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Building an open-source
community to enhance
autonomic nervous system signal
analysis: DBDP-autonomic
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Hayoung Jeong1, Natasha Yamane2, Yuna Watanabe2, Bill Chen1

and Matthew S. Goodwin2

1Department of Biomedical Engineering, Duke University, Durham, NC, United States, 2Khoury College
of Computer Sciences and Bouvé College of Health Sciences, Northeastern University, Boston, MA,
United States
Smartphones and wearable sensors offer an unprecedented ability to collect
peripheral psychophysiological signals across diverse timescales, settings,
populations, and modalities. However, open-source software development
has yet to keep pace with rapid advancements in hardware technology
and availability, creating an analytical barrier that limits the scientific
usefulness of acquired data. We propose a community-driven, open-source
peripheral psychophysiological signal pre-processing and analysis software
framework that could advance biobehavioral health by enabling more robust,
transparent, and reproducible inferences involving autonomic nervous
system data.
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1 Introduction

Chronic physical conditions and mental health disorders are increasingly prevalent

(1). Integrating biological, behavioral, and environmental data is needed to enable

early detection, just-in-time intervention, and outcome monitoring to promote

biobehavioral health.

Mobile monitoring technologies are changing how we collect behavioral,

environmental, and peripheral psychophysiological data in non-clinical settings. They

allow researchers and clinicians to gather information continuously and unobtrusively

beyond traditional clinical settings’ temporal and spatial limitations. While there have

been successful examples of technology-driven biobehavioral applications such as

detecting stress by continuously monitoring heart rate variability (2, 3), predicting

episodes of depression (4, 5), or identifying sleep disorder patterns using wearable sleep

trackers (6), the full potential of these technologies has yet to be realized. There are at

least two key challenges hindering progress: (1) the common misinterpretation of

peripheral psychophysiological signals in biobehavioral research and (2) the need for

greater transparency and reproducibility in biobehavioral research that involves

peripheral physiological data.
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1.1 The criticality of context in the
interpretation of autonomic nervous
system data

The Autonomic Nervous System (ANS) plays a fundamental

role in regulating myriad physiological processes within the body,

including, but not limited to, heart rate, blood pressure,

respiration, and digestion. Its primary function is maintaining

homeostasis by continuously adjusting the body to changing

internal and external conditions. Thus, understanding the context

in which ANS data is collected is critical to making accurate and

meaningful biobehavioral interpretations.

The ANS is highly variable within and across people but also

has stable characteristics based on an individual’s baseline

biology. ANS activity can be influenced by various factors,

including but not limited to, stress, affect, cognition, physical

activity, sleep, illness, medications, and environmental

demands. ANS activity also varies over time—for example,

heart rate variability changes during different stages of sleep

(7). Further, ANS responses differ between individuals based

on age, genetics, and health conditions (8, 9). The

combination of these influencing factors makes the ANS

particularly difficult to study, especially when the broader

context (setting, activity, health status, etc.) and a person’s

baseline state are not considered.
FIGURE 1

This figure demonstrates the need for additional context when analyzing amb
rate variability data to predict a probability of physiological stress/arousal for a
major stressful (or high arousal) periods (b). However, when asked to self-
periods, contradictory to the purely physiological interpretation (c). Consid
arousal episode was stressful since the user was undergoing an exam. The
during the day, which showed similar physiological arousal but were not str
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Fluctuations in ANS signals may be misattributed to one factor

(e.g., a stressful event) when they are the result of another factor

(e.g., physical activity) (Figure 1). Some common examples of

transient states that are misinterpreted when context is excluded

include affect (emotion/mood (10)), cognition (challenge/threat

(11)), and physical perturbations (sleep, medications, exercise

(12)). This impacts broader digital biomarker development that

focuses on a single physiological system and thus ignores the

broader context and systemic interconnectedness that may

collectively influence diagnostic outcomes (autonomic neuropathy,

neurodegenerative disease, gastrointestinal disorders, etc.).

Context also helps account for psychophysiological differences

by differentiating between a stimulus-driven or condition-

specific shift in ANS activity vs. natural fluctuations (e.g., diurnal

variations) around a baseline. Additionally, including context in

research and clinical care enables a more quantitative assessment

of the effects of interventions like medications and therapies and

whether observed changes constitute lasting outcomes, which are

notoriously difficult to assess systematically.

In sum, it is important to consider internal, external, and

temporal contexts to ensure accurate diagnosis and interpretation

of ANS using digital health data. Software that enables data

fusion and multi-modal analysis is needed to address these issues

adequately. This approach differs from existing data analytic

pipelines that explore one sensing channel at a time. Integrating
ulatory physiological signals. We used a stress-prediction model on heart
person over 24 h (a). From a naïve interpretation, it seems there are three

report stress levels, the user rated a mix of low to high stress for those
ering additional contextual information, we realize that only one high-
other periods were when the user was in a class and exercising later

essful (d).
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data types could fill the gap in digital health initiatives that include

ANS data and thus address one of the major issues in this area.
1.2 Addressing reproducibility

Scientific endeavors are experiencing both a crisis of method

reproducibility (the ability to achieve congruent results from a

given dataset and analysis) and results reproducibility (the ability

to recreate results independently (13, 14)). Large-scale projects

indicate various degrees of non-replicability in multiple scientific

fields (15–19). In addition, reported results are frequently

incorrect or misstated (20). Some commonly reported reasons

include a lack of interoperability between software tools and data

sets and the limited record-keeping maintained for complicated

data sets, which impact coordinated analyses, reporting, and

archiving. For example, crowdsourced analysis projects where

multiple expert teams analyze the same data corpus reveal an

enormous amount of analytical flexibility present in complex

analyses of identical questions (e.g., 29 teams analyzed an identical

dataset, with odds ratios for effects ranging from 0:89 to 2:93,

M ¼ 1:31 (21)). Reproducibility of analyses require identical

statistical analyses.

The reproducibility crisis is pronounced in the context of ANS

data collection and analysis when using consumer sensors in real-

world settings. The field lacks clear and standardized guidelines for

analyzing autonomic data, leading to many disparate methods and

a bottleneck in translating promising proofs-of-principle to

widespread use. Researchers repeatedly build new algorithms and

methods from scratch on new datasets without any meaningful

comparisons with existing approaches or different datasets. This

lack of benchmarking leads to a cycle of “reinventing the wheel”

and “demonstrating feasibility.”
2 Envisioning an open-source,
community-driven peripheral
psychophysiological data
processing framework

We envision an open-source framework that enables

community users to create, execute, and share computational

models and data analysis pipelines that address standardization,

interpretation, and reproducibility challenges often encountered

when analyzing ANS data. While several free and open-source

software platforms are available for peripheral physiological data

analysis (22–36), including some well-known, feature-rich

software packages (e.g., WFDB (33) and openANSLAB (37)), we

identified 10 common problem areas that impede broader

acceptability and usability: (i) focus on only one or a few

biosignals, each requiring its own analysis pipeline and signal-

specific expertise; (ii) often download-on-request, or “freemium”

(i.e., requiring payment for some analysis and input/output

functions); (iii) designed for smaller laboratory datasets, not

ambulatory datasets, which are typically much larger and require a

significant investment of personnel time in error detection and
Frontiers in Digital Health 03
correction; (iv) no integration across biosignals; (v) no explicit

support for open scientific principles or platforms; (vi)

unsupported, providing little or no accompanying documentation;

(vii) inability to analyze the context in which data were collected;

(viii) static, and not designed to incorporate code from other

contributors; (ix) no ability to archive analysis pathways; and (x)

command-line based, thus challenging for non-programmers.

Proprietary software packages accompanying proprietary hardware

and more general biosensor synchronization software have similar

problems, as well as higher costs and closed code.

We developed a Survey of User Needs (SUN) to assess whether

researchers and engineers from various scientific fields and

disciplines who regularly process and analyze peripheral

physiological and contextual data also experience the

aforementioned analytical barriers. We circulated the survey to a

large sample of researchers and engineers (n ¼ 421; 31%

Researchers, 69% Engineers) from the Society of

Psychophysiological Research, the IEEE International Machine

Learning for Signal Processing Workshop, and snowball sampling

using personal contacts and social media. Consistent with our review

of existing software, over 70% of the researchers we surveyed

confirmed facing difficulties syncing data from different sources,

identifying errors in data, and combining data from different types

of devices. They also reported that the various software tools were

hard to learn and lacked clear instructions.

Our review of existing software and our survey results demonstrate

that researchers and engineers across several disciplines working with

multiple peripheral physiological signals would benefit from a

multimodal data fusion platform with an open-source codebase.

Indeed, SUN respondents were enthusiastic about a community-

driven open-source framework that enables more transparency and

reproducibility in the field. Based on this feedback, we outline the

various core components we envision are needed.
2.1 Community driven

We envision that the sustainability of the framework can be

achieved by inviting scientists and researchers to contribute state-

of-the-art methodologies and algorithms as plugins. Researchers

can contribute individual tasks like artifact removal or complete

end-to-end pipelines and machine-learning models for a

particular outcome. Such a collaborative approach will be crucial

in addressing reproducibility challenges by (a) allowing engineers

and computer scientists to validate and refine their approaches

and algorithms and (b) allowing behavioral scientists and

clinicians access to cutting-edge tools and methods for their

work. By integrating these community-contributed plugins, we

envision a dynamic and ever-evolving platform, always up to

date with the latest advancements in the field.

To further ensure reproducibility, we anticipate researchers

who design new methods and models to contribute their

approaches to DBDP-Autonomic. The framework will include a

foundational set of validated tools developed by our team,

establishing a baseline for functionality. However, the goal is

to build an iterative, community-driven ecosystem where
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contributions from other researchers play a central role. This

approach benefits engineering and computer science researchers

by increasing the adoption and visibility of their tools, while

psychology and behavioral science researchers gain access to

state-of-the-art techniques to analyze their data.

To maintain the reliability of the framework, contributed

methods will undergo validation through benchmarking datasets

and automated testing pipelines, ensuring compliance with

established standards. Each plugin will include metadata

specifying its purpose and validation outcomes, enabling

transparency and usability. Over time, feedback from the

community will help refine these tools, creating a continuous

improvement cycle. This collaborative structure ensures that the

framework remains robust and reproducible, advancing the field

of psychophysiological research.

To facilitate these contributions, DBDP-Autonomic will provide

standardized templates, clear documentation, and consistent input/

output formats for all plugins. These templates will define common

data structures and processing workflows, ensuring compatibility

and ease of integration. This will enable researchers to contribute

methods ranging from individual tasks, such as artifact removal, to

comprehensive pipelines, while allowing users to seamlessly

incorporate these plugins into their workflows. Furthermore, all

generated syntax, results, visualizations, and meta-data should be

documented. These could be stored locally and on a networked

storage system available via a public interface to promote

transparency and reproducibility. We envision that every step (with

version control) associated with data processing and analysis, which

we call the data supply chain (38), would be automatically saved as

meta-data associated with a given dataset so other researchers can

understand exactly how the data were collected, cleaned, and analyzed.
2.2 Data quality auditing and preprocessing

The framework should audit and assess the quality of

peripheral physiological data collected in various settings by

identifying and helping researchers address challenges like

motion artifacts, environmental factors, and hardware limitations.

To this end, we propose that the framework implement multiple

semi-automated modules for data cleaning, preprocessing, and

artifact removal, employing statistical and state-of-the-art

machine-learning techniques as plugins (39–41). These software

elements should cater to different data types and help researchers

efficiently prepare and process their data for subsequent analysis.
2.3 Signal segmentation and alignment

A core aspect of ANS signal analysis is effective segmentation.

Accordingly, the proposed framework should include a module

that can determine appropriate time windows for signal

segmentation based on the type of biosignal and research

question. This module would help researchers and users select

the optimal window length for their specific research needs, like

short windows for time-domain features or longer ones for
Frontiers in Digital Health 04
frequency-domain features. Aligning multimodal signals can be a

challenge, particularly for uneven sampling rates, and tools can

be included to support improved signal alignment (42).
2.4 Contextual information integration

Appropriately interpreting physiological data requires

understanding the recording context, which includes

characteristics of the environment outside the person (social,

geolocation, ambient temperature, etc.) and those of the person

(e.g., affect, physical activity, posture) that impact it. For

instance, prior work demonstrates improved stress detection

capabilities when physiological signals include contextual features

(12). While several libraries allow researchers to do contextual

processing (e.g., BeWie, RAPIDS), none integrate contextual

information to drive physiological data processing, i.e., provide

users with plots of physiological data with visual overlays that

describe recording context (location change, physical activity,

etc.) to help researchers determine whether contextual feature

variables should be controlled for in subsequent analyses.
2.5 Data fusion and signal alignment

Researchers often use multiple peripheral physiological sensors

and signals to study a particular outcome. Thus, data fusion and

signal alignment are crucial. This step involves aligning data from

different sensors or modalities, which might vary in sampling

frequencies and timestamps. We envision community-contributed

plugins capable of handling the intricacies of multimodal

physiological data by harmonizing signals across different timescales

and accommodating both short-term events and long-term trends.
2.6 Programming language and GUI

In the SUN survey, almost all behavioral scientists noted the need

for a graphical user interface (GUI) to interact with open-source

physiological processing tools. Thus, to cater to diverse user

backgrounds and varying programming skills, the framework

should be accessible both through a user-friendly GUI and a

command-line interface (CLI). If common open programming

languages (Python, R, Bash, etc.) are used, it would be convenient

for researchers also to contribute their plugins and machine-

learning models and use the framework to visualize their data and

the outcomes of the various modules and plugins.
2.7 Science gateways and open science
integration

The envisioned framework should align with Open Science

Framework standards, ensuring compatibility with open science

practices. The integration could include leveraging the Digital

Health Data Repository, where researchers can easily share open-
frontiersin.org
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FIGURE 2

DBDP Autonomic extends the functionalities of DBDP for biobehavioral research. (A) As signals from various modalities enter the analysis pipeline,
DBDP Autonomic provides additional features on top of the existing modules in DBDP. These features extract and add contextual information,
provide domain knowledge (for parameter tuning), and support multimodal data fusion. (B) Researchers can then integrate the processed features
such as HR, RR, and BP to understand the autonomic constructs in the context of major domains of basic human neurobehavioral functioning.
ECG, electrocardiogram; PPG, photoplethysmography; RIP, respiratory inductance plethysmography; BP, blood pressure; EDA, exploratory data
analysis; HR, heart rate; HRV, heart rate variability; SBP, systolic BP; DBP, diastolic BP; SCR, skin conductance response; SCL, skin conductance level.
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sourced, de-identified datasets while following relevant data

management and reporting standards and considering privacy

and ethical constraints.
3 DBDP autonomic

To effectuate our vision, we suggest expanding the Digital

Biomarker Discovery Project1 (DBDP (43)) to include dedicated

processing of ANS signals – which we call DBDP Autonomic

(Figure 2). DBDP is designed to serve as a hub for collaborative

and open research in the field of digital health. Its current code

repository includes computational building blocks for the most

common measures of ambulatory physiological data collected

through wearable devices, including photoplethysmography

(PPG), electrocardiography (ECG), and electrodermal activity

(EDA). The repository comprises four modules: (1) exploratory

data analysis, (2) data preprocessing, (3) feature engineering, and

(4) machine learning model development. Together, they provide

users with methods needed to complete each component of an

end-to-end data processing pipeline, including data cleaning and

preprocessing tasks, analysis, and predictive model development.
1https://www.dbdp.org/code-repositories
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In addition to these general method modules, DBDP hosts

an archive of code repositories and a list of open-source

digital health data from internal and external collaborators.

Contributors can upload their code to the DBDP archive or

actively collaborate to update the methods repositories. DBDP

is also developing a code-free GUI-based platform (DBDP

Discovery) that enables users with little or no coding expertise

to interact with the functionalities of DBDP modules either

with datasets from the DHDR or their own data appropriately

formatted (CSV, excel, etc.)

The uploaded code may remain standalone or be integrated

into the main DBDP repository. Regardless of its location, it will

adhere to the framework’s plugin guidelines, allowing it to be

cloned as a submodule and used seamlessly alongside other

DBDP components. This approach enables contributors to

provide code for specific tasks (e.g., artifact removal) while

allowing other users to incorporate these modules into their

workflows without additional modifications. It functions similarly

to how smaller modular ecosystems like React or npm packages

operate, facilitating flexibility and ease of integration.

While general principles such as data fusion and signal

alignment are broadly applicable to all physiological signals,

DBDP-Autonomic specifically targets signals from the autonomic

nervous system (ANS) to derive insights into psychological states.

The ANS plays a critical role in processes like stress, arousal, and

emotional regulation, making it uniquely positioned to bridge the

physiological and psychological domains.
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A key challenge in analyzing ANS data is the role of context.

For instance, elevated heart rate and skin conductance might

occur during both a stressful exam and a workout. While the

physiological patterns may look similar, their psychological

interpretations differ significantly. DBDP-Autonomic addresses

this by integrating contextual data (e.g., activity type, location,

and environmental factors) to disambiguate such scenarios and

provide more accurate inferences about psychological states.

In addition, DBDP-Autonomic emphasizes the combination of

multi-dimensional signals (e.g., heart rate variability, electrodermal

activity, respiration) to create unified constructs that reflect

psychological states more comprehensively. This approach

contrasts with single-signal analysis, which often fails to capture

the complexity of phenomena like stress or emotional regulation.

Through contextual integration and multi-dimensional signal

fusion, DBDP-Autonomic seeks to bridge critical gaps in

understanding the interplay between physiology and psychology.
4 Discussion and call to community
action

DBDP has established itself as an open-source hub for digital

health, offering educational resources and computational tools for

developing foundational features that collectively contribute to

modeling complex biobehavioral outcomes. DBDP Autonomic, as an

extension of this groundwork, could address the challenges associated

with ANS signal analysis and enhance the standardization,

interpretation, and reproducibility of existing and future research.

To advance biobehavioral research through DBDP Autonomic,

we call upon the collective expertise of the digital health,

behavioral, and psychophysiological research communities.

Engagement and active participation from the community will be

vital to ensuring the long-term viability and success of DBDP

Autonomic. Our envisioned member engagement within DBDP

Autonomic could follow the Center for Scientific Collaboration

and Community Engagement (CSCCE) Community Participation

Model (44), wherein multiple modes of interaction can coexist,

with some members navigating through several nodes. Within

this model, members typically initiate from the CONVEY/

CONSUME mode, engaging with educational resources (e.g.,

tutorials and blog posts) to acquire biobehavioral and digital

health knowledge. They may also access curated datasets and

algorithms for their research. Transitioning to the

CONTRIBUTE mode, research groups can add their go-to data

cleaning algorithms, feature selection methods, and machine

learning models as modules for other community members to

use, benchmark, receive feedback, and cross-validate with other

community-supplied methods. In the COLLABORATE mode,

members of DBDP Autonomic could synergize and undertake

joint research initiatives among the diverse community members

who can apply, adapt, evaluate, and extend currently existing

methods. Members could also co-author white papers and peer-

reviewed publications to establish and enact standards in

biobehavioral research. Lastly, members in the CO-CREATE
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mode could organize and lead workshops and working groups,

driving the collective mission of DBDP Autonomic forward.
5 Conclusion

A collaborative effort of the DBDP Autonomic community

could enable more robust, transparent, and reproducible research

in biobehavioral health that involves ANS data. By emphasizing

collaboration, transparency, and rigor, this resource could

improve our understanding of complex biobehavioral health

issues, provide personalized health insights, and accelerate the

development of innovative interventions. As we move into the

age of digital health, such a framework becomes essential for

unlocking the full potential of mobile devices to benefit

individual and community health.
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