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A novel, machine-learning model
for prediction of short-term
ASCVD risk over 90 and 365 days
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Eyal Zimlichman2, Jay A. Pandit3 and Edo Paz1

1Hello Heart, Inc., Menlo Park, CA, United States, 2Sheba Medical Center, Tel Hashomer, Israel, 3Scripps
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Background: Current atherosclerotic cardiovascular disease (ASCVD) risk
assessment tools like the Pooled Cohort Equations (PCEs) and PREVENTTM

scores offer long-term predictions but may not effectively drive behavior
change. Short-term risk predictions using mobile health (mHealth) data and
electronic health records (EHRs) could enhance clinical decision-making and
patient engagement. The aim of this study was to develop a short-term
ASCVD risk prediction model for hypertensive individuals using mHealth and
EHR data and compare its performance to existing risk assessment tools.
Methods: This is a retrospective cohort study including 51,127 hypertensive
participants aged ≥18 years old who enrolled in the Hello Heart CV risk self-
management program between January 2015 and January 2024. A machine
learning (ML) model was derived from EHR data and mHealth measurements
of blood pressure (BP) and heart rate (HR) collected via at-home BP monitors.
Its performance was compared to that of PCE and PREVENT.
Results: The XgBoost model incorporating 291 features outperformed the PCE
and PREVENT scores in discriminating ASCVD risk for both prediction periods.
For 90-day prediction, mean C-statistics were 0.81 (XgBoost) vs. 0.74 (PCE)
and 0.65 (PREVENT). Similar findings were observed for 365-day prediction.
mHealth measurements incrementally enhanced 365-day risk prediction
(ROC-AUC 0.82 vs. 0.80 without mHealth).
Conclusion: An EHR and mHealth-based ML model offers superior short-term
ASCVD prediction compared to traditional tools. This approach supports
personalized preventive strategies, particularly for populations with incomplete
features for PCE or PREVENT. Further research should explore this novel risk
prediction framework, and particularly additional mHealth data integration for
broader applicability and increased predictive power.
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Introduction

The current approach to primary prevention of atherosclerotic cardiovascular disease

(ASCVD) includes risk assessment using tools like the American College of Cardiology/

American Heart Association Pooled Cohort Equations (PCEs) which are integrated into

guidelines for blood pressure (BP) and cholesterol management (1, 2). Recently, the

American Heart Association (AHA) developed the Predicting Risk of cardiovascular
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2024.1485508&domain=pdf&date_stamp=2020-03-12
mailto:tomer.gazit@helloheart.com
https://doi.org/10.3389/fdgth.2024.1485508
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1485508/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1485508/full
https://www.frontiersin.org/articles/10.3389/fdgth.2024.1485508/full
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2024.1485508
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Gazit et al. 10.3389/fdgth.2024.1485508
disease EVENTs (PREVENTTM) equations for ASCVD and heart

failure (HF) risk prediction (3). Both the PCEs and PREVENT

estimate risk over 10 years, 30 years, or an individual’s lifetime

(1, 4). However, research suggests that communicating shorter-

term ASCVD risk may better motivate patients to adopt

healthier behaviors and adhere to treatment, potentially

enhancing preventive efforts (5).

Electronic health records (EHRs) provide comprehensive

health data, enabling the creation of risk assessment algorithms

for a wide range of conditions. Recently, EHR-based machine

learning (ML) models have been developed for predicting

coronary artery disease (CAD), myocardial infarction (MI) and

stroke (6, 7). EHR data was found to improve CAD prediction

by approximately 10% compared to the PCEs (8).

Given that more than half of adults with hypertension monitor

their BP at home (9), and 90% of US adults now own smartphones

(10), mobile health (mHealth) can provide an additional data

source for refinement of ASCVD risk prediction. These

technologies enable the collection of health metrics such as heart

rate (HR), and BP at home, bridging the gap between sporadic

clinical visits.

In this study, we aimed to develop a short-term ASCVD ML

prediction model for a hypertensive population based on EHR

and mHealth data. The mHealth data was obtained using

Hello Heart, an mHealth cardiovascular (CV) risk self-

management program that consists of a Bluetooth-enabled BP

monitor and connected smartphone application (app). We

investigated two key research questions: (1) What is the

enhancement in short-term ASCVD risk prediction offered by

this ML model compared to PCE and PREVENT? and (2) Can

this model broaden the applicability of risk assessment to

populations lacking the complete set of requisite features for

PCE and PREVENT?
Methods

Sample population

This is a retrospective cohort study of participants ≥18 years

of age who enrolled in the Hello Heart program between January

2015 and January 2024 in the US. Individuals with confirmed

hypertension through prior diagnosis or relevant medical/

pharmacy insurance claims were eligible to enroll voluntarily.

All participants consented to terms permitting research use of

de-identified, encrypted data. Only those who connected their

EHRs to the app and had at least one EHR record were

included in the analysis. The program is Health Insurance

Portability and Accountability Act (HIPAA) compliant. This

study was reviewed by the Western Institutional Review

Board-Copernicus Group (WCG) Institutional Review Board

(IRB tracking ID 20226635) and determined to be exempt

under 45 CFR 46.104(d)(4). In addition, a waiver of HIPAA

authorization for the use and disclosure of aggregated, de-

identified data was obtained. No compensation was provided

to participants.
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ASCVD classification

To define dates for ASCVD events, including acute coronary

syndrome (ACS) or cerebrovascular accident (CVA), we developed

a semi-automatic process. Participants with ACS or CVA identified

using International Classification of Diseases (ICD)-9, ICD-10 or

SNOMEDCT codes (Supplementary Tables S1, S2) and with a

specific date of onset were considered positive cases with the

specified dates. For those without a specific date of onset, trained

medical annotators (LV & GP) completed manual chart review

and assigned a date of onset according to the guidelines described

in the Supplementary Appendix. Cases lacking validated dates were

excluded, and only the first validated event per participant was

used. Supplementary Figures S1, S2 detail the ASCVD event

classification and number of participants and events.
Data sources and features

Seven EHR resource type tables, stored with HL7 FHIR

specification, were used to extract features relevant for the

model: participant, condition, encounter, family history,

medication statement, observations, and procedures. In addition,

BP (including systolic and diastolic BP) and HR were collected

through the mHealth app and an accompanying FDA-cleared

home BP monitor (Zewa UAM-910BT, Zewa UAM-900 T, or

A&D UA-651BLE BP cuffs). We considered both categorical and

continuous data as clinical features. For categorical data,

presence of a diagnostic code/medication prescription in the

EHR was coded as “1”; absence was coded as “0”. In total, 291

features were derived (Supplementary Table S3): 9 demographics,

182 observations (including BP, HR, and cholesterol), 10

conditions, 3 medications, 19 procedures, 9 family history and 3

home monitoring data were used in the analyses. Age bins of

18–50, 50–70 and >70 were also added to the model (11). Three

features were added for (1) the number of records prior to the

selected date, (2) the number of EHR records in the 90 days

before the selected date, and (3) the number of mHealth

measurements in the 90 days before the selected date. Systolic

BP, diastolic BP and HR were obtained from both the EHR and

home monitoring devices.

Neural network models allow the summarization of

participants’ medical status in the form of embedding vectors

(12). Finch et al. (13) used the Word-2-Vec model (14) to create

medical concept embeddings for ICD-10 codes. We utilized these

embeddings to summarize each participant’s medical condition at

a given time into a 50-value vector. These values were added to

the previously described features. Missing values were imputed

using mean imputation for continuous variables.
PCE and PREVENT calculations

The PCE and the PREVENT scores were calculated using

available formulas (15, 16). For the PCE, we applied the
frontiersin.org
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non-Hispanic White equations. Race data was missing for most cases,

but among those where it was available, the majority were White.

Additionally, PCE estimates do not improve with the addition of

race (17), and AHA guidelines suggest using the non-Hispanic

White equations for populations other than African Americans and

non-Hispanic Whites (18). Race was not required for the

PREVENT score. The PREVENT score was calculated using the

basic 10-year model for ASCVD version which includes eGFR but

not Hemoglobin A1C, Social Deprivation Index (SDI) or albumin-

to-creatinine ratio (ACR). Requiring these additional features would

significantly reduce eligible participants and was reported to yield

limited performance improvement (15). Scores were calculated only

for participants that had all required features.
ML model

To determine ML risk prediction performance, the study

population was split into a 70% training set and a 30% test set

stratified by outcome. An Ensemble Boosting Tree-based model

(XgBoost), was chosen for its ability to model complex, high-

order interactions between the input variables. Hyperparameter

tuning was performed using stratified cross validation of the

training set and sequential grid search. Model calibration was

performed using cross-validation classifier calibration (19).

Analysis was performed in Python 3.10 using the Scikit-learn

and XgBoost packages (20), Versions 1.3.0 and 1.7.5, respectively.

Two prediction periods were evaluated (90 and 365 days), and

five models were evaluated for each prediction period and

compared to the PCE and PREVENT calculators:

(1) All features: XgBoost model applied to all users that meet

initial criteria and modeled with all available features.

(2) All features-PCE eligible: XgBoost model applied only on

users that have the features required for the PCE (but

using all features).
FIGURE 1

Study design and flowchart.
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(3) PCE features: XgBoost model applied only on users that

have the features required for the PCE and using only

features required for the PCE.

(4) All features-PREVENT eligible: XgBoost model applied

only on users that have the features required for

PREVENT (but using all features).

(5) PREVENT features: XgBoost model applied only on users

that have the features required for PREVENT and using

only features required for PREVENT.

A “prediction date” was set for each participant, marking the

last date data could be included for modeling. Data beyond this

date was excluded. For positive cases (those with ASCVD

events), a random date up to 90 or 365 days before the event

was chosen. Negative cases (those without ASCVD events) had

a random date selected after their first EHR entry. Each resource

type had a designated lookback period (time before the

prediction date on which data was accumulated) and aggregation

methodology. Lookback period was not limited for family

history, smoking, alcohol, medications, conditions procedures

and embeddings. Lookback period was limited to 10 years for

observations (including BP and cholesterol). For example,

observation data points were monitored for 10 years prior to

the prediction date and each observation feature was

aggregated using exponential weighted average. Supplementary

Table S4 shows the different lookback periods and aggregation

protocols.

PCE and PREVENT scores were derived using the relevant

aggregated features. Study design and flowchart is shown in Figure 1.
Validation and statistics

We evaluated the performance of the models using C-statistic

(ROC-AUC) and compared the difference in C-statistic between

the models. Both train and test sets were sampled 1,000 times
frontiersin.org
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using bootstrapping sampling. 1,000 models were trained on the

sampled train set and evaluated on the sampled test set.

Reported performance metrics are the mean value and

Confidence Intervals (CIs) across all predictions performed with

each model. An additional bootstrapping-based evaluation was

performed to examine the additive value of mHealth BP and HR

measurements over a baseline of EHR data. Additional

information regarding sampling, bootstrapping, and model

evaluation can be found in the Supplementary Appendix.
TABLE 2 Performance for 90- and 365-day prediction periods.

Model C-statistics
(90 days)

C-statistics
(365 days)

All features 0.81 [0.8–0.83] 0.81 [0.79–0.82]
Results

Study population and characteristics

Of 54,867 participants, 51,227 matched the inclusion criteria.

51,127 (35,775 train and 15,352 test) remained after excluding

cases who had an ICD code for ASCVD but the date could not be

verified. Demographic characteristics of the population are

described in Table 1. 2,222 cardiovascular events (for 2,222

participants) were found: 1,562 (721 ACS, 841 CVA) and 660 (329

ACS, 331 CVA) in the train and test sets respectively. 8,555

participants had all PCE features (excluding race): 6,052 in the

training set (406 with event) and 2,503 in the test set (170 with

events). 4,081 participants had all PREVENT features: 2,887 in the

train set (218 with event) and 1,194 in the test set (92 with events).

All features - PCE eligible 0.81 [0.78–0.84] 0.8 [0.77–0.83]

PCE features 0.71 [0.67–0.75] 0.73 [0.69–0.77]

PCE 0.74 [0.71–0.78] 0.74 [0.71–0.78]

All features - PREVENT eligible 0.78 [0.73–0.82] 0.75 [0.69–0.81]

PREVENT features 0.76 [0.71–0.8] 0.76 [0.7–0.81]

PREVENT 0.65 [0.6–0.7] 0.63 [0.57–0.68]
ML model and PCE performance

Table 2 shows C-statistics for the different models across 90-

and 365-day prediction periods, while Figure 2 presents
TABLE 1 Population demographics and characteristics.

Characteristic

Overall
n 51,127

label, n (%)a 0 (no events) 48,905 (95.7)

label, n (%)a 1 (event) 2,222 (4.3)

age, median [Q1,Q3]a,b 49.0 [39.0, 58.0]

Sex, n (%)a,b Female 20,658 (40.4)

Sex, n (%)a,b Male 17,169 (33.6)

Sex, n (%)a,b Unknown 13,300 (26.0)

Diabetes type I, n (%)a Yes 291 (0.6)

Diabetes type II, n (%)a Yes 4,377 (8.6)

High cholesterol, n (%)b Yes 20,514 (40.1)

Anxiety, n (%)b Yes 14,376 (28.1)

Depression, n (%)b Yes 8,737 (17.1)

Smoking (ever), n (%)a,b Yes 17,339 (33.9)

Region of country, n (%)b Midwest 9,784 (19.1)

Region of country, n (%)b Northeast 5,673 (11.1)

Region of country, n (%)b South 28,265 (55.3)

Region of country, n (%)b West 7,275 (14.2)

Region of country, n (%)b Unknown 130 (0.3)

Systolic BP, median [Q1, Q3]a,b 129.8 [129.8, 129.8]

Diastolic BP, median [Q1, Q3]a,b 80.2 [80.2, 80.2]

aEHR.
bApp.

Frontiers in Digital Health 04
corresponding ROC curves. In both prediction periods, C-

statistic was higher for the model derived with all features for

PCE eligible participants compared to the PCE score. C-statistics

was also higher for the model derived with all features for the

PREVENT eligible participants compared to the PREVENT score

(Table 3). Net reclassification index (NRI) and integrated

discrimination index (IDI) also show an improved classification

for the described models over the PCE and PREVENT models.

Supplementary Figure S3 shows the positive rate for high

model predictions (4th quantile) vs. positive rate for low model

predictions (1st quantile).
Feature importance

Multiple features contribute to the predictive capabilities

at both 90 and 365 days. Supplementary Figure S4 shows

Shapley values for the all-feature model. Top features included

cholesterol and BP medication, age, number of records and

family history of CAD.
Population group

Test Train Missing
15,352 35,775

14,692 (95.7) 34,213 (95.6) 0

660 (4.3) 1,562 (4.4)

49.0 [39.0, 58.0] 49.0 [39.0, 58.0] 1,691

6153 (40.1) 14,505 (40.5) 0

5205 (33.9) 11,964 (33.4)

3,994 (26.0) 9,306 (26.0)

97 (0.6) 194 (0.5)

1,303 (8.5) 3,074 (8.6)

6,158 (40.1) 14,356 (40.1)

4,345 (28.3) 10,031 (28.0)

2,666 (17.4) 6,071 (17.0)

5,210 (33.9) 12,129 (33.9)

2,895 (18.9) 6,889 (19.3) 0

1,722 (11.2) 3,951 (11.0)

8,468 (55.2) 19,797 (55.3)

2,232 (14.5) 5,043 (14.1)

35 (0.2) 95 (0.3)

129.8 [129.8, 129.8] 129.8 [129.8, 129.8] 0

80.2 [80.2, 80.2] 80.2 [80.2, 80.2] 0
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FIGURE 2

ROC plots for different models - 90 days (top), 365 days (bottom).

TABLE 3 Model comparison - 90 days and 365 days.

Comparison dAUC
(90 days)

NRI
(90 days)

IDI
(90 days)

dAUC
(365 days)

NRI
(365 days)

IDI
(365 days)

All features-PCE eligible vs. PCE 0.07 [0.03–0.1]* 0.2 [0.0–0.37]* 0.05 [0.01–0.09]* 0.06 [0.02–0.09]* 0.17 [−0.03–0.38] 0.03 [−0.01–0.07]
All features-PCE eligible vs. PCE features 0.1 [0.06–0.14]* 0.65 [0.48–0.84]* 0.09 [0.04–0.14]* 0.07 [0.03–0.11]* 0.59 [0.39–0.77]* 0.06 [0.01–0.1]*

All features-PREVENT eligible vs. PREVENT 0.13 [0.07–0.19]* 0.37 [0.11–0.64]* 0.08 [0.02–0.16]* 0.13 [0.06–0.19]* 0.3 [0.01–0.59]* 0.08 [0.01–0.17]*

All features-PREVENT eligible vs. PREVENT
features

0.02 [−0.03–0.07] 0.11 [−0.39–0.54] 0.03 [−0.05–0.12] 0.0 [−0.06–0.05] −0.39 [−0.68 to −0.07]* 0.01 [−0.07–0.1]

*p < 0.05.

Gazit et al. 10.3389/fdgth.2024.1485508
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Additive value of mHealth BP and HR
measurements

We restricted our analysis to 1,059 participants who had home

measurements of BP and HR before the prediction date to evaluate

the contribution of mHealth data. These included 56 participants

with ASCVD events (32 ACS, 24 CVA). In this group, we

compared a model with all features to a model with systolic BP,

diastolic BP and HR from the home monitor removed. BP and

HR measurements were still available from the EHR in both

models. For 365-day prediction, we found a slightly higher ROC-

AUC for the model that included mHealth BP and HR

measurements [0.82 (0.76–0.86) vs. 0.80 (0.73–0.86), dAUC 0.01

(−0.01–0.04), NRI 0.11 (−0.38–0.57), IDI 0.01 (−0.03–0.04)]. For
the 90-day prediction period, similar ROC-AUC values

(Supplementary Figure S5) were observed for the model with

[0.85 (0.81–0.90)] and without [0.85 (0.82–0.89)] mHealth

measures [dAUC 0.00 (−0.02–0.02), NRI 0.13 (−0.53–0.60), IDI
[−0.02 (−0.07–0.03)]. Shapley values showed mHealth-measured

systolic BP as a top feature for both 90- and 365-day prediction

(Supplementary Figure S6).
Discussion

A key step in ASCVD treatment and prevention is estimating

individual risk (1). However, traditional risk calculators provide

long-term risk estimates that can be difficult for individuals to

internalize, and fear or unwillingness to begin drug therapy or

adhere to healthy lifestyle recommendations may outweigh

perceived risk of heart disease (21). In this study, we developed an

mHealth and EHR-based ML model that can predict the

occurrence of ASCVD events (including ACS and CVA) within a

short time frame of 90 or 365 days in a population of hypertensive

participants. Communicating cardiovascular risk to individuals in a

shorter time frame may improve their understanding of risk and

better incentivize risk reduction and behavior change (5).

Our short-term risk prediction model’s performance compared

favorably with the PCEs and PREVENT. For a set of participants

with all the features required to complete PCE risk estimation, we

found that an XgBoost model with 291 features provided improved

discrimination compared to the PCE score and to a model based

on PCE features for both 90- and 365-day prediction. For a set of

participants with all the features required to complete PREVENT

risk estimation, the model improved discrimination compared to

the PREVENT score for both 90- and 365-day prediction and to a

model based on PREVENT features for 90-day prediction.

PCEs and PREVENT, moreover, use a small number of

traditional risk factors, which, though highly predictive of ASCVD

events, offer a narrow view of an individual’s health. By contrast,

EHR data provides a comprehensive medical profile, revealing

additional features our model found to improve classification. High

serum levels of alkaline phosphatase, for example, are not

considered in current risk prediction tools but have been linked to

increased ASCVD risk (22). In addition, novel ML techniques

allow vast amounts of clinical data to be condensed in the form of
Frontiers in Digital Health 06
representative embeddings. We supplemented the more classical

EHR features with such an approach, transforming the list of

condition codes into an embedding vector (12) and feeding this to

the XgBoost model. Notably, the model found some of the

embeddings significant for enhancing prediction.

As anticipated, some of the most significant factors influencing

the prediction, as revealed by the SHAP (SHapley Additive

exPlanations) value analysis, were well-established risk factors

also considered in the longer-term risk scores. These include age,

gender (with males being at higher risk), smoking and the use of

prescription blood pressure and cholesterol medications (higher

risk for users taking medications). This study demonstrates that

these factors are also relevant for predicting short term risk of

365 and even 90 days. Interestingly, total, LDL and HDL

cholesterol were found to be less important. These factors did

not appear among the most significant features (Supplementary

Figure S4) except for HDL, which ranked as the 15th most

important feature for the 365-day prediction. The impact of

elevated cholesterol on ASCVD risk is known to be long term,

potentially explaining its reduced significance in short term

predictions (23). It is also likely that high cholesterol was

indirectly captured through its correlation with another top

feature, cholesterol medication use. Therefore, this conclusion

should be interpreted with caution and warrants further

investigation in future studies, ideally using causal models or

prospective study designs. Additionally, family history of stroke

and CAD emerged among the top 20 features, suggesting that

these factors should be given careful consideration by clinicians,

even if they are not included in standard risk scores (24).

An intriguing, aggregated feature that counted the total

number of records in the EHR appeared among the top ten

features. Patients with a larger volume of medical records prior

to the event tended to show an elevated ASCVD risk, likely

indicating a poorer health history and condition control. Another

feature considered was the number of records within a more

recent time frame (past 90 days). This feature ranked highly for

predicting events within a 90-day window but not for the longer

365-day prediction period. Additionally, a few notable observations

emerged, such as the importance of elevated serum glucose and

alkaline phosphatase levels, corroborating previous research and

underscoring their clinical relevance (22, 25).

While comprehensive, EHR data is only generated by

interactions with an individual’s healthcare providers or ancillary

services. mHealth offers the opportunity to complement these

data sources with higher measurement cadence. Furthermore,

home BP monitoring is recommended for all hypertensive

individuals to help assess treatment effectiveness (26). A trend

for improved classification for the model which includes

mHealth measurements was observed for the 365-day but not

90-day prediction period. Though results were from a small

subset of the population with mHealth measurements prior to

the ASCVD event (1,059 cases), they demonstrate the potential

additive predictive power of mHealth alongside EHR data.

Recognizing the promising benefits of incorporating mHealth

data, we see the need for strategies to enhance adoption of

mHealth home monitoring tools among broad segments of the
frontiersin.org
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population and downstream use of this data by providers.

These strategies can include increased education about potential

benefits, streamlined workflows to incorporate data into provider

workflows/EHRs, improved reimbursement for providers who

leverage such data, and targeted outreach to diverse populations.

Studies have demonstrated that mHealth programs can close

healthy equity gaps (27) and improve clinical outcomes (28). Such

strategies will allow increased adoption of mHealth technologies,

thus incorporating additional home monitoring biosignals within

larger databases. This adoption will in turn advance, expand, and

validate this study’s approach for combining EHR data with

mHealth signals in the context of risk prediction.

Finally, an additional drawback of PCE and PREVENT is their

need for all relevant factors to calculate the risk score. Since

boosting trees can manage missing data, this requirement is not

necessary for calculating predictions. In our dataset, only 8,555

of 46,590 participants (18%) had all features required for the

PCE. Similarly, only 3,965 users had all required features for

PREVENT. As such, enabling predictions for the entire

population without compromising performance is another

advantage of the proposed risk model. PREVENT models with

additional predictors, namely ACR, A1C and SDI were also

considered. However, as these additions only yielded minimal

discriminative enhancement and would necessitate further

reduction of the study population, we opted to compare our

findings to the base model offered for ASCVD.

Overall, these findings suggest that an EHR and mHealth-based

ML model can predict ASCVD within a short time frame, with

higher discrimination, and for a broader population than the

other models evaluated.
Limitations

Our study has several limitations. First, our dataset consists of

participants with high BP enrolled in a mHealth CV self-

management program, limiting generalizability. Although our

population was slightly younger (mean age 49 ± 13), variables like

diabetes prevalence (9.3%), and average systolic BP (129 ± 15.7)

were comparable to PCE (age 52 ± 9.6, diabetes 10.3%, systolic BP

125 ± 18.7) and PREVENT (age 57 ± 12, diabetes 11.4%, systolic

BP 125 ± 15.6) data. While hypertension is a prevalent condition,

affecting the majority of the adult population over 40 years old

(29), we recognize that our study’s focus on hypertensive

individuals enrolled in an mHealth program limits the

generalizability of the findings. Further validation across diverse

populations is warranted to ensure applicability beyond those

evaluated here. While PCE and PREVENT models aren’t

optimized for short-term prediction, we also compared a simpler

model based only on required PCE or PREVENT features but

optimized for 90- and 365-day predictions. Notably, the more

complex model demonstrated higher discrimination performance

in the case of the PCE score.

The susceptibility of EHRs to noise, errors, and missing data,

stemming primarily from data collection processes has been

previously reported (30). To address these challenges in ASCVD
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event tagging, we implemented a semi-automatic approach in

which the majority of cases were labeled automatically (using

ICD and SNOMED codes) and the remaining ambiguous cases

were manually annotated by experienced medical annotators,

focusing on unstructured EHR data. While manual chart review

can introduce subjectivity and annotator inconsistency, we

anticipate that this will not significantly affect the overall

outcome. Firstly, only 163 of the 1,418 potential ACS cases and

96 of the 1,528 potential CVA cases required manual

intervention. Secondly, annotators were provided with strict

guidelines to minimize subjectivity. These guidelines required

specific conditions, such as cardiovascular-related hospital stays

exceeding 12 hours and targeted medical tests performed during

those hospitalizations, to classify cases as ACS or CVA. Thirdly,

the obtained ACS and CVA prevalences are aligned with

reported prevalences in the literature. Finally, the same tagged

events were used to analyze our novel ML model and the

comparator models, further mitigating the potential impact on

the relative performance. Tagging errors are still possible in both

the automatic and manual processes, but we believe that the

balance between automated processes and manual intervention

helps mitigate the risk of label noise while still accounting for

edge cases (Supplementary Figures S1, S2).
Conclusion

An ML model based on EHR and mHealth data demonstrates

superior discriminative power as compared to PCE or PREVENT

in predicting short-term ASCVD occurrence among a

hypertensive population. Preliminary results from a smaller sub-

group also indicate a trend for an additive predictive value of

self-measured, mHealth-derived BP and HR measurements when

combined with EHR data. The model is also applicable to a

broader population, including individuals who do not have all

features required for PCE or PREVENT. This model may serve

as a potential tool to predict short-term risk of ASCVD in a

hypertensive population, and can therefore assist in clinical

decision-making, encourage behavioral and lifestyle changes, and

prompt further clinical evaluations.
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