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The walking surface influences
vertical ground reaction force
and centre of pressure data
obtained with pressure-sensing
insoles
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Background: Gait can be continuously monitored via vertical ground reaction
force (VGRF) and centre of pressure (COP) measurement with pressure-
sensing insoles. During daily living, a variety of walking surfaces will be
encountered, which could affect the collected data. These effects might need
to be taken into account when analysing disease- or injury-related gait
characteristics to prevent misinterpretation, especially when drawing
conclusions from data obtained in clinical populations. We hypothesized
characteristic changes in insole-derived VGRF and COP parameters of healthy
participants when walking on different surfaces.
Methods: Participants walked on flat indoor surface, flat and inclined outdoor
surfaces, as well as on forest, gravel, grass, and sand surfaces while wearing
pressure-sensing insoles with 16 pressure sensors each at a recording frequency
of 100 Hz. Several gait parameters were extracted from the VGRF and COP data,
and were compared between surfaces using repeated measures ANOVA.
Results: Thirty participants were included (22 women and 7 men, age 30 ± 12
years, height 172 ± 8 cm, weight 76 ± 23 kg). VGRF and COP data were
significantly influenced by the type of surface. The rmANOVA revealed
significant within-subject differences between the walking surfaces in all
calculated parameters. The largest changes in the VGRF and COP patterns
occurred during uphill and downhill walking. Walking on compliant surfaces
led to increased gait variability. The highest variability was observed when
walking on sand. The change from walking indoors to outdoors, be it on flat,
inclined, forest, gravel, grass or sand surfaces, was characterized by a
characteristic change in the VGRF stance-phase curve. Based on these
characteristic changes, it could be possible to identify whether someone is
walking on a slope, as well as on non-compliant or compliant surfaces, while
it is difficult to distinguish between different types of compliant surfaces.
Conclusion: VGRF data are affected by the type of walking surface in healthy
adults. Walking on a slope affects VGRF and COP parameters, and in addition,
the compliance of the surface increases their variability. When analysing gait
data measured via insoles during daily living, we recommend to correct for
the surface type to decrease variability.
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1 Introduction

Among the new opportunities currently studied in digital

medicine are the benefits of continuous monitoring of changes in

gait quality in clinical populations during their daily life (1, 2).

These continuous unsupervised assessments provide additional

information to clinical assessments where patients tend to show

their best performance in a laboratory setting (3). With the daily

living data, disease progression and the effect of treatment can be

monitored with a greater time resolution and in a real-life setting

compared to clinical visits. This information can be used to

provide earlier interventions and more individualised treatment.

In the development of smart implants that are equipped with

sensors to allow continuous gait monitoring in populations such

as patients with bone fractures of the tibia, the stance-phase

vertical ground reaction force (VGRF) curve is of particular

interest to monitor healing (4, 5). To achieve the best results in

analysing these long-term data sets, it is important to account for

factors that may increase variability and noise. Variations in the

VGRF curve among surface types might be among such factors.

The gait in daily life can be monitored with different types of

sensors. The instrumented pressure-sensing insoles are among the

available wearable sensors and have become available for long-term

recordings (6). Most of the available instrumented insoles provide

the pressure distribution underneath each foot, the centre of pressure

(COP), and the total VGRF. The VGRF curve during the stance

phase of walking usually has two maxima with an in-between

minimum (7, 8). The VGRF curve is influenced by anthropometric

factors, slope of walking surface and muscle strength (9, 10). The

VGRF curve shows a different pattern with varying types of

locomotion, such as stepping up and down, as well as running (10–13).

Analysing gait has traditionally been conducted indoors on even

surfaces or artificially created irregular or inclined surfaces. When

conducting continuous measurements in daily life, gait is not only

recorded indoors but also outdoors in different contexts. These

different contexts, such as varying ground surfaces, can influence

the gait pattern. Walking on an irregular surface, which is usually

assessed on artificial surfaces in the lab, affected the joint

kinematics and increased muscle activity, but especially increased

the variability of spatiotemporal parameters, joint kinematics,

muscle activity and trunk movements during walking (14–18).

Gait variability increased with increasing surface irregularity (18).

When analysing long-term insole data, short-term changes in the

gait pattern might be caused by walking on different surface types.

Therefore, it might be necessary to correct for the effects of

different surfaces to avoid misinterpretation of the data, e.g., an

increase in gait variability could be interpreted as a decrease in

performance, but it could also be caused by a change in walking

surface. The aim of this study was to explore the effect of the

surface type on the VGRF and COP data, and to provide an

indication about which surface types affect the gait pattern in

which ways and need to be taken into account when analysing

continuous daily living data. We hypothesized characteristic

changes in the VGRF and COP data of healthy participants when

walking on flat indoor compared to flat and inclined outdoor

surfaces, as well as compared to forest, gravel, grass, and sand surfaces.
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2 Methods

Ethical approval was obtained from the ethical committee of

Saarland Medical Board (Ärztekammer des Saarlandes, Germany,

application number 30/21). Informed consent was obtained

according to the Declaration of Helsinki. The study is registered

in the German Clinical Trials Register (DRKS-ID: DRKS00025108).
2.1 Data collection

Healthy adults between 18 and 65 years were included in the

study. Adults with gait disorders, use of walking aids, pregnancy

or inability to give informed consent were excluded.

Participants were asked to wear trainers, otherwise flat closed

shoes without ankle coverage if they had no trainers. The shoes

were not standardized, but all had a soft and not a hard shoe

sole. Their shoes were fitted with a pair of pressure-sensing

insoles (OpenGo, Moticon GmbH, Munich, Germany), that have

been proven valid and reliable in previous studies (19). These

insoles each contain 16 pressure sensors and an inertial

measurement unit (triaxial accelerometer and gyroscope). The

insoles were individually calibrated to the participant’s body

weight. Data were collected with a sample frequency of 100 Hz.

The participants walked on eight different surfaces, including one

indoors and seven outdoors: flat hallway indoors, flat outdoors,

uphill (asphalt; estimated slope 8%), downhill (asphalt; estimated

slope −8%), forest (soil ground with tree roots sticking out and

fallen leaves and small branches on top), gravel, grass and sand

(Figure 1). Apart from the uphill and downhill condition, the

other conditions were flat. On each surface the start and the end

of a 30 m track were outlined. Participants were asked to start

walking at least two steps before the start line and to continue

walking for at least two steps at the end of the course.

Participants were instructed to walk at their preferred speed. It is

known that the walking speed impacts the VGRF data (20). Since

the walking speed cannot be accurately measured with

instrumented insoles, this effect was not taken into account in

this study, but we expect that on average people adapt their

speed in a similar fashion to the different conditions. Data

collection was started when the participants crossed the start line

and stopped when they crossed the 30-m mark. Short breaks

between the conditions were present where the participants

walked towards the next locations. Data were collected in

October and November 2022 at an average daily temperature of

ten degrees Celsius and only small amounts of rain to ensure the

outdoor surfaces were minimally affected by weather conditions.
2.2 Data processing

The pressure sensor data were extracted from the insoles

with the OpenGo software (Moticon GmbH, Munich,

Germany). The VGRF data and centre of pressure (COP) data

were calculated by the software and were then exported for

further processing.
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FIGURE 1

The different types of surfaces that the assessments were performed on. (A) Indoor (flat); (B)Outdoor flat (C). Uphill and downhill (outdoor); (D) Forest;
(E) Gravel; (F) Grass; (G) Sand.
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The pressure sensor data were extracted from the insoles with the

OpenGo software (Moticon GmbH, Munich, Germany). The VGRF

data and centre of pressure (COP) data were calculated by the

software and were exported for further processing. A custom-made

MATLAB script was used to process the data and calculate the gait

parameters. Data gaps of up to 17 milliseconds were present in a few

measurements and were filled using spline interpolation. Data were

filtered with a fourth-order Butterworth filter with a cut-off frequency

of 10 Hz. Next, stance phases were detected. A stance phase was

defined as a consecutive VGRF reading above 30 N with at least

0.45 s between one end of the swing phase and the end of the next

swing phase of the same leg. Each stance phase was time-normalised

using linear interpolation and the VGRF data were normalised to

percentage bodyweight. Two local maxima with an inter-peak

distance of 30% of the normalised stance phase time were detected

during each stance phase. The minimum VGRF between these two

local maxima was also extracted. The loading slope was calculated

from the start of the stance phase up to 80% of the normalised VGRF

of the first maximum (11). The unloading slope was calculated from

the moment that the VGRF of the second maximum was decreased

by 20% up to the end of the stance phase (Figure 2). The maximal

forward-travelled distance of the COP underneath the foot during the

loading phase was calculated and will be referred to as the COP

length. From all the above-mentioned parameters, the coefficient of

variation was calculated as a measure of variability. All parameters

were calculated for both the left and right foot and averaged for each

foot, and the average of these two values was used in the data analysis.
2.3 Statistics

Statistical tests were performed with JASP (version 0.16.4;

https://jasp-stats.org/). The parameters were tested for normality
Frontiers in Digital Health 03
with the Shapiro-Wilk test. The loading slope data were not normally

distributed and therefore transformed (y ¼ x�1). A one-way

repeated measures ANOVA was conducted with the different surface

types as a within-subjects factor. In case sphericity was violated, the

Greenhouse-Geisser correction was used. Eta squared was calculated

as a measure of effect size. Post-hoc testing was performed according

to the Holm method. Significance was defined as p < 0.05.
3 Results

Thirty healthy adults were included in the study (Table 1). Data

of one participant were discarded because of zeroing issues in the

proprietary insole algorithm during the swing phases.

The VGRF curves for the different surfaces are shown in

Figure 3 and the obtained parameters are presented in Table 2.

Figure 4 indicates relative changes in parameters compared to

indoor walking.
3.1 Average values

The repeated measures ANOVA showed significant within-

subject differences between the walking surfaces in all calculated

parameters (Table 2 and Additional File 1). The largest effects were

found for the peaks in the VGRF. Post hoc tests showed that for the

first peak in the VGRF, the indoor, uphill, downhill and forest

surfaces were significantly different from all other surfaces

(Additional File 1 Table S1). Downhill walking had the highest first

peak in the VGRF and uphill walking the lowest (Table 2 and

Figure 4A). For the second peak in the VGRF, uphill walking was

significantly higher and downhill walking was significantly lower

than all other surfaces (Table 2 and Additional File 1 Table S2). For
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FIGURE 2

The vertical ground reaction force (VGRF) during the stance phase with the extracted parameters. Max, maximal; Min, minimal; P, peak; VGRF, vertical
ground reaction force.

TABLE 1 Demographics of the participants (mean ± standard deviation).

N (female) 29 (22)

Age (years) 30 ± 12

Height (cm) 172 ± 8

Weight (kg) 76 ± 23
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the minimal VGRF, indoor walking was significantly higher and

downhill walking significantly lower than all other surfaces (Table 2

and Additional File 1 Table S3). For the loading slope, it was

indoor, uphill and downhill walking that were significantly different

from all other surfaces (Additional File 1 Table S4). The lowest

loading slope was found for uphill walking followed by indoor

walking, and the highest value was found for downhill walking

(Table 2). For the unloading slope, most significant differences with

other surfaces were found for downhill walking, which was

significantly lower than all other surfaces except for indoor walking

(Table 2 and Additional File 1 Table S5). For the COP length

during the loading phase, sand was significantly lower compared to

all other surfaces (Table 2 and Additional File 1 Table S6). The

effect sizes were largest for downhill walking in all parameters,

except for the COP length during the loading phase, in which case

sand had the largest effect sizes (Additional File 1).
3.2 Variability values

Figure 4B illustrates changes in variability among surfaces. The

highest variability in all parameters, except for the local minimum in
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the VGRF, was observed when walking on sand (Table 2). The

variability of the minimal VGRF during indoor walking and the

loading slope during walking on sand were significantly higher

compared to all other surfaces (Additional File 1 Table S9 and S10).

The largest effect sizes were found for walking on sand for all

parameters except the local minimum in the VGRF (Additional File 1).
3.3 Percentage changes

The percentage change relative to indoor walking was

calculated for each parameter to show how much the parameters

changed compared to the most basic flat indoor condition

(Figure 4A). The change from walking indoors to outdoors, be it

to flat, forest, gravel, grass or sand surfaces, was characterized by

a simultaneous increase in the first maximum of the VGRF,

loading slope and unloading slope, and a simultaneous decrease

in local minimum of the VGRF. While the pattern of parameter

changes was clearly distinguished for uphill and downhill

walking, forest, gravel, grass and sand showed very similar

pattern changes. The variability increased in all conditions

compared to indoor walking. The largest increases were found

for the compliant surfaces, forest, gravel, grass and sand.
4 Discussion

In this study, effects of different walking surfaces on the

VGRF and the COP-curve of the gait cycle measured by
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FIGURE 3

(A) Time and body weight-normalised vertical ground reaction curve during the stance phase per surface type. (B) Standard deviations of the
normalised vertical ground reaction curves during the stance phase per surface type. Stance phase trajectories were averaged across participants.
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instrumented insoles were explored. Significant differences in

extracted parameters were found for walking on different

surfaces with the largest effects on the peaks in the VGRF.

Differences between conditions were especially seen in level

surfaces and surfaces with a slope for the average gait

parameters. The largest effect sizes (Additional File 1) were

found for downhill walking, except for COP length where the

largest effect size was found for uphill walking. The gait

variability was mainly affected by the compliance of the surface,

where the largest effects were found on sand.

When analysing continuous insole data obtained during daily

living, characteristic changes in combined parameter patterns

may indicate uphill and downhill walking, as well as walking on

a more or less compliant surface. As expected, based on previous
Frontiers in Digital Health 05
studies, uphill and downhill walking lead to characteristic

differences in gait patterns compared to level walking (21, 22).

These differences were more pronounced during downhill

walking than uphill walking, which was comparable with earlier

findings (22, 23). Since walking on a slope had a substantial

effect on the gait pattern, we recommend that it should be

considered when analysing daily living gait data. This is

especially relevant for real-time analyses performed on devices

that deliver alarms as treatment intervention, such as applying

too much load. Estimating the slope that participants are walking

on during daily life can be done with the data of an IMU, e.g.,

by using the accelerometer as a tilt sensor (24). Most

commercially available pressure sensing insoles also contain an

IMU, making it a feasible option.
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Automatic classification of walking surface is required when the

surface needs to be taken into account when interpreting the data.

Machine learning has already been used to classify different surfaces

during walking, but using IMU data (25–27). Instrumented insole

data has so far only been used to distinguish between activities

with varying success (21, 28). We expect that it is possible to

automatically distinguish between different types of surfaces based

on VGRF data. Parameters that seem especially suited for this are

the ratio between the two maxima in the VGRF to distinguish

uphill, downhill and flat surfaces from each other. Variability

parameters, which substantially increased when walking on

compliant surfaces and increased with compliance of the surface,

because postural control is more challenged, might be key in

distinguishing between compliant and non-compliant surfaces.

Demographic variables should also be added to the machine

learning model, because these have an effect on the VGRF (9).

When analysing variability of the gait pattern from daily life

measurements, the increased variability when walking on

compliant surfaces could lead to mistakes in data interpretation.

For example, in patients with Parkinson’s disease an increase in

gait variability could indicate walking on compliant surfaces or

could be an indication that a new dose of dopaminergic

medication is required if they are walking on noncompliant

surfaces (29). In addition, the correction for the type of surface

might depend on and be of interest for further population-related

parameters. It is likely that frail people avoid the extra challenges

of walking on compliant surfaces. The avoidance of compliant

surfaces might be an additional parameter as well as an indication

of psychological aspects, such as the fear of falling (30).

Previous studies showed that the effect of irregular surface on

gait was larger in older adults compared to younger adults

(15, 17). Our study was performed with a young population;

therefore, it might be worthwhile to study the effect of walking

on irregular surfaces in an older population. This could also be

the case for clinical populations with injuries and movement

disorders. In clinical populations, short-term changes in the gait

pattern could just as well be caused by, e.g., medical conditions,

effects of treatments and interventions. Especially, in these

clinical populations, it is important to distinguish whether the

changes in the gait pattern were caused by something related to

the medical condition or by a change in surface to be able to

correctly interpret the data.

This study has some limitations. The measurements were

mainly performed outside, making them more ecologically valid,

however only straight walking was measured. During daily life,

people will perform curved walking, as well as additional

movements or tasks which could influence the parameters

differently. Moreover, we did not take gait speed into account. It

could be that the gait speed differed per surface type, which

might have influenced the VGRF. However, a previous study did

not find differences in gait speed between different surface types

(18), therefore we expect that this had only a minor influence on

our results. The study had a sex imbalance, because most

participants were female. As the VGRF data were normalized to

body weight, we expect that the sex imbalance only had a limited

effect on the results.
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FIGURE 4

Percent changes relative to indoor walking for the averaged gait parameters (A) and the variability of the gait parameters (B). COP, center of pressure;
max, maximal; min, minimal; P, peak; VGRF, vertical ground reaction.
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5 Conclusions

The gait pattern as assessed by pressure-sensing insoles is

influenced by the type of walking surface. Walking on a slope

affects VGRF and COP-derived gait parameters, and in

addition, the compliance of the surface increases the

variability of these parameters. The change from walking
Frontiers in Digital Health 07
indoors to outdoors, be it on flat, inclined, forest, gravel,

grass or sand surfaces, is characterized by a typical

increase or decrease in multiple gait parameters. When

analysing gait data measured via insoles during daily

living, we recommend to distinguish between flat and

inclined surfaces, as well as non-compliant and

compliant surfaces.
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