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The evolution of artificial intelligence (AI) has revolutionised numerous aspects of
our daily lives, with profound implications across various sectors, including
healthcare. Although the concept of AI in healthcare was introduced in the
early 1970s, the integration of this technology in healthcare is still in the
evolution phase. Despite barriers, the current decade is witnessing an increased
utility of AI into diverse specialities of the medical field to enhance precision
medicine, predict diagnosis, therapeutic results, and prognosis; this includes
respiratory medicine, critical care, and in their allied specialties. AI algorithms
are widely studied in areas like mechanical ventilation, sleep medicine, lung
ultrasound, and pulmonary function diagnostics and the results are found to be
promising. The quality of patient care and safety can be greatly enhanced if
respiratory care professionals fully understand the concept and importance of
AI, as they are already incorporating various aspects of this technology into their
clinical practice. Awareness of AI in the clinical field is essential during this
phase; hence, it is desirable to establish widely accepted standards presented in
a clear and accessible language. This article aims to describe the existing and
prospective role of AI in the field of respiratory care and allied areas.
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Introduction

Artificial intelligence (AI) refers to the simulation of human intelligence, including

critical thinking, perception, reasoning, learning, planning, and predicting, using

systems or machines (1). John McCarthy, an American computer and cognitive

scientist, coined the term “artificial intelligence” in 1956, describing it as “the science

and engineering of making intelligent machines (2).” AI enables technology to perform

tasks intelligently and act rationally like humans without needing explicit programming.

AI is classified into three categories: First, artificial narrow intelligence (narrow or weak

AI) is goal-oriented and designed for specific tasks. While these systems are considered

intelligent, they do not mimic human intelligence. These systems simulate human

behaviour based on predefined parameters, for example, virtual assistants on smartphones

and email spam filters. Second, artificial general intelligence (strong or deep AI) are

machines that mimic human intelligence, potentially solving problems similarly to

humans. Researchers are still working to achieve this level of machine intelligence,

characterised by hypothesis testing, imagination, recognition, and recall. Last, artificial

super intelligence is a hypothetical concept where machines surpass human capabilities

and become self-aware, as depicted in various science fiction narratives (3).
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Learning is the most crucial property of AI, reflecting the

machine’s ability to acquire or memorise knowledge without

explicit programming. Machines learn using various approaches,

such as machine learning (ML) as the broad subset of AI, with

deep learning (DL) and reinforcement learning (RL) as the

subsets of ML, and natural language processing (NLP) as an

application area with the ML (Figure 1) (4). ML enhances

performance over time by obtaining more data, empowering

computer systems to “learn” independently by processing data

through algorithms, detecting patterns, and making accurate

predictions. Some methods include forward reasoning, backward

derivation, regression, clustering, and categorisation (5, 6). DL,

the subset of ML, involves artificial neural networks (ANNs) to

solve problems. ANNs, composed of interconnected “neurons,”

mimic the human brain’s decision-making processes. DL

algorithms process data through ANNs, with each layer

progressively extracting information. Some commonly used DL

networks include convolutional neural networks (CNNs) for

image recognition, recurrent neural networks (RNNs) for

sequential data, autoencoders for unsupervised learning, and

generative adversarial networks for generative tasks (7, 8). RL, a

subset of ML shares the characteristics of both supervised and

unsupervised processes and enables machines to learn through

trial-and-error using their own experiences. In RL, agents receive

rewards or penalties based on outcomes, facilitating learning

(4, 9). NLP refers to the specialized application of ML, focused

on enabling machines to understand and process human
FIGURE 1

An overview of artificial intelligence.
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languages. Many NLP applications, heavily rely on ML

algorithms, making it a significant application area within ML.

In this technological era, clinicians should understand ML and

DL tools that use structured, labelled data to make predictions. For

instance, ML requires human-extracted data to identify an organ as

a human heart, while DL algorithms can determine the most

critical features for distinguishing organs (e.g., shape) (Figure 2).

The application of AI has become increasingly widespread across

industries such as healthcare, automotive, finance, transportation,

and e-commerce (10). Although AI in medicine dates to the

early 1970s (11), its full adoption in healthcare requires

convincing evidence for both healthcare and non-healthcare

communities (12). Despite significant investment, AI’s

implementation in healthcare remains in its early stages (13, 14).

Research suggests that AI, particularly DL, could be a solution

for challenges like burnout, healthcare professional shortages,

cost reduction, and patient safety improvements (15). Notably,

there has been an exponential rise in AI-related scholarly

publications, especially after 2014 (16). AI can analyse patients’

electronic health records, using DL to forecast medical events,

unplanned admissions, complications, and mortality (17).

Additionally, ML-powered AI can examine extensive data from

genomic and clinical trials, aiding drug discovery and predicting

drug efficacy and toxicity (18). The United States Food and Drug

Administration and Conformité Européenne have approved over

300 AI-based software and medical devices, with most focusing

on pulmonary imaging (19).
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FIGURE 2

Machine learning versus deep learning.
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This narrative review describes the current and potential role

of AI in respiratory care and related areas. The literature

search for this article followed a systematic approach to identify

relevant studies, articles, and reviews. Various electronic

databases, such as PubMed, Scopus, Web of Science, and Google

Scholar, were thoroughly searched. Key terms and phrases like

“Artificial Intelligence,” “Respiratory Care,” “Machine Learning,”

“Deep Learning,” “Artificial Intelligence in Respiratory Care,”

“Artificial Intelligence in Critical Care,” “Artificial Intelligence

in Respiratory Medicine,” and “Artificial Intelligence in Neonatology

and Paediatrics” were used to conduct a comprehensive and

focused search.
AI in respiratory care

Existing literature shows that DL and ML have significant

potential in managing respiratory diseases, including image

analysis, decision-making, and prognosis prediction (20, 21).

Notably, AI correctly interprets chest x-rays and diagnoses

pulmonary tuberculosis with 95% sensitivity and 100% specificity

(22). This result signifies that radiographs from remote centres

can be interpreted by a centralised AI monitoring system.

Another crucial area is inhaler devices, which are vital in

managing asthma and chronic obstructive pulmonary disease

(COPD). However, many patients misuse them, reducing

effectiveness, lowering quality of life, and increasing financial

burden (23, 24). The evolution of smart inhalers with built-in

electronic monitoring has been found to improve patient

adherence and monitor inhalation techniques. These devices

connect to a mobile app via Bluetooth, with sensors integrated

into or attached to the inhaler. Smart inhalers offer features such
Frontiers in Digital Health 03
as tracking tools, personalised alerts, and feedback based on

consumption, inhalation technique, peak flow values, and

questionnaire responses. These features provide patients with

immediate feedback, helping them adhere to their treatment plan

and manage their condition better. Literature shows that patients

with COPD and asthma who use smart inhalers experience

improved adherence, fewer exacerbations, and better lung

function (25–27). However, obstacles to implementation include

high costs and the need for appropriate patient introduction and

feedback techniques (24). The scope of AI is still evolving, as these

patients are monitored for years, and exacerbations can be

recognised at several levels, including cellular, organ, and

organismal levels. In a study, Kukreja (28) designed and assessed

algorithms for diagnosing bronchial asthma using a comprehensive

questionnaire, clinical data, and medical records. With reliable data

training, the model with automated associative memory to the

neural network algorithm achieved an accuracy of over 90% with

1% inconclusive results, and the generated mobile applications

achieved 94.2% accuracy. Fernandez-Granero MA et al. (29)

developed a decision tree forest model to predict symptom-based

COPD exacerbations. In this study, patients’ breath sounds were

monitored daily for 6 months using sensor devices via

telemonitoring. The data was analysed with an ML algorithm,

achieving a detection accuracy of 78% and forecasting acute

exacerbation of COPD approximately 4.4 days before it occurred.

AI technology is continually advancing in interventional

pulmonology, helping to recognise endobronchial structures and

distinguish between lung cancer subtypes by analysing

appearance and texture in bronchoscopic images. Cytological

rapid on-site evaluation (ROSE) is used to enhance

bronchoscopic examinations by confirming specimen adequacy

and accuracy in real-time. Ai D et al. (30) constructed a
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DL-CNN model integrated with ROSE to classify cytologic whole-

slide images as malignant or benign. The resultant area under the

curve (AUC) was 0.9846 for ROSE in the validation group, with a

comparable accuracy of 84.6%.

Auscultation, the act of listening to sounds from within body

organs using a stethoscope, is crucial in diagnosing respiratory

disorders. However, auscultation is subjective, depending on

device quality and clinician expertise. Digital or electronic

stethoscopes are revolutionising pulmonology by enhancing

accuracy and reliability in lung auscultation. These stethoscopes

transform sound waves into electronic signals, which can be

amplified for better listening. These signals can also be processed

and converted into digital format for transmission to a computer

or laptop (31). AI has shown the ability to accurately identify

crackles and wheezes in breath sounds captured by various

digital stethoscope devices, although some variations may occur

depending on the specific device used (32). A recent study based

on DL has demonstrated significant potential in analysing lung

sounds, delivering more precise and reliable results compared to

shallow machine learning techniques (33).

Apart from these general areas, AI is found to have vast scope

in the diagnostic and therapeutic areas of respiratory care

(Figure 3). As technology evolves, clinicians must have a broad

understanding of its applications.
AI in mechanical ventilation

Mechanical ventilation is a vital tool used in life-threatening

scenarios, making it essential for clinicians to understand its

clinical and technical details for safer use. Since the pulmonary

mechanics of patients on mechanical ventilation can vary widely,
FIGURE 3

Applications of artificial intelligence in respiratory care.
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AI can be a useful tool to provide personalised care for each

patient and alert clinicians to plan liberation from ventilation.

For example, Peine A et al. (34) developed and evaluated a RL

algorithm, VentAI, to suggest a personalised mechanical

ventilation regime, focusing on finding the optimal settings for

positive end-expiratory pressure, fraction of inspired oxygen, and

ideal body weight-adjusted tidal volume. It was noted that the

performance of VentAI was significantly superior compared to

physicians’ standard clinical care, with an observed outcome of

in-hospital or 90-day mortality. Rehm GB et al. (35) developed

an ML-based classifier to detect abnormal waveform events,

specifically injurious subtypes of patient-ventilator asynchronies

(double trigger asynchrony and breath stacking asynchrony). The

tool accurately detected double trigger asynchrony with a

sensitivity of 96% and specificity of 97.5%, and breath stacking

asynchrony with a sensitivity of 94.4% and specificity of 98.7%,

and other non-patient-ventilator asynchrony events with a

sensitivity of 96.7% and specificity of 98%. Adams JY et al. (36)

developed an open-source data acquisition system for capturing

ventilator waveform data and a modular, multi-algorithm

analytic tool (ventMAP) for automated identification of off-target

ventilation (OTV) in critically ill patients. The research

demonstrated that ventMAP effectively identified harmful effects

of OTV, such as excessive tidal volumes and common patient-

ventilator asynchronies. Correcting artefacts notably enhanced

the specificity of event detection without compromising

sensitivity. Sottile PD et al. (37) assessed several ML techniques,

including random forest, naïve Bayes, and AdaBoost, on data

collected from 62 mechanically ventilated patients who had or

were at risk of acute respiratory distress syndrome (ARDS). They

chose 116 features based on clinical insight and signal

description and were able to determine the presence of

synchronous breathing and three types of patient-ventilator
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asynchrony, including double triggering, flow limited, and

ineffective triggering, with an AUC >0.890. Additionally, Loo NL

et al. (38) trained a CNN with 5,500 abnormal and normal

breathing cycles each, aiming to develop an algorithm to

distinguish normal from abnormal breathing cycles, and reported

a sensitivity of 96.9% and a specificity of 63.7% for their model.

Another study investigated the scope of AI in predicting

prolonged mechanical ventilation and the need for tracheostomy

based on severity-of-illness scores calculated from readily

available patient variables. The authors concluded that ML

predictive models were effective for predicting prolonged

mechanical ventilation and tracheostomy placement, with AUCs

of 0.82 and 0.83, respectively (39).

Giri J et al. (40) introduced a proposal for a low-cost

mechanical ventilator that uses AI technology. The authors

suggested a novel design to solve the shortage of ventilators,

particularly in resource-limited settings. They used MatLab/

Simulink simulation software to develop system-design platforms,

employing Mathematical Models to perform simulations under

various conditions and parameters. The authors ran

computational fluid dynamics simulations to examine the

dynamics of airflow, pressure distribution, and gas exchange

within the device. These simulations aided in ventilator design

and performance optimisation, ensuring the ventilator’s efficiency

in providing suitable breathing assistance. The authors concluded

that the simulation approach using ML was comparable to

conventional ventilators, capable of adapting to the patient’s

breathing patterns, optimising ventilation parameters, and

enhancing patient outcomes. Such technological innovations with

AI support can be crucial in underserved areas or during

emergencies when ventilator demand spikes.

AI has recently demonstrated considerable potential in

enhancing the weaning process by predicting the ideal time for

weaning and identifying patients who would benefit from

weaning. Predicting timely and uneventful liberation from

mechanical ventilation has always been of prime interest to

respiratory therapists and other intensive care unit (ICU)

clinicians. A study that assessed two-stage (time-based) AI

prediction models (the try-weaning stage and weaning stage)

concluded its effectiveness and precision in predicting the

optimal timing to wean intubated patients from the ventilator,

with AUCs ranging from 0.843 to 0.953 for stage-1, and 0.889 to

0.944 for stage-2. This approach could reduce patient discomfort,

improve medical quality, and lower costs, proving beneficial

during pandemics like coronavirus disease 2019 (COVID-19)

(41). Smart weaning, an AI-based weaning technique, uses

algorithms to modify the ventilator’s support according to the

patient’s respiratory needs. Smart weaning has been shown to

enhance patient outcomes, shorten time on mechanical

ventilation, and decrease the risk of complications, such as

ventilator-associated pneumonia (VAP). Several studies have

compared the effectiveness of smart weaning to traditional

methods. One study showed that smart weaning was associated

with a substantially shorter ventilator duration and lower VAP

incidence in a randomised controlled trial of 127 critically ill

patients (42). Another study on 240 patients with respiratory
Frontiers in Digital Health 05
failure found that smart weaning had a higher success rate and

required less time to perform than traditional methods (43). In

the future, it is anticipated that.

AI will be crucial in assisting clinicians in managing ventilated

patients. Dual, hybrid, and intelligent ventilator modes are already

in place to enhance patient outcomes and lower complications by

providing more individualised ventilation using advanced

algorithms and patient monitoring. To offer personalized

ventilation, dual-mode ventilation integrates inbuilt AI

algorithms to combine distinct ventilation techniques, such as

pressure support ventilation and volume-controlled ventilation

into a single, adaptive system (44). Hybrid mode ventilation

enables patients to breathe independently while still receiving

ventilator support when necessary, by combining spontaneous

breathing and required ventilation (45). Intelligent mode

ventilation may reduce the risk of over- or underventilation by

adjusting ventilator settings in real-time based on patient

requirements and respiratory mechanics using advanced

algorithms and monitoring (46). Some literature has reported the

relevance of predictive AI models in various aspects of

mechanical ventilation. For instance, one group created two

models using gradient boosting regression with ICU data,

outperforming existing standards with lower errors. Their

findings suggested that high average heart rate, diagnosis of

respiratory infection, and admissions from locations other than

the operating theatre were associated with longer ventilation

durations. For non-invasive ventilation, higher respiratory rates

and lower Glasgow Coma Scale values were associated with

longer durations (47). To err is human, and such errors should

not occur with patients on life support devices like mechanical

ventilator. Therefore, it is advisable to facilitate and accept

technically approved algorithm-based decisions supported by AI

programmes, rather than relying solely on human judgments,

which are prone to subjective errors.
AI in extracorporeal membrane oxygenation

Extracorporeal membrane oxygenation (ECMO) is

revolutionising critical care as a life-saving therapy for patients

with severe, potentially reversible respiratory or cardiac failure

(48). AI is now emerging as a transformative tool in ECMO

management, aiding in decision-making and prognostication, and

optimising clinical outcomes. One key challenge in ECMO

management is determining the optimal timing for

decannulation. Traditional methods rely heavily on clinical

intuition and weaning trials. The Continuous Evaluation of

Veno-venous ECMO Outcomes (CEVVO) is a DL-based model

designed to predict decannulation success in patients supported

on VV-ECMO (49). This model integrates discrete clinical

information with continuous data from ECMO devices,

employing a long short-term memory-based network to identify

temporal patterns. The model categorises patients into risk

groups, guiding clinicians on when to initiate weaning trials. The

CEVVO model has shown superior performance compared to

contemporary models (logistic regression, dense models, decision
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tree etc) in terms of risk stratification, decannulation outcome and

clinical utility, with significantly higher successful decannulation

rates in low-risk groups. In venoarterial ECMO (VA-ECMO),

predicting patient outcomes is complex due to the high-risk

nature of the therapy. The ECMO Predictive Algorithm (ECMO

PAL) is the first AI-driven survival score developed using a

large international patient cohort (50). Trained on data

from the Extracorporeal Life Support Organisation registry,

ECMO PAL demonstrated high sensitivity and precision in

predicting in-hospital mortality. The model outperformed

existing prognostication scores such as ’Survival After Veno-

arterial ECMO’ (SAVE) and Modified SAVE, highlighting its

potential for broader clinical application. Similarly, another study

developed an ML model to predict survival to discharge for

patients on VA-ECMO, using data from the initial 48 h of

support (51). This model, which outperformed the SAVE score,

identified key variables, such as lactate, age, total bilirubin, and

creatinine as significant predictors of survival, demonstrating the

potential of AI to enhance clinical decision-making. Furthermore,

AI’s role extends beyond ECMO-specific models to broader

applications in managing respiratory conditions that may require

ECMO. A multimodal AI system was developed to predict the

prognosis and required interventions for COVID-19 patients,

incorporating clinical findings, laboratory data, and chest x-ray

features (52). This system achieved higher predictive accuracy

than single-modal models, demonstrating the value of combining

different data types for comprehensive prognostication. Such

approaches can inform decisions about the necessity of ECMO

and other interventions, optimising resource use in critical care

settings. Higher-volume ECMO centers have been associated

with lower mortality rates, emphasising the importance of

experience and expertise in ECMO management (53). AI models

can further enhance outcomes in these settings by providing

data-driven insights to support clinical decisions. Encouraging

the use of AI in high-volume centers could lead to better

standardisation and optimisation of ECMO practices. AI and ML

are increasingly being explored for their potential to enhance

extracorporeal cardiopulmonary resuscitation (ECPR) by

optimising patient selection, predicting outcomes, and improving

clinical decision-making. AI and ML techniques can analyse large

volumes of structured and unstructured data to develop

predictive models that identify which patients are most likely to

benefit from ECPR. These technologies can also explore

treatment heterogeneity, allowing for personalised treatment

strategies based on individual patient characteristics (54). Studies

have demonstrated that precise patient selection is crucial for

achieving better neurological outcomes (55, 56). Additionally, AI

can optimise the logistics of ECPR initiation. AI-driven systems

can streamline preparation and setup processes, thereby reducing

the time to cannulation and initiation of ECMO. Shortened setup

times have been associated with improved rates of return of

spontaneous circulation and overall survival (57). Moreover, AI

can provide real-time monitoring and decision support during

ECPR. By continuously analysing physiological parameters, AI

systems can assist in adjusting ECMO settings and other

supportive measures to optimise patient outcomes. This
Frontiers in Digital Health 06
capability is particularly valuable in managing complex cases

where rapid decision-making is critical (58). Finally, AI-driven

simulation tools can enhance the training of medical personnel

in ECPR procedures. These tools offer realistic scenarios and

feedback, thereby improving the proficiency and readiness of the

ECPR team (57). Despite the promising applications of AI and

ML in ECPR, several challenges need to be addressed to ensure

their effective integration into clinical practice.

High-quality, reliable data are essential for developing accurate

ML models while using these tools in ECMO patients. Rigorous

validation processes are necessary to ensure the reliability of

these models. Furthermore, the potential risks of self-fulfilling

forecast and feedback loops must be managed carefully.
AI in neonatal and paediatric respiratory
care

AI clinical decision-support tools, though advanced, face

implementation challenges due to limited datasets and

imbalanced data, particularly in neonatal medicine. Despite these

challenges, AI applications in neonatal respiratory care include

tools for monitoring vital signs, predicting diseases like

respiratory distress syndrome (RDS) and bronchopulmonary

dysplasia (BPD), assessing risks such as retinopathy of

prematurity, and providing diagnostic and prognostic support for

neurological conditions like sleep stage classification.

RDS, common in premature infants due to pulmonary

surfactant deficiency, affects over 80% of infants born before 29

weeks gestation (59). Infants with severe RDS are at higher risk

of developing BPD (60). Traditional biomarkers like the lecithin/

sphingomyelin ratio have limited bedside utility due to technical

complexity. Ahmed W et al. (61) explored an ML algorithm to

analyse other biomarkers in biological samples, offering a

potential bedside tool for clinicians to guide interventions in

preterm infants with RDS. Research in paediatric respiratory care

includes risk stratification for BPD to identify infants who may

benefit from preventive approaches like corticosteroids or patent

ductus arteriosus management. The BPD Outcome Estimator,

endorsed by the US National Institute of Child Health and

Human Development, is widely used for guiding treatment

decisions and counselling families (62). However, this tool’s

scope was limited to neonates of White, Black, or Hispanic

descent. Patel M et al. (63) extended this ML algorithm to

predict respiratory outcomes in extremely premature infants of

Asian heritage, confirming its feasibility. Another study

developed an ML algorithm to predict survival without BPD

by retrospectively analysing perinatal factors and respiratory

support in preterm infants. The combined model, using all

perinatal features and 14 days of respiratory data, provided the

best prediction with AUCs of 0.921 and 0.899 in the training

and testing datasets, respectively. The model also suggested

that extubating the patient to CPAP is superior to non-

invasive positive pressure ventilation (NIPPV) in BPD-free

survival (64). Apnoea of prematurity (AOP) affects over 50% of

preterm babies and is nearly universal in infants with extremely
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low birth weight, linking it to brain damage and poor

neurodevelopmental outcomes (65). A ML-based AOP detection

model was developed to identify true apnoea in infants by

analysing electrocardiographic data. With a false positive rate

threshold of 0.3 in the mean receiver operating characteristic

curve, the model achieved a high detection accuracy for all

cardiorespiratory events (78.2%), and even higher for events

followed by bradycardia (93.4%) and desaturation (95.2%). The

study concluded that AI-based detection improved apnoea

recognition with fewer false alarms than traditional methods

(66). Correa M et al. studied 60 lung ultrasound (LUS) frames

from 21 children under 5 in Peru to develop a DL algorithm to

classify pneumonia. Using neural networks to analyse 1,450

pneumonia vectors and 1,605 normal lung vectors, the authors

concluded that the DL model had 100% specificity and 91%

sensitivity in diagnosing pneumonia in paediatric inpatients (67).

Additionally, AI is used to analyse respiratory sounds in the

paediatric population. Techniques like ANN and k-nearest

neighbour are successful in recognising and categorising aberrant

respiratory sounds (68). AI-based methods for wheeze

identification in children and cough sound analysis also enhance

diagnostic accuracy (69, 70).

While DL and newer AI algorithms hold significant potential

in paediatric respiratory care, further research is needed to fully

understand their capabilities. Medical professionals must be

trained in AI tool usage, and regulatory procedures must ensure

data security and confidentiality in AI applications.
AI in pulmonary rehabilitation

AI-driven systems in pulmonary rehabilitation utilise wearable

devices and sensors to monitor vital parameters like respiratory

rate, oxygen saturation, and physical activity levels. These data

are crucial for managing conditions such as COPD and

interstitial lung disease. By applying ML algorithms, these

systems can analyse real-time data to detect anomalies and

predict exacerbations, enabling timely interventions and reducing

hospital readmissions (71, 72). One study used ML to predict the

effectiveness of pulmonary rehabilitation in convalescent

COVID-19 patients, based on improved performance in the

6-minute walking test (6MWT). They classified 6MWT

performance into three categories (low, medium, and high) and

employed various algorithms, including random forest, adaptive

boosting, and gradient boosting. Among 189 patients, random

forest achieved the highest accuracy (83.7%), sensitivity (84.0%),

and AUC (94.5%), while adaptive boosting had the highest

specificity (92.7%). The study concluded that ML models are

effective in predicting rehabilitation outcomes for convalescent

COVID-19 patients (73). AI and ML are pivotal in personalising

pulmonary rehabilitation by analysing patient-specific data, such

as genetic information, environmental exposures, and health

records. These algorithms can identify unique disease phenotypes

and predict individual responses to rehabilitation. Personalised

rehabilitation protocols can then be optimised to enhance

effectiveness and minimise adverse effects. For example, ML
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capabilities and progression, ensuring safe and effective

rehabilitation (74, 75). AI-powered virtual assistants and chatbots

are revolutionising patient engagement in pulmonary

rehabilitation. These tools utilise NLP technology to provide

personalised education, medication and exercise reminders, and

real-time symptom management. They also collect patient

feedback to refine care plans and improve compliance (76, 77).

Predictive analytics driven by AI and ML can forecast disease

progression and identify high-risk patients. For instance, RNNs

can analyse home spirometry data to predict lung function

decline, enabling early intervention. This capability is essential

for managing progressive diseases and improving patient

outcomes (78).

In conclusion, AI, ML, and DL play a multifaceted role in

pulmonary rehabilitation, including diagnostics, personalised

treatment, patient engagement, and predictive analytics. These

technologies enhance the accuracy and efficiency of pulmonary

rehabilitation, empowering patients to actively manage their

health and improving clinical outcomes and quality of life for

those with chronic respiratory diseases (79).
AI in lung ultrasound

AI is increasingly used to interpret and analyse CT and x-ray

images, employing supervised learning to identify and track

respiratory illnesses (80). Over the past two decades, LUS has

become a crucial bedside imaging tool in acute care settings (81).

AI-enhanced ultrasound machines can now perform complete

lung scans in minutes (82). However, less experienced staff may

find it challenging to gather footage for analysis, which can limit

the utility of automated or AI-driven techniques. Nevertheless,

with proper use, even novices can diagnose conditions such as

pneumonia, pneumothorax, or effusions using this technology.

Recent advances in ML have enabled automated photo

recognition to match the accuracy of trained physicians (83).

COVID-19 pneumonia often presents with B-line artifacts and

pleural line irregularities on LUS, reflecting interstitial thickening

and inflammation, which worsens as the disease progresses (84).

LUS findings in the anterior lung fields, such as B-lines,

consolidation, and pleural thickening, have been associated with

the need for intubation in COVID-19 patients (85). Arntfield R

et al. (86) developed a DL algorithm trained on a diverse dataset

of LUS videos from patients with COVID-19 pneumonia, non-

COVID ARDS, and hydrostatic pulmonary oedema, achieving

high accuracy in distinguishing these pathologies. Born J et al.

(87) introduced a CNN model (POCOVID-Net) to differentiate

COVID-19 patients from those with bacterial pneumonia or

healthy individuals, achieving an accuracy of 89% and a video

accuracy of 92%. Kuroda Y et al. (88) evaluated an AI-based

pneumonia detection method using a pocket-sized point-of-care

ultrasound (AI-POCUS) device for COVID-19 pneumonia,

achieving high sensitivity (92.3%) and specificity (100%).

Another group developed a DL algorithm to quantify B-lines in

LUS assessments, comparing it with expert human
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1502434
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Karthika et al. 10.3389/fdgth.2024.1502434
interpretations for both binary and severity classifications. The DL

model achieved a sensitivity of 93% and a specificity of 96% for

detecting B-lines compared to human experts (89). In a novel DL

method called automated M-mode classification, the absence of

lung sliding motion was detected with a balanced accuracy of

89%, sensitivity of 82%, and specificity of 92% (90). Another

study developed and validated a binary classifier to distinguish

between the presence and absence of lung sliding on LUS. Using

a labelled dataset of 2,535 clips from 614 patients, the DL binary

classifier achieved a sensitivity of 93.5%, specificity of 87.3%, and

an AUC of 0.973 (91). Researchers also evaluated a DL algorithm

using a spatial transformer network to detect and quantify

pleural effusion based on images, finding improved accuracy

compared to clinical standards (92).

AI integration in LUS holds great potential; however, robust

applications require substantial high-quality data for training.

The limited availability of LUS imaging data compared to

other widely available imaging modalities poses a challenge to

developing these applications.
AI in sleep medicine

AI is increasingly used to evaluate sleep quality, analysing heart

rate, breathing rate, and body movements to provide clinicians with

a comprehensive understanding of a patient’s sleep, thereby aiding

informed treatment decisions (93). AI has the potential to

revolutionise sleep medicine by enabling early detection,

personalised treatment, and better management of sleep

disorders. In conditions like obstructive sleep apnoea (OSA), AI

is expanding beyond the traditional apnoea-hypopnoea index for

diagnosis (94). While OSA is usually diagnosed using

polysomnography—which requires an overnight stay in a sleep

lab or home testing—researchers are developing more accessible

and affordable methods using AI. For example, smartwatches can

monitor blood oxygen levels, providing a tool for early OSA

detection (95, 96). AI-based predictive models have also shown

promise in identifying individuals at risk of developing OSA

using predictors like age, sex, and body mass index (97, 98).

Furthermore, AI aids in diagnosing and subtyping narcolepsy by

analysing clinical and polysomnographic data (99, 100). Li C

et al. (101) proposed a DL model (EEGSNet) using multi-layer

CNNs to extract features from EEG and bi-directional long

short-term memory networks to classify sleep stages,

outperforming other technologies, particularly for the challenging

N1 stage. DL algorithms improve the precision and reliability of

sleep studies, leading to more accurate diagnosis and treatment

of sleep disorders. AI can also track sleep-related movement

disorders such as REM sleep behaviour disorder, restless legs

syndrome, and periodic limb movement disorder. Diagnosing

narcolepsy is difficult due to the variability of multiple sleep

latency tests, but an AI algorithm has shown promise in

diagnosing type 1 narcolepsy in a single night with reasonable

accuracy (102). Furthermore, Brennan HL and Kirby SD (103).

in their review concluded with the utility of AI to individualise

treatment regimens for sleep disorders. They underline the
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potential of AI to improve the treatment of OSA through

predicting outcomes, and evaluating the treatment based on the

disease process and physiology.

AI algorithms can identify patterns in patient data, such as

sleep study results, medical history, and lifestyle factors, that may

not be evident to physicians. However, clinicians should be aware

of potential biases in these applications and the need for

human supervision when designing sleep-related diagnostic and

therapeutic plans.
AI in pulmonary function diagnostics

AI has the potential to revolutionise pulmonary function

evaluation, enhancing diagnostic precision by improving the

interpretation of pulmonary function tests (PFTs) and

eliminating inconsistencies in subjective test interpretations

among pulmonologists (104). AI-based software has been

successfully implemented for the computerised interpretation of

PFTs, aiding in diagnosing lung diseases (105). Spirometry

remains the most reliable method for detecting obstructive

airway diseases, yet its underuse and misinterpretation have led

to underdiagnosis (106). The rapid advancement of AI in

medicine has improved PFT interpretations. A decision tree

model that incorporates lung function and clinical variables has

shown improved accuracy in detecting common lung diseases,

such as COPD, asthma, interstitial lung disease, and

neuromuscular disorders, compared to using PFT data

alone (107). The study, which included 968 new patients in a

pulmonary practice, demonstrated that the American Thoracic

Society (ATS) and European Respiratory Society (ERS) algorithm

correctly diagnosed 38% of patients, with COPD having the

highest positive predictive value (74%). The decision tree

algorithm doubled overall accuracy to 68% and improved

positive predictive values for COPD (83%), asthma (66%),

interstitial lung disease (52%), and neuromuscular disorders

(100%). Another study using a neuro-fuzzy system with

spirometric parameters and clinical symptoms achieved over 99%

accuracy in classifying asthma and COPD (108). The neuro-fuzzy

system integrates neurology-based learning with fuzzy logic’s

interpretability (e.g., If-Then). Topalovic M et al. (104) compared

pulmonologists with AI software in identifying PFT patterns,

finding that pulmonologists matched guidelines in about 75% of

cases, with a correct diagnosis in 44.6 ± 8.7% of cases. In

contrast, the AI software matched PFT pattern interpretations in

100% of cases, with an accurate diagnosis in 82%. Andrade D

et al. (109) studied a diagnostic model using ML and the forced

oscillation technique to detect respiratory changes in systemic

sclerosis patients, concluding that ML algorithms combined with

oscillation principles are effective in diagnosing respiratory

changes. Another study by Amaral JL et al. (110) classified the

severity of airway involvement in COPD using ML algorithms

and forced oscillation measures, yielding promising results for

precise diagnosis and monitoring. These studies underscore the

potential of AI in improving the accuracy and efficiency of PFT

interpretation and diagnosis.
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AI in respiratory care education

AI can help reduce the workload for students and teachers while

offering more engaging learning opportunities (111). It is expected

to tailor learning experiences to individual students and incorporate

active learning into education (112). AI can facilitate student

learning through direct teaching (acting like a teacher), support

teaching (collaborating with students), and empowering the

learner (enabling group problem-solving with teacher feedback)

(113–115). AI algorithms can analyse individual learning styles,

progress, and strengths or weaknesses, creating personalised

learning paths to optimise the educational experience. Liventsev V

et al. (116) highlighted the importance of AI in healthcare

education, particularly in patient simulators. Tools like “Auto-

ALS” and GraphSim align with respiratory care curriculum

objectives, using reinforcement learning to enhance training (116).

AI virtual environments, such as SimX and Body Interact, are

crucial in healthcare education, offering immersive, interactive

scenarios for students to practise and refine their skills. These

platforms provide dynamic, realistic patient interactions, essential

for developing critical thinking and decision-making skills, which

are vital in respiratory care. Through simulations, students

encounter various clinical scenarios without risking real patients,

enhancing clinical competence and confidence in handling real-

life challenges (117). Adaptive e-learning systems like Firecracker,

Smart Sparrow, and Coursera have significantly contributed to

medical education by tailoring learning experiences to each

student’s needs. These platforms adjust content and pace based

on individual performance, presenting more challenging cases

to those excelling and providing extra resources to those

struggling. This personalised approach is crucial in mastering the

vast subject matter in medical studies. By continuously analysing

performance, these systems optimise the learning journey in real-

time, preventing students from feeling overwhelmed or under-

challenged (118). In health professions education, AI-driven

assessments have transformed student performance evaluations.

Platforms such as ExamSoft and Gradescope offer precise,

efficient evaluation methods, providing thorough and unbiased

assessments. AI swiftly analyses outcomes objectively, delivering

timely, precise feedback essential for students to identify strengths

and address knowledge gaps, enhancing their learning journey

(119). These technologies adapt simulation settings based on

individual skill levels (120), ensuring a targeted, efficient

educational journey and better translation of theoretical concepts

into clinical proficiency (119). Health professions education must

adapt to evolving technologies and their ethical implications. As

AI brings significant changes, respiratory care professionals in

academic and clinical contexts should receive proper training to

employ these tools effectively (119, 121).
Discussion

The application of AI in respiratory care is promising, yet there

remain areas that require further research and refinement to fully

understand its potential. Though the short-term success of the role of
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AI in respiratory care tools, such as improved diagnostic accuracy

and personalized ventilator management, has been well-documented,

there remains a lack of evidence on its utility in the long-term

outcomes of respiratory patients. Hence, it is recommended to have

predictive AI models capable of analyzing patients’ data to assist

clinicians with optimal decision-making and to identify the patients

at a higher risk of complications, morbidity, or mortality (122).

The evolution of wearable devices such as watches, patches, or

devices, digital stethoscopes, smart inhalers, portable smart

spirometers, and telemedicine has significantly contributed to the

advancement of respiratory care, enhancing both diagnostics and

therapeutics. Wearables with AI-integrated sensors and

processors facilitate wireless data transmission to clinicians,

allowing remote monitoring and assessment of the physical,

physiological, and biochemical parameters of patients more

accessible (123). While portable smart spirometers facilitate easy,

accurate pulmonary function assessment in remote settings,

ensuring that patients with COPD and asthma regularly

monitored, digital stethoscopes and smart inhalers have

improved diagnostic precision and medication adherence,

respectively, by integrating AI models with monitoring and

feedback systems into conventional tools. These technologies,

combined with telemedicine, enable remote consultations, data

sharing, and patient education, thereby facilitating remote access

to efficient respiratory care (24).

Literature reflects more on the development, validation, and

evaluation of AI tools in healthcare; however, there is an observed

research gap between the development of robust algorithms and

the implementation of AI systems in healthcare practice (124).

Although literature reflects the promising potential of AI in

enhancing healthcare services, including respiratory care, there

remain several challenges that delay its implementation. One

of the key challenges includes data protection, privacy, and

security concerns, as the development of algorithms based

on synthetic data requires sensitive patient information that

demands protection against data leaks or misuse. Additionally, the

lack of standardized data, interoperability, and variability among

healthcare systems make it difficult for the seamless integration of

AI algorithms. Another key area of implementation is the

acceptance of this technology by healthcare leaders, healthcare

professionals, and patients (125). Resistance to changes in the

existing system by healthcare leaders and fear of job loss

by healthcare professionals are some of the factors that contribute

to the slow and variable uptake of this technology in the

healthcare system.

To facilitate acceptance from end-users like healthcare

professionals, specialty-level benefits of AI should be explained,

such as a reduction in fatigue-related human errors, reduced cost,

assistance in labour-intensive tasks, less need for invasive

procedures, and lowered mortality rates. Moreover, healthcare

professionals should be upgraded in their technical and

technological skills related to AI for swift adoption. However,

besides acquiring AI-related essential skills, it is important that

healthcare professionals understand and address the associated

queries or ethical and legal issues. A key question, “How can we

ensure that AI technology is safe for patients?” is significant
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because end-users or healthcare professionals may not always be able

to provide an explanation due to their lack of expertise in AI-related

technological areas (126). Ethical considerations related to the

transparency of decision-making processes and high costs

associated with the development and deployment of the tools,

insufficient infrastructure, and a shortage of skilled personnel

further complicate the adoption of this technology.

Therefore, it is most important that key stakeholders work to

address the lack of clear regulatory frameworks and guidelines on

integrating AI technology into healthcare. Clarifying these

uncertainties will facilitate its acceptance and implementation.

Furthermore, the integration of AI technologies into healthcare

practices not only enhances patient care but also aligns with the

United Nations Sustainable Development Goals (SDGs), highlighting

its wider impact on global health and development. For example, the

integration of AI in respiratory care aligns with SDG 3 (Good Health

and Well-being) by improving patient outcomes through early

disease detection and personalized care that includes various

technologies in acute care and rehabilitation. The utility of AI-based

simulation tools in respiratory care education supports SDG 4

(Quality Education) by preparing competent healthcare graduates.

Additionally, the advancement of AI technologies in respiratory care

promotes innovation in healthcare infrastructure, aligning with SDG

9 (Industry, Innovation, and Infrastructure) by promoting sustainable

technological progress in clinical practices. Lastly, and most

importantly, collaborative efforts of respiratory care professionals,

medical leadership, AI specialists, and stakeholders in AI research

and application support SDG 17 (Partnerships for the Goals) to

exchange knowledge and resources, facilitating better patient care,

sustainability objectives and improving global health outcomes (127).
Summary

AI is significantly impacting respiratory care, advancing areas

such as mechanical ventilation pulmonary diagnostics, sleep

medicine, neonatal and paediatric respiratory care, LUS, pulmonary
TABLE 1 AI tools, advantages, and limitations/challenges across various dom

Area of
Application

AI tools/models

Mechanical ventilation VentAI, ML-based classifiers Personalised car
reduced VAP ris

Extracorporeal membrane
oxygenation

CEVVO, ECMO PAL, ML models for
survival prediction

Enhanced decisi
effective ECPR l

Neonatal & pediatric
respiratory care

ML for RDS, BPD Outcome Estimator,
DL models for pneumonia

Improved diseas
reduced false ala

Pulmonary rehabilitation Wearable devices, ML algorithms Personalised reh
predictive analyt

Lung ultrasound DL algorithms for pneumonia Enhanced diagn

Sleep medicine DL models like EEGSNet Comprehensive
sleep disorders

Pulmonary function
diagnostics

Decision tree models, neuro-fuzzy
systems

Improved accura
interpretation in

Respiratory care education AI simulators (SimX, Body Interact),
adaptive e-learning systems

Personalised lear
efficient evaluati
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rehabilitation, and education. AI technologies have transformed

patient management by optimising ventilator settings and reducing

ventilator-induced lung injuries. AI algorithms analyse real-time

data—such as respiratory rate, tidal volume, and airway pressure—

providing personalised and adaptive ventilator settings tailored to

individual patient needs. Closed-loop systems further enhance

outcomes by automatically adjusting ventilator parameters based on

continuous feedback, improving patient outcomes and reducing

healthcare provider workload. In pulmonary diagnostics, AI enables

precise early detection of diseases like COPD and asthma through

spirometry data analysis. AI tools interpret complex respiratory

patterns, offering diagnostic insights that surpass traditional

methods, facilitating timely and accurate clinical decisions. In sleep

medicine, AI improves the diagnosis and treatment of disorders like

obstructive sleep apnoea by analysing polysomnography data to

identify abnormalities and predict patient responses to treatments,

enhancing diagnostic accuracy and personalising treatment plans.

Neonatal and paediatric respiratory care benefit from AI in

monitoring and managing respiratory distress in preterm infants.

AI systems predict complications and guide interventions, reducing

chronic lung disease and improving survival rates. In LUS, AI

enhances the accuracy and efficiency of diagnosing conditions such

as pneumothorax, pleural effusion, and interstitial lung disease.

Deep learning algorithms quickly interpret ultrasound images,

offering real-time diagnostic support to clinicians and speeding up

pulmonary assessments. Pulmonary rehabilitation has been

revolutionised by AI through personalised exercise regimens and

progress monitoring. AI analyses data from wearable devices to

customise rehabilitation programmes, optimising outcomes and

increasing patient engagement. AI has also advanced respiratory

care education by providing simulation platforms for training

healthcare providers. These platforms create realistic clinical

scenarios, enhancing skills in a controlled environment and

ultimately improving clinical competence and patient care

standards. A tabular summary on the application, models,

advantages and challenges limitations of AI in the field of

respiratory care is highlighted in Table 1.
ains related to respiratory care.

Advantages Limitations/challenges

e, improved weaning prediction,
k, rapid decision-making

High-quality data requirement, complexity
in diverse patient response

on-making, real-time monitoring,
ogistics

Data reliability, risks of feedback loops,
high-quality data needed

e prediction, accurate diagnosis,
rms

Limited datasets, imbalanced data, data
confidentiality concerns

ab, reduced readmission rates,
ics

Data security, need for personalised exercise
regimen training

ostic accuracy, faster lung assessments Limited imaging data, need for skilled
personnel for data collection

sleep evaluation, early detection of Potential biases, need for human supervision
in diagnosis

cy in disease identification, reduced
consistencies

High-quality data requirement, variability in
real-world application

ning, critical thinking enhancement,
on

Ethical considerations, need for faculty and
student training
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AI has the potential for improving patient outcomes,

enhancing safety, and raising care quality in respiratory

diagnostics and therapeutics. However, successful integration of

AI into clinical practice depends on healthcare professionals’

acceptance and understanding of the technology. Establishing

clear, widely agreed-upon standards communicated in accessible

language is crucial. This approach will facilitate AI adoption in

respiratory care, ensuring its benefits are realised while

maintaining high standards of patient-centred, evidence-based

practice, and contributing to improved clinical outcomes.
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