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The Internet of Medical Things (IoMT) has revolutionized healthcare with remote
patient monitoring and real-time diagnosis, but securing patient data remains a
critical challenge due to sophisticated cyber threats and the sensitivity of
medical information. Traditional machine learning methods struggle to capture
the complex patterns in IoMT data, and conventional intrusion detection
systems often fail to identify unknown attacks, leading to high false positive
rates and compromised patient data security. To address these issues, we
propose RCLNet, an effective Anomaly-based Intrusion Detection System
(A-IDS) for IoMT. RCLNet employs a multi-faceted approach, including
Random Forest (RF) for feature selection, the integration of Convolutional
Neural Networks (CNN) and Long Short-Term Memory (LSTM) models to
enhance pattern recognition, and a Self-Adaptive Attention Layer Mechanism
(SAALM) designed specifically for the unique challenges of IoMT. Additionally,
RCLNet utilizes focal loss (FL) to manage imbalanced data distributions, a
common challenge in IoMT datasets. Evaluation using the WUSTL-EHMS-
2020 healthcare dataset demonstrates that RCLNet outperforms recent state-
of-the-art methods, achieving a remarkable accuracy of 99.78%, highlighting
its potential to significantly improve the security and confidentiality of patient
data in IoMT healthcare systems.
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1 Introduction

The Internet of Things (IoT) has revolutionized numerous critical domains through its

implementation of intelligent and automated solutions. This evolution has led to the

emergence of the IoMT, which integrates advanced technology into healthcare systems,

thereby enhancing the quality of medical services available to IoMT consumer applications

(1). Healthcare IoT encompasses sensors, actuators, and various IoT devices that facilitate
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data transmission and reception via diverse wireless technologies.

IoMT has significantly advanced the healthcare sector in multiple

facets (2). For instance, remote health monitoring enables

continuous tracking of patients and facilitates routine tasks, ensuring

timely medical interventions when necessary (3). Furthermore,

healthcare providers can access and analyze real-time patient data,

enabling prompt and effective delivery of medical services. Although

IoMT has several advantages, its linked nature results in a

complicated security environment that differs significantly from

conventional IT architecture. IoMT devices are often resource-

constrained, with lower computing power and perhaps poorer

security procedures than traditional IT systems. These inherent

weaknesses make them appealing targets for cybercriminals (4).

Intrusions into IoMT networks jeopardize patient privacy, healthcare

service delivery, and possibly patient safety (5).

Furthermore, network intrusions can impair essential IoMT

functions such as remote monitoring and medicine administration,

which may lead to delays in treatment or even life-threatening

situations (6). Malicious individuals might exploit weaknesses to

influence equipment, resulting in failures or the production of

incorrect data. In severe instances, hacked devices have the

potential to be transformed into weapons that might cause injury

to patients, for example, by administering erroneous doses via an

insulin pump (7). Moreover, the vast quantity of personal health

information (PHI) gathered by IoMT devices renders them

appealing to potential data breaches. Stolen personally identifiable

information PHI may be used for identity theft, insurance fraud,

or illicitly traded on the black market. This puts patient privacy at

risk and can result in significant financial damage (8).

The imperative to mitigate the potential ramifications of

intrusions within the IoMT network underscores the necessity for

the deployment of robust IDS. Extensive research efforts have been

dedicated to the development of intrusion detection methodologies

(9). Numerous Deep Learning and Machine Learning techniques

have been proposed. These approaches encompass signature-based

techniques (10), network-based methodologies (11), behavioral-

based strategies (12) and feature selection-based methodologies

(13). While these offer a valuable starting point, limitations remain.

Signature-based methods struggle with novel attacks (14), while

network-based approaches can generate false positives due to

normal traffic variations (15). Behavioral-based strategies face

challenges in establishing baselines and adapting to evolving

behavior (16). Feature-based methodologies, though promising,

require further research to identify the most relevant features and

develop effective algorithms (17).

However, there is still room for improvement in detection

performance. Our study addresses the limitations of traditional

intrusion detection methods by exploring a powerful

combination of feature sets and state-of-the-art deep learning

models enhanced with FL.

The main contributions of this work are as follows.

• We proposed an effective and accurate A-IDS for the IoMT

healthcare environment, named RCLNet, to address the

limitations of traditional machine learning techniques and the

challenges faced by conventional IDS methods.
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• We employ a RF feature selection and ranking mechanism to

identify the most important features from the high-

dimensional IoMT data, allowing the model to focus on the

critical indicators of anomalous or malicious activity.

• We design a deep learning architecture that combines CNNs-

LSTMs to effectively model the spatial and temporal patterns

present in the IoMT data, enabling the capture of complex

dynamics. Integrate a SAALM into the CNN-LSTM

architecture, allowing the model to dynamically focus on the

most relevant features and time steps, enhancing its ability to

identify critical indicators of intrusion or attack instances.

• To address the challenge of imbalanced data distribution in IoMT

datasets, we employ the FL function, which dynamically adjusts

the loss contributions of different classes, effectively improving

the model’s performance on the minority class (intrusion or

attack instances without compromising the overall accuracy.

• We demonstrate the effectiveness and accuracy of the proposed

RCLNet scheme through comprehensive experiments using a

publicly available healthcare dataset, WUSTL-EHMS-2020,

achieving an impressive accuracy of 99.78%.

The structure of this work is organized as follows. Section 2

reviews the relevant literature and identifies its limitations.

Section 3 details the proposed RCLNet for IoMT. Section 4

describes the experimental setup and analyze the experimental

results, including performance analysis and comparison of the

proposed RCLNet. Finally, Section 5 concludes the research.
2 Background and related works

Many recent research studies discussed the problem of intrusion

attacks in IoMT and presented different approaches to secure

sensitive data from such attacks. A feature selection strategy based

on logistic regression models for intrusion detection was suggested

in (18) to find a minimum set of important attributes assessed on

a real-time dataset gathered from a medical network. In another

study improved feature selection method LRGU-MIFS was

presented (19). Furthermore, in a different study author suggested

a new deep neural network (DNN)-based framework to build a

DS in the IoMT network (20). The goal was to predict unexpected

attacks in the first step and dynamically identify them in the next

step on both the network and host side. This paper introduces a

cognitive security framework that leverages deep learning to detect

intrusions in IoT and 5G networks. By combining MobileNetV3-

SVM and transfer learning, the framework analyzes network

activity patterns to identify potential breaches in real-time. Despite

its effectiveness, the framework faces challenges such as resource

constraints, dependency on large labeled datasets, and scalability

issues in very large-scale deployments (21). Furthermore, the

author in (22) proposed a Meta-Intrusion Detection System

(Meta-IDS) to tackle new types of attacks. This system uses a

meta-learning approach to combine signature-based and anomaly-

based detection techniques. A novel hybrid IDS model for the

IoMT network was introduced in (23). Another research examined

a combined deep learning architecture that utilizes CNNs and
frontiersin.org
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TABLE 1 List of abbreviations.

Abbreviation Definition
IoMT Internet of medical things

A-IDS Anomaly-based intrusion detection system

RF Random forest

CNN Convolutional neural networks

LSTM Long short-term memory

SAALM Self-adaptive attention layer mechanism

FL Focal loss

IDS Intrusion detection system

IoT Internet of things

IIoT Industrial internet of things

ROC Receiver operating characteristic

AUC Area under the curve

DR Detection rate

FAR False alarm rate

FPR False positive rate

TPR True positive rate

CE Cross entropy

ACC Accuracy

PR Precision

RE Recall

F1 F1-score
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LSTMs for immediate detection of intrusions at the network edge.

This study demonstrated higher accuracy compared to current

methods on the CSE-CIC-IDS2018 dataset (24).

Furthermore, recent research has explored innovative

approaches to enhance intrusion detection systems (IDS) in

evolving IoMT and IoT environments. In a study the authors

proposed a privacy-preserving Federated Learning (FL)-based IDS

model named Fed-Inforce-Fusion for IoMT networks (25). This

model leverages reinforcement learning techniques to uncover

latent relationships within the medical data, ultimately improving

the identification of cyber-attacks. Additionally (26), introduced a

federated learning strategy for anomaly detection in the Industrial

Internet of Things (IIoT) domain. The researchers employed deep

reinforcement learning to train local models, enhancing detection

accuracy and preserving privacy. The proposed approach also

demonstrated efficacy in achieving high throughput and low

latency, making it a promising solution for real-world (IIoT)

applications. The paper presents an extremely boosted neural

network designed to predict multi-stage cyber attacks in cloud

computing environments. The model achieves high accuracy by

utilizing a combination of machine learning algorithms to predict

complex, multi-step attacks. However, its complexity may lead to

higher computational costs, and its effectiveness across different

cloud environments and varying attack scenarios requires further

validation. Additionally, the accuracy of predictions is heavily

dependent on the quality of the training data (27). This paper

proposes a framework for predicting cyber-attacks in IoT systems

using a multi-class SVM and an optimized CHAID decision tree.

The framework enhances the precision of attack categorization by

focusing on network traffic characteristics. Limitations include

variability in feature selection effectiveness, challenges in real-time

application for large-scale IoT deployments, and difficulties in

adapting to new and evolving attack vectors (28).

Furthermore, the paper introduces a blockchain-based

framework aimed at enhancing the security and privacy of IoMT

systems. By using distributed ledger technology, the framework

secures data transmission and management between medical

devices and healthcare systems (29). In another study (30),

presented a Deep Reinforcement Learning methodology for

monitoring IoT systems in healthcare. This model, involving data

collection, edge computing, data transmission, and cloud

computing, leveraged AI algorithms for diagnosis, treatment, and

decision-making, showing promise as an economical telemedicine

solution. In (31), utilized reinforcement learning with Software-

Defined Networking (SDN) for intrusion detection, achieving

higher accuracy results compared to traditional methods. Our

review of the literature reveals that only two recent studies have

integrated network traffic and patient biometric data as features

for detecting IoMT attacks. In (32), researchers developed a

healthcare monitoring system testbed and generated datasets to

simulate network attacks. They found that combining network

traffic with patient biometrics enhanced attack detection

performance compared to using network traffic alone, achieving

approximately 90% accuracy with machine learning. However,

this study did not investigate efficient data analytics methods to

further enhance detection capabilities.
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Moreover, in (33), the authors employed a tree classifier

model with data preprocessing and augmentation to improve

performance on similar datasets. However, they encountered

overfitting issues due to data augmentation, and they did not explore

the consideration of imbalanced traffic proportions to simulate real-

time scenarios. Furthermore, the author introduced PSO-DNN

approach outperformed existing methods, achieving 96% accuracy in

intrusion detection for IoMT, with advantages including improved

detection accuracy using combined network traffic and patient

biometric data. However, current solutions still struggle with

detecting novel attacks and face high false positive rates in

anomaly-based systems (34). Inspired by the need to improve

IoMT attack detection. Our goal is to identify optimal features

from both network traffic and patient biometric data by RF,

aiming to improve IoMT attack detection without solely relying

on data augmentation techniques. For a better understanding of

the terms used in this paper, we have provided Table 1, that

describes each abbreviation and its corresponding definition.
3 Proposed RCLNet for an effective
A-IDS

The proposed RCLNet scheme is designed as a novel Anomaly-

based Intrusion Detection System (A-IDS) tailored for the Internet

of Medical Things (IoMT) healthcare environment. The

methodology starts with comprehensive data preprocessing, which

includes data cleaning, normalization, and feature extraction.

A Random Forest model is utilized for feature selection and

ranking, enabling the identification of the most significant features

critical for the A-IDS task. The preprocessed data is then

processed through an advanced deep learning architecture that

integrates Convolutional Neural Networks (CNNs) and Long
frontiersin.org
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Algorithm 1 Proposed data-efficient algorithm for intrusion detection in
IoMT healthcare environments.

1. Input: WUSTL-EHMS 2020

2. Normalization and preprocessing of D with feature extraction using Random
Forest for feature selection and ranking

3. Split into training set Dtrain and testing set Dtest

4. Function Train Enhanced CNN-LSTM Model

5. Initialize weights W and biases B for CNN and LSTM layers

6. Incorporate self-adaptive attention mechanism in the CNN-LSTM network

7. for Epoch ← 1 to E do

8. Batch training on Dtrain with batch size B

9. Apply self-adaptive attention to focus on relevant sequence parts

10. Calculate and minimize enhanced CNN-LSTM loss function using focal loss to
address imbalanced data distribution

11. Update W, B, and attention parameters using backpropagation

12. end for

13. Return trained Enhanced CNN-LSTM model with self-adaptive attention

14. end Function

15. Function Test Enhanced CNN-LSTM Model (model, Dtest)

16. while not end of Dtest do

17. Evaluate the model on Dtest

18. Generate and record output classifications

19. end while

20. Return test results

21. end Function

22. Enhanced CNN-LSTM Model ← Train Enhanced CNN-LSTM Model ()

23. Invoke Test Enhanced CNN-LSTM Model with Enhanced CNN-LSTM Model
and D test

24. Assign output to Test Results

25. Function Analyze Results (Test Results)

26. for each result in Test Results do

27. if result is 0 then

28. Label as Normal activity

29. Else

30. Label as one of the multiple Attack types (Normal, Attack)

31. end if

32. end for

33. Return analyzed results with multi-class attack identification
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Short-Term Memory (LSTM) networks, allowing the model to learn

complex spatial and temporal patterns inherent in IoMT

environments. To enhance its efficacy, a Self-Adaptive Attention

Layer Mechanism (SAALM) is incorporated, enabling the model

to dynamically focus on the most relevant features and time steps

during the intrusion detection process.

Ethical considerations are paramount; we acknowledge privacy

concerns related to patient data and the potential risks of false

positives, which may lead to alarm fatigue, as well as false negatives

that could jeopardize patient safety. To mitigate these risks, we

propose strategies such as establishing clear protocols for alert

handling and integrating human oversight into decision-making

processes. RCLNet is designed for adaptability and scalability,

allowing it to function effectively across diverse healthcare

environments—from small clinics with limited resources to large

hospital networks requiring real-time processing of vast amounts of

data. Additionally, we propose optimizations for edge computing

scenarios, where data processing occurs closer to the source,

reducing latency and bandwidth usage. Overall, while RCLNet

introduces some computational costs due to its advanced

architecture, the optimizations employed ensure that it remains

efficient and effective for real-time intrusion detection in IoMT

environments. This comprehensive approach reinforces RCLNet’s

potential contributions to improving patient data security in IoMT

applications while addressing the evolving challenges of cybersecurity.

The proposed RCLNet scheme automatically learns and preserves

essential features of network traffic and patient biometrics using the

WUSTL-EHMS 2020 dataset to detect intrusions and cyber-attacks.

Furthermore, this A-IDS assists security analysts by alleviating

strenuous investigation tasks and safeguarding enterprises from

cyber threats and intrusions. Algorithm 1 and Figure 1 illustrate the

working mechanism of the proposed RCLNet A-IDS.

34. End Function

35. Final Results ← Analyze Results (Test Results)

36. Output and save Final Results
3.1 Data preprocessing

The feature selection process using Random Forest is a critical

component of RCLNet, as it helps identify the most relevant

features for detecting anomalies in IoMT data. In our

implementation, we utilize the Gini importance metric to rank

features based on their contribution to the model’s predictive

power. This process allows us to reduce dimensionality and focus

on the features that have the greatest impact on classification

performance approach (35). To demonstrate the effectiveness of

the Random Forest feature selection process, we will include a

comparative analysis showing the performance of RCLNet with

and without feature selection. By evaluating metrics such as

accuracy, precision, recall, and F1-score, we aim to provide clear

evidence of how feature selection enhances the model’s

performance. This additional analysis will reinforce the

importance of the feature selection step in improving RCLNet’s

robustness and accuracy in detecting intrusions.

This proposed approach randomly selects decision trees and

calculates the prediction output by averaging the values from all

the decision tree prediction. The number of decision trees is

represented by the variable “b” and the total number of decision
Frontiers in Digital Health 04
trees, where f represents a feature, N is the number of trees, st
are the splits in tree t, I is an indicator function, and 4i(s, f ) is

the decrease in impurity.

The formulation used for RF is represented in Equation 1.

IS(f ) ¼ 1
Ntrees

XNtrees

t¼1

X

node [t

I(f [ node) � Impurity (1)

Here, Ntrees represents the number of trees in the forest, I is an

indicator function that is 1 if feature f is used at the node within

tree t, and Δ Impurity is the improvement in impurity from

using feature f for splitting at that node.
3.2 CNN-LSTM neural network

The integration of CNN and LSTM models in RCLNet is a

deliberate design choice aimed at addressing the unique
frontiersin.org
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FIGURE 1

Proposed RCLNet model.
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characteristics of IoMT data. IoMT environments generate

complex, high-dimensional data streams that exhibit both

spatial and temporal dependencies. CNNs are particularly

effective for extracting spatial features from multi-dimensional

data, while LSTMs excel at capturing temporal dependencies

due to their recurrent structure. By combining CNNs and

LSTMs, RCLNet leverages the strengths of both architectures:

CNNs for effective spatial feature extraction and LSTMs for

understanding temporal dynamics. This integration enables

RCLNet to analyze IoMT data more comprehensively,

facilitating timely and accurate detection of anomalies and

potential intrusions.
3.2.1 CNN architecture
In our approach, CNN operates as a hierarchical sequence of

layers, systematically processing input from an initial layer to
Frontiers in Digital Health 05
generate a final output layer. Each layer comprises neurons,

where each neuron (excluding the input layer) computes its

output by applying a function to the neurons in the preceding

layer, denoted as y ¼ f (x). This layered architecture was

employed for effective feature extraction (36).

• Input layer receives the selected network features, for a 1D

CNN, if the input data comprises N features, the input layer

will have a shape of (N, 1).

• The Convolutional layer is the foundation of the CNN, where

neurons share the same weights and biases, forming a kernel

or filter. If the filter size is defined as n X n, each neuron in

this layer will connect to n X n neurons in the preceding

layer. The output ( j, k)) for a neuron in this layer is

computed as described in Equation 2.

• An activation layer is used to introduce non-linearity into the

model. Nonlinear activation functions, such as the Rectified
frontiersin.org
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Linear Unit (ReLU), are commonly applied after the

convolutional and pooling layers. The ReLU function sets

negative values in the feature maps to zero while preserving

positive values, defined by f (x) ¼ max(x, 0).

• The pooling layer is responsible for down-sampling the feature

maps generated by the preceding layers. This layer segments the

neurons from the previous layer into non-overlapping rectangles

and selects a single value, typically the maximum value, to

represent each sub-area. The most commonly used pooling

function for this purpose is max-pooling.

yj, k ¼
Xn�1

l¼0

Xn�1

m¼0
wl, mxjþ l, k þmþ b (2)
• The flatten layer transforms the higher-dimensional outputs

feature maps from the convolutional and pooling layers into a

1D vector. This vector is then fed into the subsequent layers,

such as an LSTM.
3.2.2 LSTM architecture
LSTM is a type of recurrent neural network (RNN) designed

for analyzing time series data, adept at capturing temporal

dependencies. It excels in modeling long-term correlations by

utilizing memory cells that can update hidden states. The LSTM

model consists of four primary components: a self-linked

memory cell and three multiplicative units known as the input,

output, and forget gates (37).

• Input Layer receives the flattened vector output from

the CNN.

• LSTM Cells process the input sequence and capture temporal

dependencies within the data. Additionally, the following

Equations 3–7 are utilized to perform the operations of the

LSTM model

it ¼ s(Wi : [ ht�1, Xt]þ bi) (3)

f t ¼ s(Wf : [ ht�1, Xt]þ bf ) (4)

Ct ¼ tanh(Wc : [ ht�1, Xt]þ bc) (5)

Ot ¼ s(Wo : [ ht�1, Xt]þ bo) (6)

where it , ft , Ot , and Ct represent the input gate, forget gate,

output gate, and cell state respectively.

• Output layer is final hidden state ht from the LSTM

encapsulates the temporal features

ht ¼ Ottanh(ct) (7)

3.3 Self-adaptive attention layer mechanism

In our approach, The Self-Adaptive Attention Layer Mechanism

(SAALM) is a key innovation in the RCLNet architecture, designed

to enhance its capability to focus on the most relevant features of

incoming data. SAALM is particularly tailored for the Internet of
Frontiers in Digital Health 06
Medical Things (IoMT) due to several critical considerations.

Given the variability in sensor readings and the diverse data types

generated by IoMT devices, SAALM employs a dynamic

weighting strategy that allows the model to adaptively focus on

the most informative features at any given time. This is crucial in

IoMT scenarios where certain features may indicate critical

conditions or anomalies, while others may be less relevant or

even noisy. Additionally, SAALM is designed to support real-time

processing requirements common in healthcare settings. By

quickly adjusting its focus based on the incoming data stream,

SAALM ensures that RCLNet can respond promptly to evolving

threats and anomalies, which is vital for maintaining patient

safety and system integrity. By incorporating these design

considerations, SAALM significantly enhances the effectiveness of

RCLNet in handling the unique challenges posed by IoMT

environments. The SAALM dynamically learns to emphasize the

most pertinent segments of the input sequence. Beginning with a

sequence of hidden states M ¼ {M1, M2, . . . , Mz} from the

CNN-LSTM layer, the CNN layers initially extract spatial and

local features from the input data. Subsequently, the LSTM layers

capture temporal dependencies within the sequence (38). From

the final LSTM layer, SAALM computes attention weights to

prioritize specific states over others. This process involves

transforming each hidden state Mt into a query vector Qt and a

key vector Kt through linear projections using weight matrices

Wq and Wk, respectively, the transformations are defined as

follows Equations 8, 9.

Stþj ¼ QT
t Kj (8)

Wt ¼ exp (St,t)PZ
J¼1 exp (St,t)

(9)

Where (St,t) represents the attention score between the query vector

at timestep t and the key vector at timestep j. The softmax function

is applied to ensure that the weights across all timesteps sum to 1,

enabling a probabilistic interpretation of attention weights. The

output of the attention mechanism, SV , is then computed as a

weighted sum of the hidden states scaled by the computed

attention weights in Equation 10.

SV ¼
XZ

t¼1
WtMt (10)

Here, SV represents the context vector, capturing the most

relevant information across the sequence as determined by the

SAALM. This context vector is then used for subsequent

processing or classification tasks, enabling the model to make

informed decisions based on the dynamically learned importance

of different parts of the input sequence (39).
3.4 Loss function

In this section, we discuss the implementation of focal

loss within RCLNet and its associated benefits. Focal loss is
frontiersin.org
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designed to address the challenge of class imbalance, which is a

common issue in intrusion detection systems. In many IoMT

datasets, the number of benign instances far exceeds that of

malicious instances, leading to a model that may become

biased toward the majority class. The focal loss function

modifies the standard cross-entropy loss by adding a factor that

reduces the relative loss for well-classified examples, putting

more focus on hard-to-classify instances. Mathematically,

focal loss can be expressed as deep learning architectures are

renowned for their ability to extract spatiotemporal features.

However, class imbalance in network traffic data can hinder

model performance. To address this challenge effectively, we

propose using the focal loss function, which improves upon

traditional cross-entropy (CE) loss (40). By integrating focal

loss into the training process, RCLNet is better equipped

to learn from the minority class, leading to improved

detection performance for rare but critical intrusion events.

This enhancement is particularly important in IoMT

environments, where the consequences of undetected intrusions

can be severe.

The focal loss function is defined as in Equation 11.

FL(pt) ¼ �(1 � pt)
glog(pt) (11)

The predicted probability of the positive class is denoted as pt ,

while γ≥ 0 serves as a focusing parameter that adjusts the loss

function. Typically, modulates the loss function’s sensitivity to

hard-to-classify examples. The symbol log represents the natural

logarithm in mathematical notation.
3.5 Hyperparameter tuning

To optimize the performance of the proposed RCLNet, the

research team conducted extensive experimentation to identify

the most effective hyperparameter values, including the number

of epochs, layer configurations, neuron counts, and batch size.

The core of the model architecture consisted of two 1D

convolutional layers with 32 and 64 filters, respectively, and a

kernel size of 3, using ReLU activation and max-pooling layers

to capture spatial patterns. This was followed by two LSTM

layers with 100 and 50 units, respectively, to capture temporal

dependencies, with a dropout rate of 0.2 applied to prevent

overfitting. Integrated within the LSTM layers, the self-adaptive

attention mechanism (SAALM) played a crucial role in the

model’s ability to focus on the most relevant features for

accurate intrusion detection, assigning dynamic weights to the

input sequence. The output of the LSTM-SAALM layers was

then fed into a dense layer with 20 neurons and ReLU

activation, followed by a final Softmax layer for classification

output. The model was trained for 20 epochs with a batch size

of 64, using the ADAM optimizer with default hyperparameters

and FL as the loss function, and the complete schematic

architecture of the proposed RCLNet-based A-IDS is shown

in Figure 1.
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4 Experimental setup and evaluation
metrics

This section outlines the comprehensive details of the

experimental setup, including the datasets and pre-processing steps.

Additionally, we describe the evaluation metrics used to assess the

performance of the proposed RCLNet threat detection model.

The experiments were performed on a single NVIDIA RTX

3090 GPU, using the PyTorch framework to develop the

proposed RCLNet model. The Adam optimizer with AMSGrad

was employed to optimize the training process (41).
4.1 Dataset

Washington University in St. Louis enhanced healthcare

monitoring system (WUSTL-EHMS 2020) Dataset: The WUSTL-

EHMS 2020 dataset utilized in this work was collected from a

variety of healthcare sensors using a health monitoring sensor

card. An assault from the center was simulated during testing. The

WUSTL-EHMS-2020 contains several types of cyber-attacks,

including man-in-the-middle attacks, spoofing attacks, and data

injection attacks. The dataset has 44 data features, 35 is a network

flow metric, 8 is biometric features of patients, and one label

feature. The dataset contains 16,318 records, classified as “normal”

and “attacker” (9). The ARGUS technology was used to merge

patient biometric and network traffic data into a single dataset.
4.2 Evaluation criteria

In this section, Various metrics of evaluation have been

employed to thoroughly evaluate the performance of the

proposed RCLNet, i.e., Accuracy (ACC), Precision (PR), Recall

(RE), F1-score (F1), Receiver Operating Characteristics (ROC).

where TP and TN are true positive and true negative rates, while

FP and FN represents the false postive and false negative rates.

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

(12)

PR ¼ TP
TPþ FP

(13)

RE ¼ TP
TPþ FN

(14)

F1 ¼ 2 � Recall � Precision
Recall þ Precision

(15)

4.3 Results and discussion

The proposed RCLNet scheme, which integrates CNN, LSTM,

and SAALM components along with focal loss, demonstrates

excellent performance on the WUSTL-EHMS-2020 healthcare

dataset, achieving an accuracy of 99.78%—outperforming the
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TABLE 2 Ablation study RF, CNN, LSTM and SAALM of different model configurations.

RF CNN LSTM SAALM WUSTL-EHMS 2020 Model complexity

ACC PR RE F1 Train time (s)/epoch Inference (s)
✓ X X X 0.8677 0.6165 0.6325 0.5853 140 1.38

✓ ✓ X X 0.9460 0.9583 0.9418 0.9492 289 2.81

✓ ✓ ✓ X 0.9619 0.9539 0.9455 0.9491 394 5.23

✓ ✓ ✓ ✓ 0.9978 0.9953 0.9983 0.9957 423 6.03

TABLE 3 Performance of RCLNet with different loss functions.

RCLNet CE FL WUSTL-EHMS 2020 Model complexity

ACC PR RE F1 Train time (s)/epoch Inference (s)
✓ ✓ X 0.9704 0.9792 0.9667 0.9729 590 7.51

✓ X ✓ 0.9978 0.9953 0.9983 0.9957 423 6.03
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baseline models that utilized RF, CNN, and LSTM architectures, as

shown in Table 2. The results highlight the importance of the

individual components within the RCLNet scheme, with the

feature selection and ranking using Random Forest helping to

identify the most discriminative features, and the integration of

CNN and LSTM, coupled with the SAALM, enabling the model

to effectively learn both spatial and temporal dependencies.

The use of focal loss addresses the challenge of imbalanced

data distribution, improving the overall detection performance in

terms of precision, recall, and F1-score, as demonstrated

in Table 2. While the RCLNet scheme with focal loss achieves

the highest accuracy, the analysis of model complexity reveals

trade-offs between accuracy, training time, and inference time,

providing valuable insights for practitioners in selecting

the appropriate model based on their specific deployment

requirements. The superior performance of the RCLNet scheme

underscores its potential for practical deployment in IoMT

healthcare environments, contributing to enhanced security and

confidentiality of patient data. The ablation study comparing the

performance of several model architectures on the WUSTL-

EHMS 2020 dataset for AIDS, including RF, CNN, LSTM, and

SAALM, further highlights the impact of these components on

various performance metrics, such as accuracy, precision, recall,

F1-score, training time per epoch, and inference time.

1. The RF-based model achieves an accuracy of 0.8677, a precision

of 0.6165, a recall of 0.6325, and an F1-score of 0.5853, with a

low training time of 140 s per epoch and inference time of

1.38 s. While the accuracy is reasonably high, the lower

precision, recall, and F1-score suggest the RF architecture

may not be the most effective for this intrusion detection

task, as it struggles to correctly identify the various patterns.

The tradeoffs between model performance and complexity are

important when selecting the appropriate approach for re-al-

world deployment, where factors like computational efficiency

and response time are critical.

2. Incorporating CNN into the model significantly boosts the

performance, with the RF and CNN configuration achieving

an accuracy of 0.9460, precision of 0.9583, recall of 0.9418,
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and F1-score of 0.9492. This demonstrates the CNN’s ability

to effectively learn complex feature representations from the

data, outperforming the standalone RF approach across all

evaluation metrics.

3. Further adding a LSTM layer to the RF-CNN model yields

additional performance im-provements, with the RF, CNN

and LSTM configuration achieving an accuracy of 0.9619,

precision of 0.9539, recall of 0.9455, and F1-score of 0.9491.

The LSTM component allows the model to better capture

temporal dependencies in the data, complementing the spatial

feature extraction capabilities of the CNN.

4. In the last, SAALM, which combines the RF, CNN, LSTM, and

an adversarial training com-ponent, achieves the overall best

performance with an accuracy of 0.9978, precision of 0.9953,

recall of 0.9983, and F1-score of 0.9957. This demonstrates

the value of the adversarial learning approach for A-IDS, as

the SAALM is able to learn more robust and generalizable

features compared to the other configurations.

In evaluating the performance of RCLNet, it is essential to

consider the trade-off between accuracy and false positive rates.

While our model achieved an impressive accuracy of 99.78%, the

implications of false positives in real-world healthcare settings

cannot be overlooked. High false positive rates can lead to alarm

fatigue among healthcare professionals, potentially causing

critical alerts to be overlooked. To address this, we conducted a

thorough analysis of the false positive rate (FPR) alongside our

accuracy metrics. By adjusting the decision thresholds, we

observed that a balance can be achieved, allowing for improved

operational effectiveness without sacrificing patient safety.

In addition, the performance of the RCLNet model with

different loss functions is summarized in Table 3, which provides

a detailed comparison of RCLNet using CE and FL functions. The

RCLNet with CE achieves an accuracy of 97.04%, while the model

with FL shows a significantly higher accuracy of 99.78%,

demonstrating FL’s effectiveness in handling imbalanced data.

Precision improves from 97.92% with CE to 99.53% with FL,

reducing false positives. Recall for CE is 96.67%, while for FL, it is

significantly higher at 99.83%, highlighting improved true positive
frontiersin.org
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detection. The F1-score for CE is 97.29%, compared to an impressive

99.57% for FL, reinforcing the superior performance of FL in

balancing precision and recall. The training time per epoch for FL

is 423 s, while CE takes slightly longer at 590 s, likely due to

additional computations. Inference time for CE is 7.51 s, whereas

FL is marginally faster at 6.03 s. Overall, the RCLNet model with

FL demonstrates superior performance across all key metrics

compared to CE loss, making FL a preferable choice for handling

imbalanced data in IoMT A-IDS scenarios.

Furthermore, the experimental findings illustrate the strong

performance of the proposed RCLNet scheme. The model

effectively identified all dataset classes, achieving high true

positive rates and low false positive rates. Receiver Operating

Characteristic (ROC) curves provided insights into the trade-off

between true positive rate and false positive rate, with the Area

Under the ROC Curve (AUC-ROC) serving as a key metric for

assessing classification performance. Figure 2 demonstrates the

ROC curve for the RCLNet scheme on the WUSTL-EHMS-2020

dataset achieving a perfect AUC-ROC, indicating exceptional

classification accuracy.

To substantiate the claim that RCLNet enhances patient data

security, we present empirical evidence from our experiments. By

comparing our model with traditional intrusion detection

systems, we observed a marked reduction in both the number of

undetected attacks and the frequency of data breaches in

simulated environments. This demonstrates that RCLNet not

only identifies known threats more effectively but also adapts to

novel attack vectors, thereby significantly improving the security
FIGURE 2

ROC curves.
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posture of IoMT systems. We recommend further studies to

quantify these benefits in real-world deployments.
4.4 Comparing performance with previous
approaches

Table 4 presents a comparative analysis of the performance of

RCLNet with several previous approaches on the WUSTL-EHMS

2020 healthcare dataset. Firstly, the KNN (K-Nearest Neighbors)

model achieved an accuracy of 0.90, which is the lowest among

the compared techniques (28). Secondly, a tree classifier

approach was able to achieve a slightly higher accuracy of 0.93

(29). Thirdly, the PSO-DNN (Particle Swarm Optimization-Deep

Neural Network) method outperformed the previous two

approaches, reaching an accuracy of 0.96 (30). Moving on, the

AI-(XAI) (Artificial Intelligence with Explainable AI) technique

also achieved an accuracy of 0.93, on par with the tree classifier

(42). Fifthly, the FusionNet model demonstrated a significant

improvement, attaining an accuracy of 0.99 (43). Sixth, the

GBBOA (Gradient-Based Biogeography-Based Optimization

Algorithm) approach achieved an accuracy of 0.9772 (44).

Finally, the proposed RCLNet approach outperformed all the

previous methods, achieving a remarkable accuracy of 0.9978.

This underscores the superior performance of the RCLNet

model, which leverages the integration of Random Forest,

Convolutional Neural Networks, Long Short-Term Memory, and

the Self-Adaptive Attention Layer Mechanism to effectively
frontiersin.org
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TABLE 4 RCLNet approach with previous approaches on WUSTL-EHMS
2020.

Article Techniques ACC
(31) KNN 0.90

(32) Tree classifier 0.93

(33) PSO-DNN 0.96

(42) AI-(XAI) 0.93

(43) FusionNet 0.99

(44) GBBOA 0.97

Proposed work RCLNet 0.9978
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capture the complex patterns in IoMT data and enhance the

security and confidentiality of patient information.

We present a comparative analysis of RCLNet against a broader

set of existing methods, including traditional machine learning

algorithms as well as other recent anomaly detection techniques.

We conducted experiments using standard metrics such as

accuracy, precision, recall, and F1-score to evaluate the

performance of RCLNet relative to these methods. The results

demonstrate that RCLNet consistently outperforms the

comparative methods across various datasets, particularly in

scenarios involving class imbalance, where its use of focal loss and

advanced architecture provide significant advantages. This analysis

not only highlights the superior performance of RCLNet but also

contextualizes its advantages and limitations within the broader

landscape of intrusion detection systems. We believe this addition

significantly strengthens the validity of our claims and provides a

clearer understanding of RCLNet’s contributions to the field.
5 Conclusion

The article introduced the RCLNet scheme, an effective A-IDS

designed for IoMT healthcare environments. The system addresses

crucial challenges in IoMT data security and confidentiality by

leveraging RF for feature selection. The CNN-LSTM architecture,

integrating it with a Self-Adaptive Attention Layer Mechanism

SAALM, effectively models the spatial and temporal patterns

present in the IoMT data and captures complex dynamics. The

incorporation of the focal loss function (FL) further enhances the

model’s ability to handle imbalanced data distributions, thereby

boosting detection accuracy. Experimental results using the

WUSTL-EHMS-2020 dataset demonstrate the RCLNet scheme’s

superiority, achieving an outstanding accuracy of 99.78% and

surpassing existing state-of-the-art methods. This robust

performance underscores the RCLNet scheme’s potential to

significantly bolster IoMT healthcare system security,

safeguarding patient data integrity and privacy.

To substantiate the claim that RCLNet enhances patient

data security, we present empirical evidence from our

experiments. By comparing our model with traditional intrusion

detection systems, we observed a marked reduction in both the

number of undetected attacks and the frequency of data breaches

in simulated environments. This demonstrates that RCLNet not

only identifies known threats more effectively but also adapts to

novel attack vectors, thereby significantly improving the security
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posture of IoMT systems. We recommend further studies to

quantify these benefits in real-world deployments.

Future research will explore integrating technologies like

blockchain and federated learning to enhance Intrusion

Detection Systems (IDS) for Internet of Medical Things (IoMT)

deployments. We aim to evaluate RCLNet with diverse datasets

covering various IoMT devices and attack scenarios, validating its

real-world applicability in healthcare.

Additionally, we plan to incorporate reinforcement learning

(RL) to improve RCLNet’s anomaly detection. This will enable

adaptive learning and enhance detection strategies in response to

evolving threats, particularly in dynamic environments where

quick adjustments are essential.
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