.0% 43.9 ±15.0 43.7% 4.82 83.9% 0.98 0.99

aThe average evaluation of the reports received by the evaluating medical professional that contained the given predicted disease. The minimum score was 1 and the maximal score was 5.
bThe percentage of fully agreed reports is calculated based on the reports that received “agree” evaluation on the given AI predicted disease vs. total reports (other possible evaluations include

“don’t agree” and “not conclusive”’).
cThe sensitivity and specificity are estimated based on a confusion matrix of AI prediction and clinical medical professionals’ patient/report evaluation on the given disease groups.
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Interestingly, though, when assessing the decisions on

individual disease levels, we see that clinical internists agree

significantly more with the AI decisions (98,4% vs. 96,0%). We

also measured the time needed for a detailed medical

evaluation of all medical reports without (not considering

AI-generated reports) and with AI-aided generation reports.

We found that with the help of the AI, the report validation

time decreased significantly by 50.7% (from 645s to 318s

on average).
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When assessing potential performance with rare diseases/

conditions, Table 12, we checked the estimated prevalence of a

certain disease and how it is related to the prevalence in the

literature while also appraising the precision based on the

medical consultations of real patients. FH and Gilbert cases

showed very high estimated precision (95%+), while

hemochromatosis also showed an acceptable hit ratio (76%).

Other diseases had few or no potential patients, so deeper

evaluation was not possible.
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TABLE 12 Rare disease predictions during the pilot testing and patient statistics where the software predicted at least 3 out of 5 risk scores. 103 patients
participated in medical consultations and checkups where screening precision was estimated.

Patients with
estimated risk

(N )

Avg.
age

Std.
age

Patients
(male %)

Est.
preval.

Lit.
preval.

Patients
consulted

(N )a

Est.
precisionb

Familial Hypercholesterolemia (FH) 39 51.5 ±13.5 32.6% 1:212 1:300 25 96%

Primary Biliary Cholangitis (PBC) or
similar conditions

13 46.2 ±17.1 28.4% 1:637 1:8,000 2 50%

Gilbert’s syndrome and similar conditions 313 39.1 ±13.2 66.2% 1:26 1:20 20 100%

Hemochromatosis 58 43.8 ±18.0 55.2% 1:143 1:300 17 76%

Other rare diseases 31 47.7 ±13.3 48.4% 1:267 n.a. 6 n.a.

Other diseases 4,040 48.5 ±15.3 42.9% 1:2 n.a. 33 97%

aThe number of real patient-doctor visits after the initial AI screening.
bEstimated precision based on the medical consultation. Medical doctors checked the selected patients and received detailed anamnesis and family anamnesis. Specific tests (e.g., genetic testing)

were not always available.
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5 Discussion

The importance of laboratory tests in medical diagnostic

processes is undisputed. Recent surveys show that laboratory test

results influence 60%–70% of clinical decisions (19), and are

embedded in at least 80% of guidelines, which are aimed at

establishing a diagnosis or managing a disease (20). The low

error rate of laboratory tests makes them a solid base for

AI-supported medical diagnostic processes. Numerous studies

have shown that laboratory tests can be used to effectively

identify chronic diseases or infections (21–25). Similar to these

results, our findings demonstrate that machine learning can

extend diagnostic capabilities to a broad range of conditions,

including rare diseases.

Our findings indicate that AI-aided screening can detect diseases

up to six to nine months earlier than current clinical diagnoses,

consistent with emerging trends in AI applications for early

diagnosis. However, some state-of-the-art methods focus on

radiological or imaging-based data, whereas our approach leverages

only routine blood test results, which are more readily accessible.

We previously showed that machine learning is ideal for

diagnosing rare dyslipidemias (26, 27), but analyzing a wider set

of rare diseases shows that many rare diseases may also be ideal

candidates for computer-aided screening efforts, even those that

usually require (multiple) specific diagnostic tests for confirming

the diagnosis. Our initial models were promising to further

evaluate the diagnostic opportunities of AI models on laboratory

tests, see Table 11. Both prevalence estimation and the estimated

precision align with the original calculations and expectations.

We tested the tool’s general capability for early screening of

supported diseases by evaluating the blood test results of patients

who presented regularly at hospitals for screening or other

purposes but had not yet received an official diagnosis. As shown

in Table 3 in the Results section, routine test-based AI-aided

diagnostics can boost early screening efforts, save time, and may

improve patient outcomes. The model’s performance statistics

did not, or only slightly, decrease within six months before

medical diagnosis. Our AI-aided blood test interpretation can

diagnose most of the analyzed disease groups at least one-to-six

or even one-to-nine months before the current traditional clinical
Frontiers in Digital Health 13
diagnosis. A significant decrease in early diagnostic performance

was detected only in more acute disease groups, such as liver

disease and some cardiovascular pathologies.

Regional and hospital-specific changes and patient behavior

(e.g., frequent hospital goers) can impact the time point of

possible early diagnosis. The earliest point at which a disease can

be diagnosed is also a question of debate, as most of the time,

exact thresholds of parameters are to be met for definitive

diagnosis. However, we can achieve an earlier diagnosis with

more frequent follow-ups for patients in the “predefinitive

disease stage”. Furthermore, guideline updates may later include

these “predefinitive disease stages” with early treatment options

to improve outcomes. Our data suggest that many common

diseases may be diagnosed 30–90 days before clinical diagnosis

via AI-aided evaluation based on routine phlebotomy results, see

Table 4. Our results also indicate that diagnosis earlier than 180

days will be possible in only a few medical cases without the use

of other specific blood markers. On the national level, significant

savings may come from using AI-aided inexpensive and

nonspecific blood test evaluation for early diagnosis; thus,

involving AI in laboratory result evaluation may facilitate the

much-needed paradigm shift in healthcare toward early

diagnosis, treatment, and prevention.

The list of laboratory tests included in our AI analysis covers

screening laboratory tests that are commonly used worldwide:

basic and complete metabolic panels (ALP, ALT, AST, bilirubin,

BUN, creatinine, sodium, potassium, chloride, albumin, total

protein, glucose, and calcium); complete blood counts with

differential; and screening tests for lipid, iron, hepatic and

thyroid metabolism. These tests are among the most frequently

ordered tests (28), allowing easy translation of our findings to

help efficiently screen a wide range of diseases.

The common laboratory tests used as input are part of routine

phlebotomy due to their importance in diagnosing many acute and

chronic diseases. For example, TSH tests are widely recommended

for first-line thyroid dysfunction screening (29, 30). Moreover,

AST, ALP, GGT, and bilirubin levels alone may indicate the

correct type and etiology of liver disease, allowing for a targeted

investigative approach during clinical examination and further

diagnostic testing (31). Although these tests are part of general
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medical education and common medical knowledge, the clinical

interpretations of these tests are far from trivial (31, 32). In

addition to diagnosing acute liver pathologies, proper evaluation

via liver tests also helps diagnose Wilson’s disease; thus, liver

tests can distinguish rare pathologies from common medical

conditions (31). A comparison of certain blood analysis methods

and other factors may also raise issues that are difficult to handle

and may lead to misinterpretation or misdiagnosis. For example,

sTSH test reference ranges and values are highly sensitive to

measurement technology, circadian patterns, analytical platforms,

and geographic regions (33). Therefore, following AI-aided

analysis, including interpretative comments in laboratory reports,

could decrease error rates, thus improving the quality of

laboratory information and patient safety (34). Although the

major driver for including interpretative comments is new and

complex tests in laboratory reports (35), interpretation of

common laboratory tests is also welcome. In a survey in the UK,

88% of primary care doctors and nurse practitioners found

interpretative comments on the thyroid, gonadotropin, and

glucose tolerance test reports helpful (36). AI-supported decision-

making may also decrease the rate of missed or late diagnoses

originating from HCPs’ incorrect interpretation of even basic

laboratory tests. Self-reported testing practices for anemia include

the overuse of screening laboratory tests, the underuse of

bidirectional endoscopy to evaluate new-onset iron deficiency

anemia, and the misinterpretation of iron studies, which were

also included in our analysis (37). As elaborated in (4, 19–25,

28–32), laboratory testing is a major part of the current SOTA

diagnostics for all major common and rare diseases. AI is

anticipated to enhance diagnostic accuracy while simultaneously

reducing the workload of medical professionals in the

interpretation of laboratory results. Fitting AI to the current

SOTA should be a focal point of further research and

development of tailored protocols for each individual disease.
FIGURE 6

Age histogram of patients in the validation set (A) and in the historical data
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The data validation in a private health clinical environment

confirmed the hypotheses and findings on the retrospective

model-build data (both with common and rare diseases). Patient

age histograms, see Figure 6, and disease prevalences show that

the clinical test population and the training population differ

significantly. However, the ensemble was robust enough to

perform well on the different populations. The differences in

disease prevalences can be explained by considering that the

training data originated from tertiary and quaternary care

hospital data, while the clinical test was carried out in private

outpatient healthcare (less complicated cases and generally

healthier patients). We did not find a satisfactory explanation for

the major discrepancy regarding immune diseases. This has to be

further evaluated in the future from both medical and informatic

aspects. All participating medical doctors regarded very highly

the diagnostic evaluations of the AI. Though the clinical

pathologists gave higher scores to the system, the clinical

internists agreed more with the individual disease decisions. The

differences were significant but not large. This might show

differences in approach toward technology among the medical

professions, but this has to be further evaluated.
5.1 Limitations

Initial results are promising, several limitations must be

considered. First, our study’s dataset, while comprehensive, was

limited to a couple of regional hospital sites. Larger and more

diverse datasets from different regions and healthcare settings

would provide a better understanding of AI’s potential across

various demographics and testing platforms.

It is also important to note that we obtained the lowest amount

of early diagnostic data (i.e., people’s participation in screening

programs) for malignancies, a category where early diagnosis is
used for training the models (B).
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especially critical for effective therapy and where our findings show

the possibility of very effective AI-assisted early screening.

Despite the promising results, discrepancies between AI-aided

blood test interpretations and current medical diagnoses must be

acknowledged. Traditional diagnostic approaches integrate multi-

modal data sources (e.g., medical history, physical examination

and imaging), whereas our model is limited to laboratory data.
6 Conclusion

This study demonstrates the potential of AI-aided decision

support systems in disease classification using only routine blood

tests, offering valuable contributions to early diagnosis and

healthcare efficiency.

Our model is ab ovo different from related works (7–13) as our

model does not focus on a selected disease but is meant to detect a

large number of diseases and conditions. We demonstrated that

robust mathematical models and ensemble methods can yield

reliable disease classifications across diverse patient populations

and laboratory settings. We found that machine learning is

strongly capable of recognizing pathological blood test result

patterns and integrating AI into laboratory analysis could lead to

earlier diagnoses, improved patient outcomes, and a more cost-

efficient healthcare system. The novelty of our approach lies in

(1) using only routine laboratory tests for AI-based early

screening (2) allowing the models to train through the entire

patient history timeline (not just on diagnostic “snapshots”) (3)

focusing on broad disease categorization to provide medical

personnel a generic instead of a specific diagnostic aid, and (4)

combining multiple models to create a robust ensemble which

proven to work across multiple laboratories and regions. This is

a valuable advancement over existing developments, which often

focus on more specific diagnostic tests for disease confirmation.

However, when comparing existing and recent studies in this

field with our method, see Related work, we also see many

similarities. For instance, in (12) the authors also used routine

blood tests for differentiating acute leukemia subtypes (except for

prothrombin time and fibrinogen, which we did not include in

most common ones, the blood tests are similar to our initial

feature set), and found that the best models were gradient

boosting with the similar performance which we reported. We

both found MCV, LDH, and MONO# as features of key

importance. However, we rigorously focused on not using any

other features but blood tests (e.g., age). In (9, 10, 13) the

authors used similar machine learning models for classification

of bacterial infections, Malaria, Alzheimer’s disease and reported

similarly high AUC values however these studies were either

limited in the size of dataset (10, 13) or their attributes included

specific blood tests (9, 10, 13).

Implementation of prescreening with AI can reduce screening

costs and improve patient selection for personalized treatments.

Moreover, the ability to utilize retrospective data enhances the

immediate applicability, offering substantial benefits to both

patients and healthcare providers. At the national or payee level,

healthcare may become more economical by using AI-aided
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inexpensive and nonspecific blood test evaluations for early

diagnosis. Future work should focus on expanding the dataset to

include a broader and more diverse patient population,

integrating multi-modal data sources.
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