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A systematic survey on the
application of federated learning
in mental state detection and
human activity recognition
Albin Grataloup* and Mascha Kurpicz-Briki

Bern University of Applied Sciences, Technik und Informatik, Biel, Switzerland
This systematic review investigates the application of federated learning in
mental health and human activity recognition. A comprehensive search was
conducted to identify studies utilizing federated learning for these domains.
The included studies were evaluated based on publication year, task, dataset
characteristics, federated learning algorithms, and personalization methods.
The aim is to provide an overview of the current state-of-the-art, identify
research gaps, and inform future research directions in this emerging field.
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1 Introduction

According to the World Health Report 2022 (1), 13% of the global population is living

with mental disorders. Furthermore, a significant portion of the population (41% in 2023)

experiences elevated levels of stress.1 These statistics highlight the urgent need for improved

mental healthcare and tools that can enhance both mental well-being and overall quality of

life. To address this need, new digital tools are being developed, particularly those leveraging

machine learning (2), which show promise as personal diagnostic aids. However, machine

learning algorithms, especially modern deep neural networks, are highly data-intensive,

requiring personal data from numerous participants. This raises significant concerns

about the privacy and security of individuals’ data.2

While federated learning (FL) offers promising solutions for privacy-preserving

machine learning, particularly in sensitive areas like mental health, it also raises critical

ethical concerns. Privacy remains one of the most pressing issues, as although FL allows

for decentralized data processing, it is still vulnerable to risks such as data leakage or

inference attacks. This is especially crucial in mental health contexts, where protecting

patient confidentiality is of utmost importance.

To mitigate these privacy concerns, there is a need to move away from traditional

centralized learning approaches, where all data is collected in one location. Instead,

privacy-preserving collaborative learning methods should be adopted, where data

ownership remains with each participant. Federated Learning (FL) is an emerging
1https://winmr.com/stress-levels-rise-around-the-world/
2https://www.ama-assn.org/system/files/ama-patient-data-privacy-survey-results.pdf
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FIGURE 1

The number of publications for each year since the introduction of
federated learning in 2017.
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paradigm in machine learning that enables the training of algorithms

across multiple decentralized devices or servers holding local data,

without ever exchanging the data itself, thus offering a privacy-

preserving collaborative learning framework.

Fairness is another critical issue. Mental health datasets are

often biased, either due to under-representation of certain

demographics or inherent biases in data collection methods. If

unaddressed, these biases may propagate through FL models,

leading to inequitable outcomes that disadvantage certain groups.

Ensuring that FL frameworks account for fairness throughout the

entire process’ from data collection to model deployment’ is

essential for ethical applications in mental health.

Moreover, the deployment of FL systems in mental health

research raises broader ethical questions about accountability and

informed consent. Patients and users must be fully informed

about how their data is being used, even in decentralized

settings. Researchers and developers must also be responsible for

addressing potential biases or inaccuracies in model predictions.

As such, ethical frameworks specifically tailored to FL in mental

health should be developed, drawing from interdisciplinary

research on ethics, technology, and mental health (3–5).

Federated learning (FL) has the potential to significantly

impact real-world applications, particularly in mental health care,

where privacy and data security are paramount. As digital mental

health platforms such as telemedicine and remote monitoring

apps become more widespread, FL provides a way to enhance

these systems while ensuring patient privacy. For example, in

telemedicine, FL can be used to collaboratively train machine

learning models on decentralized data from various healthcare

providers, improving diagnosis and treatment recommendations

without compromising patient confidentiality. Similarly, in

remote mental health monitoring apps, FL allows personalized

models to be trained directly on a user’s smartphone or wearable

device, ensuring that sensitive data never leaves the device. These

applications not only safeguard privacy but also enable more

accurate and adaptive mental health care solutions tailored to the

individual needs of patients.

Despite its potential, the application of federated learning in

mental health and human activity recognition is still in its early

stages, as indicated by the relatively limited number of

publications (see Figure 1). A comprehensive understanding of

the current state, challenges, and future prospects of federated

learning in these domains is therefore essential. This systematic

review aims to synthesize the existing literature on the

application of federated learning in mental state detection and

human activity recognition, critically evaluate the methodological

quality of the studies, and identify gaps and potential directions

for future research.

Our review is guided by specific research questions, structured

around four key perspectives, which form the foundation of

our investigation:

1. Demographic and metadata:
Frontie
(a) When was the paper published?
2. Input questions: Focus on the topic at hand and input data:
(a) What is the task at hand?
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(b) What dataset was used?

(c) Which features were considered?
3. Methodological questions: Model architecture and federated

learning:
(a) Which federated algorithm was considered?

(b) How are issues of statistical heterogeneity and

personalization addressed?
4. Evaluation questions: The results found in the paper:
(a) How did the model and FL framework perform relative

to centralized and local learning?
2 Methods

2.1 Study design

To answer our research questions, we conducted a structured

literature review (SLR) in accordance with the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA)

guidelines (6) (see Figures 2, 3). This approach involves standardized

methods for literature search strategies, as well as clearly defined

criteria for the inclusion and exclusion of studies in the final review.
2.2 Literature search strategy

We have not set a limited period for our searches since federated

learning first appeared in 2017 with the Google research (7). In

practice, we will see that the intersection of federated learning and

our theme of interest only goes back to 2021 according to

Figure 1, making it a rather recent topic. We then conducted a

study on privacy-preserving methods for mental health detection

and human activity recognition using federated learning. We

included the following databases for our searches:

• Science Direct

• IEEE Xplore

• Pubmed

The topic of interest being the application of federated learning

for monitoring stress and mental health, our first query was:
frontiersin.org
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FIGURE 2

Search method: for each keyword and database we collect the result of the query, filter to select the relevant articles, then search and filter the
references of the selected results.

FIGURE 3

PRISMA flow-chart for both searches.
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“federated learning” AND “stress” AND (“healthcare” OR

“health”) AND (“mental” OR “psychology” OR “mind”).

This query gave us 224 results across the three databases we

chose, which we filtered using the criteria from Table 1:

During the paper selection process, we first excluded papers

whose titles were not pertinent to the topic. A further selection

was then conducted by reading the abstracts and full texts of the

remaining papers. As we reviewed the literature, we observed

that the topic of human activity recognition frequently appeared
Frontiers in Digital Health 03
in our results and seemed relevant to the field of mental health

monitoring. To ensure comprehensive coverage of this related

area, we conducted a second query specifically targeting studies

on human activity recognition. The second query chosen was:

“federated learning” AND (“behavior” OR “activity”) AND

(“mental” OR “psychology” OR “mind”) AND (“health” OR

“healthcare”).

This second query gave 186 results and we filtered the results

using the criteria from Table 2:
frontiersin.org
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TABLE 1 Selection criterion for the first query.

The paper is in English Inclusion

The paper addresses research on stress, well-being, or mental health Inclusion

The paper does not use federated learning in the experiment Exclusion

The paper does not use deep learning Exclusion

The paper is a duplicate Exclusion

The paper is a survey article Exclusion

TABLE 2 Selection criterion for the second query.

The paper is in English Inclusion

The paper addresses research on human activity recognition Inclusion

The paper does not use federated learning in the experiment Exclusion

The paper does not use deep learning Exclusion

The paper is a duplicate Exclusion

The paper is a survey article Exclusion

FIGURE 4

Federated workflow of a training round. The server starts by sending
the global model to the clients (1), then the client trains the model
with their local data for a few epochs (2) and sends back their new
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We repeated the selection process for the second query and

then proceeded to scan the references of the articles we had

already selected. References were selected using the same criteria

as before: first, by identifying titles pertinent to either query and

then by matching the criteria outlined in Tables 1 or 2. This

process resulted in a total of 27 articles.

model to the server (3) where these models are aggregated
together to obtain a new global model (4).
3 Terminology and pre-requisites

Before discussing the results from the selected papers, we first

present the basic concepts and terminology to clarify key aspects of

the research field, with a particular focus on federated learning and

its specific concepts. For a more in-depth exploration of federated

learning, we refer readers to the following sources: (8–12).

In this article, we distinguish three categories of learning

approaches: Centralized learning, where the data from all participants

is collected in a central server to train a model; Federated learning,

where the data remains local (no sharing of data between

participants), but models are shared to enable privacy-preserving

collaborative learning; and Local learning, where each participant

trains their model privately without any collaboration with other

participants. These distinctions are essential to understanding the

various methodologies applied in the selected studies and how they

address the challenges of data privacy and model performance.
3.1 Federated learning framework

The general federated learning framework is depicted

in Figure 4.

Steps (1) and (3) involve communication rounds, which can be

adjusted using mechanisms such as client selection strategies. Step

(2) refers to the local training conducted on each client’s device.

Step (4) involves the model aggregation mechanism. This

aggregation forms the foundation of the federated learning

framework known as FedAvg (Federated Averaging).

To illustrate the concept of federated learning, consider a

smartphone-based human activity recognition system, where the
Frontiers in Digital Health 04
goal is to develop a model that can predict the smartphone

owner’s activity (e.g., walking, running, or sitting) based on

sensor data such as GPS, accelerometers, and gyroscopes. In a

traditional approach, all data from each user’s smartphone would

need to be sent to a central server, where it would be processed

to train the model. However, this raises significant privacy

concerns, as personal data like location and movement patterns

could be sensitive and expose private information.

Federated learning addresses this issue by enabling training to

occur directly on each user’s device. Instead of sending raw data to a

central server, each smartphone trains its own local model using its

sensor data. Then, the smartphone sends only the learned model

parameters (i.e., the updates, not the raw data) to a central server.

The central server aggregates these updates from all users to

improve the overall model without accessing any personal data.

For example, if 10,000 smartphones contribute to the training

process, each device sends its updates, and the central server averages

them to create a global model that benefits from the collective data.

The updated global model is then sent back to the smartphones, and

the process continues. In this way, the smartphones collaboratively

learn from one another without compromising individual privacy, as

the raw data remains on the device.
3.2 Data heterogeneity and personalization

One of the main challenges for the generic FedAvg to work

well is data heterogeneity. Data heterogeneity refers to the

variation or differences in the type, quality, quantity, and
frontiersin.org
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distribution of data across different sources or users. In the context

of machine learning, it means that data collected from different

devices or individuals may reflect individual differences, which

can make it harder to train a model that works well for

everyone. Data heterogeneity presents two key challenges:

• FedAvg lacks convergence guarantees in the presence of data

heterogeneity, which can result in a suboptimal global model

or even prevent convergence altogether. To address this,

modifications to the framework can be introduced to enhance

convergence.

• It is often unrealistic to expect a single global model to perform

well across all clients when data heterogeneity exists. Therefore,

it is more effective to develop personalized models tailored to

each client (or group of clients).

To improve convergence, various modifications to the training

scheme, as depicted in Figure 4, have been proposed. For

personalization, a common approach involves retraining the final

global model on local devices, allowing it to benefit from

collaborative training while still being adapted to the unique

characteristics of each client. For more details on personalization

methods in federated learning, see (8, 13). Ultimately, these

methods strive to balance collaborative knowledge with

personalized insights from each individual’s data by producing a

collaboratively informed personalized model.
3.3 Privacy mechanisms

Although federated learning ensures that individual client

data remains private by not sharing it, certain vulnerabilities still

exist, making client information susceptible to various types of

attacks, including:

• Reconstruction attack: An attacker reconstructs client data

using available information, such as communicated model

parameters and updates.

• Inversion attack: An attacker attempts to reconstruct client data

based on the model’s output.

• Membership-inference attack: The attacker tries to determine

whether a specific sample was part of the training set by

analyzing the model’s output.

To mitigate the risks and effectiveness of these attacks, three

main approaches are commonly employed:

• Secure multi-party computation (SMPC) (14): SMPC enables

the secure computation of functions (e.g., sums) on data from

different clients without sharing the full data samples. A

primary technique is secret sharing, where each client’s data is

split into shares that are exchanged among clients. These

shares allow computations to be performed without revealing

the complete information, as all operations occur on the

shares rather than the original data.

• Homomorphic encryption (HE) (15): HE is an encryption

scheme that allows computations to be carried out directly on

encrypted data. For example, operations such as addition or

multiplication can be performed within the encrypted space:
Frontiers in Digital Health 05
HE(w1 � w2) ¼ HE(w1) �HE(w2), where HE() denotes

homomorphic encryption. In the context of federated

learning, this technique defends against reconstruction attacks

by encrypting all communicated model parameters and/or

gradients, enabling aggregation operations in the encrypted

space without decryption.

• Differential privacy (DP) (16): DP provides a security guarantee

by enabling calculations over a dataset while limiting the

information that can be inferred about specific samples within

that dataset. This is achieved by adding noise to data points,

such as to data samples or transmitted model weights in

federated learning. The degree of noise can be adjusted, allowing

for a trade-off between privacy guarantees and model accuracy.

For a detailed overview of differential privacy, see (17).
3.4 Ethical concerns

Given the sensitive nature of mental health data, the ethical

implications of using federated learning (FL) in this context deserve

significant attention. As we have seen, additional measures to protect

privacy may be necessary. However, federated learning is also subject

to further ethical concerns such as biases and accountability.

Bias in data collection presents a significant ethical challenge.

Mental health datasets may underrepresent certain demographics or

populations, leading to biased predictions that could

disproportionately harm marginalized groups. This imbalance can

result in inequitable mental health interventions, further

exacerbating disparities in healthcare. Federated learning systems

must integrate fairness into their design, ensuring that models

perform equitably across diverse populations and addressing biases

at both the data collection and model training stages. Methods such

as clustering can significantly improve the equity of collaborative

training, ensuring that all participants benefit equally.

Another critical ethical issue is the potential impact of

inaccurate mental health predictions. Incorrect diagnoses or

predictions can have serious consequences for individuals,

especially those in vulnerable groups. It is essential to prioritize

model validation and include mechanisms for accountability and

transparency in FL applications to minimize harm.

To support these efforts, established ethical frameworks, such

as the World Health Organization’s (WHO) guidelines on ethics

and governance for artificial intelligence in health (18), should be

integrated. These guidelines emphasize the importance of

transparency, fairness, and accountability in AI systems, all of

which are crucial when deploying FL in mental health settings.

By adopting these frameworks, FL applications can ensure

responsible and ethical use, protecting individuals while

promoting innovation in mental health care.
4 Results

In this section, we present the results of our systematic review on

the application of federated learning in mental state detection and
frontiersin.org
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human activity recognition. We begin by summarizing the key

findings from the selected studies, highlighting common datasets,

methodologies, and outcomes. The results are organized to provide

a comprehensive overview of how federated learning techniques

have been applied in these domains, including insights into the

performances of different methods. Through this analysis, we aim to

identify trends, gaps, and potential areas for future research.
4.1 Demographical questions

Figure 1 illustrates the distribution of selected research articles

by year, beginning in 2017, the year federated learning was first

introduced. The figure reveals that research in this area is

relatively recent, with no publications on this topic prior to 2021.

The number of articles published each year shows a general

upward trend, reflecting growing interest in the field. This trend

is particularly notable considering that additional papers are

anticipated to be released throughout the remainder of 2024 (the

query was done in July 2024).
4.2 Input research question

As outlined in Table 3 our literature search strategy,

we conducted two distinct searches: one focused on Mental
TABLE 3 This is a table of all the article selected with the task at hand classifi
State Detection and Others.

Li et al. (20) Meta-HAR: federated representation learning for human activ

Ouyang et al. (21) ClusterFL: a similarity-aware federated learning system for hu

Gao and Konomi (22) Personalized federated human activity recognition through se

Uprety et al. (23) Privacy preserving misbehavior detection in IoV using federat

Tu et al. (24) FedDL: federated learning via dynamic layer sharing for hum

Shen et al. (25) Federated meta-learning with attention for diversity-aware hu

Novikova et al. (26) Analysis of privacy-enhancing technologies in open-source fed

Borger et al. (27) Federated learning for violence incident prediction in a simul

Chhabra et al. (28) Privacy enabled driver behavior analysis in heterogeneous IoV

Zhao et al. (29) FedSup: A communication-efficient federated learning fatigue

Vyas et al. (30) Federated learning based driver recommendation for next gen

Suhas and Abdullah (31) Privacy sensitive speech analysis using federated learning to a

Nandi and Xhafa (32) A federated learning method for real-time emotion state class

Li et al. (33) Intelligent depression detection with asynchronous federated

Khalil et al. (34) Federated learning for privacy-preserving depression detection

Gupta and Khullar (35) Privacy preserving collaboratively training framework for clas
electroencephalogram

Cui et al. (36) Privacy-preserving speech-based depression diagnosis via fede

Ahmed et al. (37) Hyper-graph attention based federated learning methods for u

Huang et al. (38) Federated multi-task learning for joint diagnosis of multiple m

Kirsten et al. (39) Sensor-based obsessive-compulsive disorder detection with pe

Chhikara et al. (40) Federated learning meets human emotions: a decentralized fra

Jiang et al. (41) Low-overhead clustered federated learning for personalized st

Javed et al. (42) Cognitive health assessment of decentralized smart home acti

Hu et al. (43) Source free semi-supervised transfer learning for diagnosis of

Liu (44) Depression clinical detection model based on social media: a

Mateus et al. (19) Data harmonization and federated learning for multi-cohort d
consortium of dementia cohorts case study
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State Detection (MHD) and the other on Human Activity

Recognition (HAR). The following table lists the selected

papers and the specific topics they address. Notably, one

paper (19) deviates slightly from the main focus of our

review, as it centers on data preparation and harmonization

for federated learning rather than directly applying it to MHD

or HAR.

We identified 11 papers related to Human Activity

Recognition (HAR) and 14 papers focused on Mental State

Detection (MSD), each employing federated learning

techniques. These papers utilize various datasets, some of

which are shared across different studies. A summary of the

datasets used is provided in Table 4 together with a list of

links where to find them in Table 5:

Our analysis reveals that the majority of papers utilize

custom-made datasets, reflecting a tailored approach to

address specific research needs. In addition, datasets sourced

from social media platforms are frequently employed,

highlighting their relevance for understanding human

behavior in a digital context. Medical datasets also feature

prominently, with 9 out of the 32 datasets used across the

reviewed articles being related to medical imaging or

physiological measurements, including EEG, fMRI, and other

physiological data. This emphasis on medical data

underscores the importance of physiological signals in

mental state detection and human activity recognition.
ed in three categories, HAR for Human Activity Detection, MSD for Mental

Title Task
ity recognition HAR

man activity recognition HAR

mi-supervised learning and enhanced representation HAR

ed machine learning HAR

an activity recognition HAR

man activity recognition HAR

erated learning frameworks for driver activity recognition HAR

ated cross-institutional psychiatric setting HAR

using federated learning HAR

driving behaviors supervision approach HAR

eration transportation system HAR

ssess depression MSD

ification from multi-modal streaming MSD

optimization MSD

with multilingual language models in social media posts MSD

sification of major depressive disorder using non-IID three channel MSD

rated learning MSD

se in mental health detection MSD

ental disorders on MRI scans MSD

rsonalised federated learning MSD

mework for human-computer interaction for IoT applications MSD

ress monitoring MSD

vities using federated learning MSD

mental disorders on fMRI scans MSD

federated deep learning approach MSD

ementia research using the OMOP common data model: a Netherlands Other
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TABLE 4 Table listing the dataset encountered in the articles, if they are publicly available, the feature, acquisition method, and the number of articles
they have been used in.

Dataset Papers Public Feature list Acquisition
method

Number of
publications

Custom Borger et al. (27), Chhabra et al. (28),
Ahmed et al. (37), Shen et al. (25),
Mateus et al. (19)

✗ Text, time series 5

Social media Liu (44), Khalil et al. (34), Li et al.
(33)

✓ Text Social media, reddit,
twitter, weibo

3

DAIC-WOZ Suhas and Abdullah (31), Cui et al.
(36)

✗ Audio Audio recording 2

Depth Ouyang et al. (21), Tu et al. (24) ✓ Depth video Depth camera 2

IMU Ouyang et al. (21), Tu et al. (24) ✓ Accelerometer, gyroscope, magnetometer IMU 2

HARBox Ouyang et al. (21), Tu et al. (24) ✓ Accelerometer, gyroscope, magnetometer Smartphone 2

UWB Ouyang et al. (21), Tu et al. (24) ✓ UWB UWB nodes 2

ABIDE I Huang et al. (38), Hu et al. (43) ✓ Image fMRI 2

ADHD-200 Huang et al. (38), Hu et al. (43) ✓ Image fMRI 2

PAMAP2 Gao and Konomi (22) ✓ Accelerometer, angular velocity, magnetometer 3 IMU (chest, hand,
ankle)

1

RAVDESS Chhikara et al. (40) ✓ Audio Audio recording 1

MODMA Gupta and Khullar (35) ✓ EEG EEG 1

DEAP Nandi and Xhafa (32) ✗ EEG, GSR, ECG, video EEG, GSR, ECG, video 1

OPPORTUNITY Kirsten et al. (39) ✓ Accelerometer, gyroscope IMU 1

USC-HAD Li et al. (20) ✓ Accelerometer, gyroscope IMU 1

FER2013 Chhikara et al. (40) ✓ Image Image 1

PhysioNet Vyas et al. (30) ✓ Skin conductance rate, EMG, ECG, respiratory rate Physiological data 1

VeReM Uprety et al. (23) ✓ Unknown SIMUlated gps data 1

HHAR Li et al. (20) ✓ Accelerometer, gyroscope Smartphone 1

UCI-HAR Gao and Konomi (22) ✓ Accelerometer, angular velocity Smartphone 1

CASAS Javed et al. (42) ✓ Unknown Unknown 1

UAH-DriveSet Vyas et al. (30) ✓ Gps, accelerometer, speed, pitch, yaw, roll, latitude,
longitude, altitude, video

Vehicle records 1

HCI Lab Vyas et al. (30) ✓ Gps, accelerometer, speed, pitch, yaw, roll, latitude,
longitude, altitude, ECG, heart rate, skin
conductance rate, body temperature

Vehicle records,
physiological data

1

EyeBlink8 Zhao et al. (29) ✓ Video Video 1

ZJU Zhao et al. (29) ✓ Video Video 1

WESAD Jiang et al. (41) ✓ Blood volume pulse, ECG, eda, EMG, respiratory
rate, body temperature, accelerometer

Wearable sensors 1

ABIDE II Hu et al. (43) ✓ Image fMRI 1

COBRE Huang et al. (38) ✓ Image fMRI 1

No dataset Novikova et al. (26) ✓ Unknown Unknowm 1
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We also group the datasets in Table 6 by data acquisition

method, showcasing which type of data is the most used in the

selected papers.

Our review indicates (see Figure 5) that the most

commonly used data acquisition methods are fMRI and

smartphones. Smartphones are particularly popular due to

their ability to capture a wide range of features, both from

internal sensors (such as accelerometers, gyroscopes, and

GPS) and from user behavior patterns. This extensive

feature set makes smartphones a versatile tool for gathering

diverse data relevant to mental state detection and human

activity recognition.

In contrast, while fMRI data is widely used due to its detailed

neuroimaging capabilities, it presents challenges in creating

personalized datasets. The complexity and cost associated with

fMRI scans make it less feasible to develop custom datasets

tailored to specific research questions. As a result, most fMRI
Frontiers in Digital Health 07
studies rely on pre-existing datasets rather than generating new,

personalized data.

On the other hand, smartphone data is more accessible and

adaptable, facilitating the creation of custom datasets that can be

specifically designed to address the research objectives. This

flexibility allows researchers to gather targeted data that directly

supports their study goals.
4.3 Methodology

All of the selected papers employ federated learning

methodologies, which encompass a range of algorithms designed

to address various challenges in distributed machine learning.

Among these algorithms, the basic FedAvg algorithm is by

far the most prevalent, representing 64.8% of the federated

learning approaches used in the reviewed studies, as illustrated
frontiersin.org
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TABLE 5 Link to the available datasets.

Link Names
http://www.robesafe.uah.es/personal/eduardo.romera/
uah-driveset/

UAH-DriveSet

https://archive.ics.uci.edu/dataset/226/opportunity
+activity+recognition

OPPORTUNITY

https://archive.ics.uci.edu/dataset/231/pamap2+physical
+activity+monitoring

PAMAP2

https://archive.ics.uci.edu/dataset/344/heterogeneity
+activity+recognition

HHAR

https://archive.ics.uci.edu/dataset/465/wesad+wearable
+stress+and+affect+detection

WESAD

https://casas.wsu.edu/datasets/ CASAS

https://dcapswoz.ict.usc.edu/ DAIC-WOZ, DAIC-
WOZ

https://fcon_1000.projects.nitrc.org/indi/abide/ ABIDE I, ABIDE I,
ABIDE II

https://fcon_1000.projects.nitrc.org/indi/adhd200/ ADHD-200, ADHD-200

https://fcon_1000.projects.nitrc.org/indi/retro/cobre.
html

COBRE

https://figshare.com/articles/dataset/USC-HAD/
22600903

USC-HAD

https://github.com/pg815/
Depression_Detection_Using_Machine_Learning
https://github.com/Diego-ds/RedditNet

Social Media

https://github.com/xmouyang/FL-Datasets-for-HAR/
tree/main

HARBox, UWB, IMU,
Depth, UWB, Depth,
HARBox, IMU

https://modma.lzu.edu.cn/data/index/ MODMA

https://physionet.org/content/drivedb/1.0.0/ PhysioNet

https://www.eecs.qmul.ac.uk/mmv/datasets/deap/ DEAP

https://www.hcilab.org/research/hcilab-driving-dataset/ HCI Lab

https://www.kaggle.com/competitions/uci-har UCI-HAR

https://www.kaggle.com/datasets/haider094/veremi-
dataset

VeReM

https://www.kaggle.com/datasets/msambare/fer2013 FER2013

https://www.kaggle.com/datasets/uwrfkaggler/ravdess-
emotional-speech-audio

RAVDESS
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in Figure 6. FedAvg is favored for its simplicity and

effectiveness in aggregating model updates from multiple clients,

making it a popular choice for a variety of applications within

the field.

In this section, we delve into the specific federated learning

algorithms and personalization methods employed in the selected

studies, providing a comprehensive overview of their applications

and performance. We will discuss the relative strengths of

different algorithms and explore how various adaptations of

federated learning address the challenges within mental state

detection and human activity recognition.

In addition to employing federated learning methods, the

incorporation of personalization techniques’ discussed in

Section 3.2’ is often crucial for achieving effective and accurate

learning outcomes. Personalization techniques help tailor the

model to individual clients or specific groups, enhancing

performance in tasks such as mental state detection and

human activity recognition. This importance will be further

explored in Section 4.4.

Furthermore, many of the federated algorithms have

only been explored by a single paper (44). Specifically, outside
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of that paper, only one algorithm other than FedAvg has

been applied in mental health detection, compared to seven

algorithms explored in human activity recognition. This

highlights the need for more research on alternative

algorithms in mental health detection, especially considering

that (44) shows improved performance using these methods.

Despite the significance of personalization, Figure 7 reveals

that 73.2% of the methods analyzed do not employ any form

of personalization. Moreover, a detailed examination of the

studies listed in Table 7 shows that 13 out of 24 papers (over

half) do not include any personalization techniques. This

observation highlights a notable gap in the application of

federated learning methods, suggesting that while

personalization is recognized as beneficial, it is not yet widely

implemented in current research.

Moreover, there is a stark difference in the use of

personalization methods between mental health detection and

human activity recognition. In mental health detection, most

papers do not use personalization methods (with only two

algorithms using two different techniques), while human activity

recognition employs a broader range of personalization

techniques (seven personalization algorithms, including five

distinct methods).

Finally, Table 7 provides a comprehensive summary of the

federated learning algorithms used in each selected paper. This

table details the specific algorithms implemented, assesses

whether the studies address the issue of data heterogeneity, and

identifies the personalization techniques applied. Additionally, it

highlights any additional security measures employed to

safeguard data privacy. This summary offers a clear overview of

how various aspects of federated learning are handled across the

reviewed research, facilitating a deeper understanding of the

methodologies used.

Interestingly, some papers fail to mention the issue of data

heterogeneity, despite its critical importance in federated

learning settings (8, 45, 46). This is notable given the significant

impact that data variability can have on model performance

and generalization.

Furthermore, the use of additional security measures is

relatively rare among the reviewed studies. Differential privacy is

the most commonly employed security technique, likely because

it is the only security mechanism that can directly affect model

performance. The impact of differential privacy on model

accuracy is a crucial consideration and explains why it is the

most frequently studied privacy mechanism in federated learning.

In contrast, other techniques such as homomorphic encryption

and secure multi-party computation, while offering strong

privacy guarantees, introduce significant computational overhead

in a research context and are rarely used.
4.4 Performance results

Given the diverse range of topics and datasets covered

in the reviewed papers, it is not feasible to make direct

comparisons of test evaluation results across different studies.
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TABLE 6 This table list the different acquisition methods and how often they are used.

Acquisition
method

References Datasets Feature list Frequency

fMRI Huang et al. (38), Hu et al. (43) ABIDE I (x2), ADHD-200
(x2), COBRE, ABIDE II

Image 6

Smartphone Gao and Konomi (22), Li et al. (20),
Ouyang et al. (21), Chhabra et al. (28),
Tu et al. (24), Shen et al. (25)

UCI-HAR, HHAR,
HARBox (x2), Custom
(x2)

Angular velocity, Accelerometer, Gyroscope, Gravity,
Rotation vector, Magnetometer, Orientation, Temperature,
Atmospheric pressure, Humidity, Proximity On change,
Position every minute, WIFI network connected and other
smartphone monitoring

6

IMU Gao and Konomi (22), Li et al. (20),
Ouyang et al. (21), Kirsten et al. (39),
Tu et al. (24)

PAMAP2, USC-HAD,
IMU (x2),
OPPORTUNITY

Accelerometer, Angular velocity, Magnetometer 5

Video Zhao et al. (29), Ouyang et al. (21),
Tu et al. (24), Nandi and Xhafa (32)

ZJU, EyeBlink8, Depth,
Depth, DEAP

Video 5

Audio recording Suhas and Abdullah (31), Chhikara et al.
(40), Cui et al. (36)

DAIC-WOZ (x2),
RAVDESS

Audio 3

Physiological data Vyas et al. (30), Jiang et al. (41) PhysioNet, WESAD, HCI
Lab

Skin conductance rate, EMG, ECG, Respiratory rate 3

Social media Liu (44), Khalil et al. (34), Li et al. (33) Social media (x3) Text 3

EEG Gupta and Khullar (35), Nandi and Xhafa
(32)

MODMA, DEAP EEG 2

Medical facilities Borger et al. (27), Mateus et al. (19) Custom (x2) Text, time series 2

PHQ-9 Ahmed et al. (37), Shen et al. (25) Custom (x2) Text 2

UWB nodes Ouyang et al. (21), Tu et al. (24) UWB, UWB UWB 2

Vehicle records Vyas et al. (30) UAH-DriveSet, HCI Lab GPS, Accelerometer, Speed, Pitch, Yaw, Roll, Latitude,
Longitude, Altitude, Video

2

Big 5 Shen et al. (25) Custom Big 5 1

ECG Nandi and Xhafa (32) DEAP ECG 1

GSR Nandi and Xhafa (32) DEAP GSR 1

Image Chhikara et al. (40) FER2013 Image 1

Simulated GPS Uprety et al. (23) VeReM GPS 1

Unknown Javed et al. (42) CASAS No features 1
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Instead, we adopt a comparative approach within each paper by

evaluating the relative performance of different methods. We

rank these methods from best to worst based on their

performance metrics.

Much of the tasks in the selected papers consist of

classification. For example, classifying whether a client is

depressed or not, or classifying human activities. Metrics such as

accuracy, precision, and AUC are commonly used to evaluate

model performance.

For each method analyzed, we classify whether it involves

centralized, federated, or local training, and note whether any

personalization methods are applied. By focusing on these

classifications, we can systematically compare the performance of

centralized methods against non-centralized approaches.

Specifically, for each type of method (e.g., centralized), we tally

the number of times it is outperformed by non-centralized

methods. We then compute the percentage of instances

where centralized methods are the top-performing learning

methods. For example, suppose one article presents the

following ranking:

1. Centralized

2. Personalized federated learning

3. Federated learning

4. Local
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In this case, centralized learning is the best-performing

method. Therefore, we add one to the total number of

appearances of the centralized method, and one to the count of

times it is the best-performing method. Similarly, for federated

learning, it appears twice in the ranking but is outperformed by

centralized learning in both cases. Thus, we add two to the count

of federated method appearances, but none to the count of times

it is the best-performing method. However, we would add two

when calculating the ratio of times federated learning is among

the top two best methods, instead of just the best. These counts

are aggregated for all papers, and the ratios of these totals

provide the results we discuss.

Additionally, we calculate the percentage of times each method

ranks within the top two methods, meaning they are outperformed

by a different method at most once. This approach allows us to

gauge the relative effectiveness of centralized methods compared

to federated and local methods within the scope of each study.

The results of these comparisons are summarized in the

following Table 8, providing a clear overview of how different

training approaches perform relative to one another.

In our analysis, we find that centralized learning frequently

achieves the best performance, which aligns with expectations.

However, in scenarios characterized by high data heterogeneity,

personalized methods can sometimes surpass centralized

learning. For instance, the study by Ouyang et al. (21)
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FIGURE 6

Proportion of the different federated algorithms used in the selected articles.

FIGURE 5

The proportion of the different data acquisition methods used in the selected papers.
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FIGURE 7

Proportion of selected articles that use personalization methods.
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demonstrates that using cluster-based personalization can enhance

the performance of centralized learning approaches.

Additionally, when considering the top two results and

excluding centralized methods, federated learning (FL)

approaches consistently perform as the next best option. This is

particularly true when federated methods are combined with

personalization techniques, which often elevate their performance

to a level comparable to or exceeding that of centralized learning.

In contrast, local training methods consistently rank lower,

being at best the third-best option in the performance rankings.

This underscores the limitations of local training compared to

centralized and federated approaches, particularly in scenarios

requiring robust learning from diverse data sources.

Although it is not possible to conduct a systematic

performance evaluation due to the variety of tasks and datasets

involved, we quantitatively discuss the results of (44), which

reports precision, recall, and AUC for local, centralized, and

various federated learning methods. Focusing on precision (a

similar conclusion can be drawn for other metrics), local training

gives 0.788, centralized 0.852, FedAvg 0.818, and their proposed

federated algorithm 0.834. This highlights the general trend

where federated algorithms perform worse than centralized

learning but outperform local training. However, this conclusion

is not universal and can be affected by data heterogeneity. For

example, in Ouyang et al. (21), they show that using clustering

methods (89.06% accuracy) to reduce data heterogeneity

produces results comparable to centralized learning (90.83%
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accuracy), compared to local training (72.19% accuracy) or

FedAvg (86.25% accuracy). Nonetheless, even in Ouyang et al.

(21), the exact tendencies vary across different datasets, and

personalization has varying success compared to local training

(though personalized models always outperform FedAvg). This

underlines the importance of clustering methods to ensure the

benefits of collaborative learning.
5 Discussion

In this systematic literature survey, we explored the application

of federated learning methods in the domains of mental state

detection and human behavior recognition. Utilizing the

PRISMA framework (6), we assessed the current state of research

and highlighted several key insights.

Our survey reveals that the standard FedAvg algorithm (see

Section 3.1) is the most commonly used approach across the

studies reviewed. This trend underscores the algorithm’s broad

acceptance and its fundamental role in federated learning

applications. We have also observed that this is a relatively recent

topic that seems to be gaining interest, as shown in Figure 1.

We noted that the majority of datasets employed are public and

frequently reused across multiple studies. While public datasets

dominate, a few custom datasets have been utilized, reflecting a range

of data sources, including fMRI, smartphone data, social media data,
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TABLE 7 Table describing the federated learning methods used in each selected paper, whether they considered statistical heterogeneity,
personalization, and additional security measures.

Paper Algorithm Heterogeneity Personalisation DP HE MPC
Li et al. (20) FedAvg ✓ Personalization layer and finetuning ✗ ✗ ✗

Ouyang et al. (21) FedAvg ✓ Clustering ✗ ✗ ✗

Gao and Konomi (22) FedAvg ✓ Semi-supervised and finetuning ✗ ✗ ✗

Javed et al. (42) FedAvg ✗ ✗ ✗ ✗ ✗

Jiang et al. (41) FedAvg ✓ Clustering ✗ ✗ ✗

Chhikara et al. (40) FedAvg ✗ ✗ ✗ ✗ ✗

Kirsten et al. (39) FedAvg ✓ Personalization layer ✗ ✗ ✗

Huang et al. (38) FedAvg ✓ Personalization layer ✓ ✗ ✗

Ahmed et al. (37) FedAvg ✗ ✗ ✗ ✗ ✗

Borger et al. (27) FedAvg ✗ ✗ ✗ ✗ ✗

Chhabra et al. (28) FedAvg ✓ ✗ ✗ ✗ ✗

Cui et al. (36) FedAvg ✓ ✗ ✓ ✗ ✗

Gupta and Khullar (35) FedAvg ✗ ✗ ✗ ✗ ✗

Hu et al. (43) FedAvg ✓ Domain alignment ✗ ✗ ✗

Khalil et al. (34) FedAvg ✓ ✗ ✗ ✗ ✗

FedAvgM ✓ ✗ ✗ ✗ ✗

FedProx ✓ ✗ ✗ ✗ ✗

Li et al. (33) FedAvg ✗ ✗ ✓ ✗ ✗

Nandi and Xhafa (32) FedAvg ✗ ✗ ✗ ✗ ✗

Novikova et al. (26) FedAvg ✗ ✗ ✓ ✓ ✓

Shen et al. (25) FedAvg ✓ Meta-learning ✗ ✗ ✗

Suhas and Abdullah (31) FedAvg ✗ ✗ ✗ ✗ ✗

FedMA ✗ ✗ ✗ ✗ ✗

Tu et al. (24) FedAvg ✓ ✗ ✗ ✗ ✗

FedDL ✓ ✗ ✗ ✗ ✗

FedPer ✓ Personalization layer ✗ ✗ ✗

FedProx ✓ ✗ ✗ ✗ ✗

Vyas et al. (30) FedAvg ✗ ✗ ✗ ✗ ✗

Zhao et al. (29) FedAvg ✗ ✗ ✗ ✗ ✗

FedSup ✗ ✗ ✗ ✗ ✗

Liu (44) FedAMP ✓ ✗ ✗ ✗ ✗

FedAPFL ✓ ✗ ✗ ✗ ✗

FedAdagrad ✓ ✗ ✗ ✗ ✗

FedAdam ✓ ✗ ✗ ✗ ✗

FedAvg ✓ ✗ ✗ ✗ ✗

FedAvgM ✓ ✗ ✗ ✗ ✗

FedProx ✓ ✗ ✗ ✗ ✗

MOON ✓ ✗ ✗ ✗ ✗

DP, differential privacy, HE, homomorphic encryption, MPC, multi-party secure computation.

TABLE 8 We show the percentage of best and top 2 results for each method characteristic (Centralized, Local, FL, and Personalized). We also include the
best percentages when omitting certain methods, such as in the “No Centralized” column, where centralized methods are excluded. Additionally, the
table includes the total number of instances of each method across the considered papers.

Best Top 2 No centralized No FL No personalized No local Tot
Centralized 72.7% 81.8% NA 100.0% 72.7% 72.7% 11

Local 0.0% 0.0% 0.0% 20.0% 0.0% NA 5

FL 48.7% 94.9% 94.9% NA 48.7% 51.3% 39

Personalized 80.0% 100.0% 100.0% 80.0% NA 80.0% 5
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and EEG data. This diversity in data acquisitionmethods highlights the

varied nature of the datasets used in the field.

Comparing model performance across studies proved

challenging due to the diversity in datasets, tasks, and

methodologies. To address this, we ranked methods based on

their performance within each paper, revealing that centralized
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learning generally achieves the best results. This is expected given

its ability to leverage comprehensive data. Federated learning

methods, particularly when combined with personalization

techniques, closely follow in performance. Local training

consistently ranks as a less effective method, primarily due to its

reliance on limited data from individual clients.
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The role of data heterogeneity and personalization in

federated learning is significant. Despite their potential to

enhance model performance, many studies do not explore the

benefits of personalization.

While federated frameworks often prioritize performance,

fewer studies incorporate advanced security measures, despite

their importance in sensitive domains. Techniques such as

homomorphic encryption and secure multi-party computation

offer strong privacy guarantees but come with significant

computational overhead. These methods can greatly increase

processing times and resource consumption, which may not

always be justified in terms of performance gains, especially in

resource-constrained environments like mobile devices or IoT

systems. This trade-off must be carefully considered when

deploying FL systems in real-world settings.

As federated learning continues to gain traction in sensitive

domains like mental health, addressing ethical concerns is

paramount. Fairness and bias remain significant challenges. Mental

health datasets often suffer from demographic imbalances, which

could lead to biased outcomes if not properly addressed. It is

essential that FL models are developed with fairness in mind,

ensuring equitable outcomes for all populations. Moreover, informed

consent and transparency are crucial when implementing FL in real-

world mental health settings. Users should be aware of how their

data is being processed, and clear accountability structures must be

established to address potential biases or errors in the models.

While FL inherently promotes data privacy by decentralizing data

processing, it does not eliminate all risks. Potential vulnerabilities,

such as model inversion or reconstruction attacks, must be carefully

mitigated to protect individual privacy. Differential privacy, widely

adopted for its ability to protect individual data, introduces noise

into the training process to obscure personal information. However,

this added noise can degrade model accuracy, creating a challenging

balance between ensuring privacy and maintaining reliable

performance. In sensitive areas such as healthcare, where data

confidentiality and model reliability are both critical, this trade-off

becomes even more pronounced. Therefore, it is essential to

rigorously evaluate the impact of privacy-preserving techniques on

model outcomes and explore adaptive approaches that can adjust

the level of privacy protection based on the specific requirements of

the application. Understanding and addressing these privacy-

performance trade-offs is key to achieving practical and secure

federated learning systems.

While much research on federated learning has been conducted

in controlled settings, real-world deployment, particularly in

constrained environments such as mobile devices, wearables, and

IoT systems, presents significant challenges that have not yet

been fully addressed in the field (47). These devices typically

have limited energy resources, meaning that the computational

and communication demands of FL could lead to rapid battery

depletion. Energy-efficient algorithms, capable of balancing

model training and device power consumption, are crucial for

ensuring FL’s feasibility in such environments.

Moreover, communication bandwidth is a key limitation.

Federated learning relies on frequent exchanges of model updates

between devices and a central server, which can lead to
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substantial network congestion, particularly as the number of

clients grows. Techniques that reduce communication overhead,

such as compressing model updates or reducing communication

frequency, are essential to make FL scalable in real-time scenarios.

Lastly, real-time processing capabilities are constrained by the

limited processing power of many IoT and wearable devices. This

can impede the ability to quickly adapt models or handle large-

scale datasets. Future research should prioritize developing

lightweight models and optimizing FL algorithms for resource-

constrained devices to support seamless, real-time applications in

the real world.

Based on the identified gaps and limitations in the current

research, we propose the following areas for future investigation

to advance the field of federated learning:
• Enhanced personalization methods: Given the inherent

heterogeneity among clients, it is crucial to evaluate and apply

more consistent personalization methods, enabling models to

adapt to individual characteristics. Furthermore, additional

questions of fairness, and fair collaborative learning are

paramount to ensure that all clients benefit from this

framework equitably.

• Advanced federated learning frameworks: Although FedAvg

remains prevalent, exploring more sophisticated federated

learning frameworks could lead to improved collaborative and

transfer learning capabilities. Investigating these advanced

methods may yield better performance and greater

adaptability in various contexts.

• Research practical implementation solutions: To enable

federated learning in practical situations involving, for example,

IoT devices, many additional considerations must be taken into

account, including hardware limitations (bandwidth, energy,

and computational resources) and privacy assurances in these

contexts (accounting for additional computational costs and

performance reduction from privacy mechanisms).

• Dealing with small data samples: In the field of medical data,

clients often have limited personal data, making it important to

consider the number of clients and their representativity

(fairness). This also makes it challenging to ensure and evaluate

the generalizability of the models, as training on small data

samples may lead to overfitting, and testing data can be scarce.
These focus areas represent promising directions for advancing

federated learning in mental state detection and human behavior

recognition, paving the way for more effective and practical

applications in these domains.
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