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Introduction: Identity verification plays a crucial role in modern society, with
applications spanning from online services to security systems. As the need for
robust automatic authentication systems increases, various methodologies—
software, hardware, and biometric—have been developed. Among these,
biometric modalities have gained significant attention due to their high
accuracy and resistance to falsification. This paper focuses on utilizing
electrocardiogram (ECG) signals for identity verification, capitalizing on their
unique, individualized characteristics.
Methods: In this study, we propose a novel identity verification framework based
on ECG signals. Notable datasets, such as the NSRDB and MITDB, are employed
to evaluate the performance of the system. These datasets, however, contain
inherent noise, which necessitates preprocessing. The proposed framework
involves two main steps: (1) signal cleansing to remove noise and (2)
transforming the signals into the frequency domain for feature extraction. This
is achieved by applying the Wigner-Ville distribution, which converts ECG
signals into image data. Each image captures unique cardiac signal
information of the individual, ensuring distinction in a noise-free environment.
For recognition, deep learning techniques, particularly convolutional neural
networks (CNNs), are applied. The GoogleNet architecture is selected for its
effectiveness in processing complex image data, and is used for both training
and testing the system.
Results: The identity verification model achieved impressive results across two
benchmark datasets. For the NSRDB dataset, the model achieved an accuracy
of 99.3% and an Equal Error Rate (EER) of 0.8%. Similarly, for the MITDB
dataset, the model demonstrated an accuracy of 99.004% and an EER of 0.8%.
These results indicate that the proposed framework offers superior
performance in comparison to alternative biometric authentication methods.
Discussion: The outcomes of this study highlight the effectiveness of using ECG
signals for identity verification, particularly in terms of accuracy and robustness
against noise. The proposed framework, leveraging the Wigner-Ville
distribution and GoogleNet architecture, demonstrates the potential of deep
learning techniques in biometric authentication. The results from the NSRDB
and MITDB datasets reflect the high reliability of the model, with exceptionally
low error rates. This approach could be extended to other biometric
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modalities or combined with additional layers of security to enhance its practical
applications. Furthermore, future research could explore additional
preprocessing techniques or alternative deep learning architectures to further
improve the performance of ECG-based identity verification systems.

KEYWORDS

identity authentication, ECG signal, Wigner-Ville distribution, convolutional neural
networks (CNNs), GoogleNet architecture, signal preprocessing, classification deep
learning based bio-metric authentication
1 Introduction

Security and authentication are among the most important

challenges in today’s society. Authentication is the process of

accurately verifying the identity of a user, device, or any other

entity in a computer system, often as a prerequisite for granting

access to system resources (1). Authentication algorithms can

generally be classified into three main categories: information-

based, token-based, and biometric-based. The biometric-based

approach works by matching biometrics such as voice,

fingerprint, iris, signature, or DNA features (2). Biometric-based

methods operate based on behavioral and biological

characteristics. These features are reliable and cannot be

forgotten or lost (3). However, there have been instances of face

video hacking, fingerprint forgery, and iris forgery in recent years

(4). Recently, electrocardiogram (ECG) signals have been used in

authentication systems as a reliable biometric-based method (5,

6). ECG biometrics have several advantages compared to other

biometric features (2, 5):

• ECG signals are difficult to falsify.

• These signals inherently exist and indicate that the person

is alive.

• The ECG signal provides combined information, including both

identity information and the health status and condition of the

person (1, 4, 7).

Biometric systems that utilize a person’s heart signal have

gained popularity due to the simplicity of data acquisition.

Biometric authentication, particularly through electrocardiogram

(ECG) signals, is emerging as a next-generation technology for

both user authentication and physiological health monitoring.

The unique liveness detection capability of ECG-based biometric

systems distinguishes them from traditional systems, offering

enhanced privacy, security, and robustness in authentication (8).

In recent years, growing interest has emerged in investigating

the feasibility of using “hidden” biometric traits that include an

“aliveness” component, such as electrocardiogram (ECG) or heart

signals. These traits offer promising potential for authentication

in real-world applications, making ECG signals a more viable

option for secure identification (9). Potential applications are

extensive and include, but are not limited to, mobile device

authentication, access control for restricted areas, data protection

on portable devices, banking security, access control for

autonomous vehicles and transportation systems, telework

verification, continuous authentication and real-time monitoring,
02
as well as identity and status monitoring in emergency and

public safety scenarios (10–12).

The main challenges in the literature are (i) the noise

components in cardiac signals, (ii) the difficulty of automatically

extracting feature sets, and (iii) the performance and efficiency of

the system (8). In this research, a biometric-based authentication

system that uses the heart rate signal (ECG) is developed. ECG

signals are influenced by physiological elements such as emotions,

physical activity, and mental activity. ECG signal pre-processing

can reduce noise components. One of the most important goals in

ECG signal analysis is to obtain a feature space of the signal to

fully understand its essence and identify features with high

discriminatory power, essential for signal classification. These

features are present in both the time and frequency domains. For

this purpose, the Wigner-Ville distribution (WVD) has been used

in this research (13). Due to the use of the WVD, the signal data

is prepared for application in a convolutional neural network. At

present, deep neural networks are highly regarded for their

efficiency and high detection power in data classification.

Therefore, in the present study, we used one of the most

significant convolutional neural network architectures, GoogleNet,

to develop an ECG-based authentication system. The following

issues are covered in this paper:

• We perform appropriate pre-processing on the ECG data to

remove signal noise and obtain more accurate findings.

• We define a signal’s Wigner-Ville distribution so that it can be

used as an input for a deep neural network. WVD provides a

new approach for authenticating ECG data based on

convolutional neural networks.

• We propose a highly accurate authentication method for ECG

signals using the GoogleNet architecture.

The rest of the paper is organized as follows: In the next section,

we review some related work. In Section 3, we discuss the proposed

signal pre-processing and the applied convolutional neural network

architecture. Section 4 presents the experiments and analysis of the

results, and finally, in Section 5, we present the conclusion.
2 Related works

In recent years, there has been significant development in ECG

signal extraction technology, leading to the growth of biometric-

based authentication systems using ECG signals. Numerous

research studies have been conducted in this field. The
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authentication of ECG-based biometric systems can be categorized

into fiducial methods, non-fiducial methods, and hybrid methods

based on machine learning.
2.1 Fiducial methods

Fiducial methods are the earliest approaches used for ECG

identification. These methods rely on the morphological

characteristics of the ECG signal, such as wavelength, amplitude,

peaks, angle or slope of the waveform, and their reference points.

Key points such as P, Q, R, S, T, and U are determined to

extract the morphological features (14, 15). However, fiducial

methods are sensitive to signal processing techniques and heavily

rely on heartbeat segmentation and waveform identification

algorithms (7). The QRS complex-based features have been

widely used for biometric tasks due to their lower sensitivity to

physical and emotional changes compared to other parts of the

ECG signals. The Pan-Tompkins algorithm (16) is the most

commonly used algorithm for detecting different points in the

ECG signal, specifically designed for real-time QRS detection (17).

In a study by (18), a mobile biometric authentication system

based on electrocardiogram is proposed. This system requires the

user to touch the two ECG electrodes of the mobile device for

access. However, this study only utilizes one feature, resulting in

the relatively poor accuracy (81.82%). Another study (19) states

that automatic ECG analysis algorithms extract geometric

features and frequency characteristics of ECG signals, greatly

facilitating the automatic diagnosis of heart disease. Although

this research achieves high accuracy using four features, the

applied algorithm is complex and lacks generalizability.
2.2 Non-fiducial methods

Non-fiducial methods aim to reduce the complexity of

detecting signal points and improve generalization by converting

the time domain to frequency domains for feature extraction (7).

These methods have lower complexity compared to fiducial

methods but heavily rely on signal extraction techniques. The

most commonly used signal transformations from time domain

to frequency include discrete cosine transform (DCT) (14, 20),

Walsh-Hadamard transform (WHT) (21), discrete Fourier

transform (DFT) (22), discrete wavelet transform (DWT)

(23, 24), and generalized S-transform (GST) (17).

In a study by (20) utilizing the DCT transformation the R-R

peak of the signal is first calculated, followed by pre-processing.

Then, a DCT transform is applied to each period. For

authentication, the correlation between the outputs of the

transformed signals should be above 95%. If this correlation is

established for three consecutive signals, access is granted;

otherwise, access is temporarily restricted. This research reports

an accuracy of 97.87% and a processing time of 1.21 s for the

authentication of 15 individuals.

Another article (14) uses a band-pass filter to check the signal

quality and then extracts features using automatic correlation.
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Additionally, the Walsh-Hadamard transform is employed for

feature transformation, and linear discriminant analysis is used

to reduce the dimensionality of the feature vector. The best

identification rates reported are 95% for the MIT-BIH

arrhythmia database and 97% for the QT database, respectively.

In a study by (25), a classifier model is designed to classify ECG

signals in the MIT-BIH database. Features are extracted using the

S-transform, and a genetic algorithm is utilized to optimize the

extracted features in the second step. The final step involves

classifying the ECG signals for arrhythmia detection. This study

classifies the data into six categories.
2.3 Machine learning and hybrid methods

Although fiducial and non-fiducial methods have traditionally

been used for ECG signal authentication due to their low

complexity, these methods often suffer from errors. In recent

years, there has been a growing interest in machine learning-

based methods to address these limitations. Some widely used

algorithms in these methods include support vector machines

(SVM), k-nearest neighbors (KNN), decision trees, random

forests, and deep learning algorithms, such as convolutional

neural networks (CNNs) and recurrent neural networks (RNNs).

Pinto et al. (26) proposed a method that utilizes feature

extraction using Discrete Cosine Transform (DCT) and matching

using SVM. Rastogi et al. (27) introduced an authentication

system using ECG signals that employs algorithms or techniques

such as SVM for authentication purposes and dynamic time

warping for signal matching. Agrafioti et al. (28) suggested

feature extraction using autocorrelation coefficients (AC) and

matching by applying artificial neural networks (ANN). Tan

et al. (29) introduced a technique for authentication using mobile

sensors, employing the methods of discrete wavelet transform

(DWT) and random forest. Sidek et al. (30) suggested the use of

KNNs for a biometric system targeting abnormal heart conditions.

In a study (3), effective parts of ECG signals were extracted

using empirical mode decomposition (EMD). Feature extraction

was performed using statistical, time, and frequency domain

features, and the SVM-C method achieved a classification

accuracy of 98.72%. The dataset for this study consisted of

samples from 14 individuals. In another study (31), a robust pre-

processing method was proposed, including noise removal, heart

rate normalization, and quality measurement. The ECG signal

was decomposed into intrinsic mode functions, and Walsh

spectral analysis was used for feature extraction. The KNN

method was employed for classification, achieving 95%

identification accuracy for 90 individuals. The research (32)

focused on determining the minimum number of heartbeats

required for authentication. The study used ECG signals from 80

healthy individuals and applied feature extraction using Discrete

Wavelet Transform. The random forest algorithm was used for

authentication, achieving full accuracy for the dataset.

Recent studies have shown a shift towards deep neural

networks, particularly CNNs and RNNs, due to their improved

efficiency and accuracy in the field of ECG signal authentication.
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Salloum et al. (33) proposed an authentication approach based on

LSTM networks, a type of RNN (Long Short-Term Memory

network), achieving full accuracy. Labati et al. (34) presented the

Deep-ECG model, which utilizes deep CNNs to extract key

features from one or more leads, resulting in high accuracy. The

utilization of CNNs for ECG biometric investigation was first

introduced in the study by Kim et al. (4), where a 2D image with

three signal periods of ECG signals was used as input to the CNN

for authentication.

Further studies on this topic are discussed in references (2, 7,

17, 35), with a comparative analysis provided in (35).

Convolutional Neural Networks (CNNs) are widely utilized in

these studies, employing various architectures such as VGGNet,

ResNet, and GoogleNet. Hong et al. (36) proposed template-free

techniques based on deep learning, utilizing the Inception-v3

architecture and achieving an accuracy of 97.84%. Similarly,

Zhang et al. (15) developed a human identification system

leveraging deep CNNs and Transfer Learning, using multi-view

feature representations of ECG signals with the GoogleNet

architecture, achieving an accuracy of 97.6%. However, it is

important to note that CNNs can be computationally intensive,

and the large size of ECG databases poses challenges for real-

world applications (37). In a recent study by Aleidan et al., a

biometric-based human identification system is presented using

an ensemble-based approach and ECG signals. To enhance

accuracy and computational efficiency, they employed an

ensemble method based on VGG16 pre-trained transfer learning

(TL) and Long Short-Term Memory (LSTM) architectures for

feature optimization (38). In the study by Agrawal et al., a

person authentication system was proposed based on ECG

signals using deep learning algorithms. This method comprises

two main components: CNNs for feature extraction from ECG

data and an LSTM network to model temporal dependencies

in the data (39). Likewise, in the work of Parkash et al., a

multiplication-based model is proposed, adapting deep

learning methods to address limitations of traditional

techniques. Their approach includes ECG signal denoising, R-

peak detection and segmentation in the preprocessing stage.

Cleaned ECG signals are then converted to grayscale images

and fed into a customized deep learning model, which

includes a novel activation function designed to accelerate

network convergence. This model is capable of automatically

extracting input data features (8).

In this study, the GoogleNet architecture was chosen for its

high speed and accuracy in achieving the desired goal.
3 Proposed authentication system

3.1 Data

MITDB and NSRDB (40) are two widely used databases for

ECG signals, which have been utilized in this research to

evaluate the proposed system. The MITDB arrhythmia

database comprises 48 individuals, from whom signals were

obtained for half an hour each. This collection includes both
Frontiers in Digital Health 04
inpatients (approximately 60%) and outpatients

(approximately 40%). Due to the complexity of their signals,

this database is a suitable choice for evaluating authentication

systems (41). The signals were recorded at a frequency of 360

samples per second and digitized in each channel with an 11-

bit resolution within the range of 10 millivolts. It contains

ECG signals from 26 men (ranging from 32 to 89 years old)

and 22 women (ranging from 23 to 89 years old). The NSRDB

dataset consists of 18 long-term ECG recordings from

individuals, with a sampling rate of 128 Hz. The individuals in

this dataset did not exhibit any significant arrhythmia. It

comprises 5 men between the ages of 26 and 45, and 13

women between the ages of 20 and 50.
3.2 Preprocessing steps using a high
temporal/frequency resolution transform

Preprocessing is essential for reducing noise and extracting

meaningful features from the ECG signal, such as the R peak

and the QRS complex, which are critical for constructing the

feature vector of the signal. Although high-accuracy datasets for

ECG signals are available, pre-processing remains necessary due

to the presence of various noise types, including baseline

fluctuations (below 0.5 Hz), muscle noise from movement (above

40 Hz), and power line noise (60 Hz) (4). These noise sources

can introduce false samples that deviate significantly from the

original signal, which may lead to errors in subsequent stages,

particularly when applying convolutional neural networks.

Removing such erroneous samples during pre-processing is

therefore crucial. Additionally, some samples might slightly

deviate from the original signal due to residual noise; thus, it is

necessary to clean the target signal, creating a refined version

that closely resembles the original. This refined signal can then

be utilized in the neural network model, ultimately enhancing

accuracy and reducing error in the authentication process. A

widely used algorithm for pre-processing is the Pan-Tompkins

algorithm (42), employed in this study as well. For example, in

Kim et al.’s work, the Pan-Tompkins algorithm was applied to

identify the R peak and segment the continuous ECG signal into

individual periods (4). Similarly, Srivastava et al. used the Pan-

Tompkins algorithm to remove noise, segment heartbeats, and

convert the ECG signal into two-dimensional images; after

detecting the R peaks, the QRS complex was identified, and three

consecutive heartbeats were used to extract features with

potential variations (43).

One popular algorithm used for pre-processing is the Pan-

Tompkins algorithm (42), which is also employed in this

research. In Kim et al.’s study, the R-peak was identified based

on the Pan-Tompkins algorithm in order to divide the

continuous ECG signal into single period parts and the signal

was segmented at the detected R-peak (4). Additionally, in

Srivastva et al.’s study, the Pan-Tompkins algorithm was used for

ECG preprocessing, and its steps include noise removal,

heartbeat segmentation, and two-dimensional image conversion

of the signal, and after the R peaks of the filtered signal, the QRS
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is determined. and finally three consecutive heartbeats are used to

collect features with possible changes (43).

The raw ECG signals from the database are processed using the

Pan-Tompkins algorithm to identify the P, Q, R, S, and T peaks.

The signals are then cleaned and resampled at an appropriate

sample rate to reduce noise and generate a smoother signal.

Next, the ECG signals are divided into windows, each containing

a heartbeat. The R-peak in each window is determined, and the

height of the R-peak is measured. The mode of the R-peak

heights is calculated. Finally, the signals that are close to this

mode are selected as the final signal. Figure 1a depicts the raw

data, while Figure 1b shows the processed signal, revealing that a

portion of the heart rate has been removed.

In this research, the Wigner-Ville Distribution (WVD) (13)

was utilized to enhance the ECG data signal and improve the

detection capabilities of the data (44). To complete the pre-

processing steps, it was observed that the results of the Wigner-

Ville distribution varied depending on each individual’s heart

rate. Therefore, the WVD was applied separately to each

heartbeat, enabling the conversion of one-dimensional data into

two-dimensional images. WVD is a powerful tool in time-

frequency analysis, non-stationary signal processing, and some

real-world scenarios (45). Also, WVD plays an important role in

time-frequency representation because it can provide good

energy distribution and high resolution for non-stationary signal

processing (46). The following is a detailed description of the

methodology and steps involved in this process:

W(t, f ) ¼
ð
f t þ t

2

� �
fw t � t

2

� �
e�j2pf t dt, W(t, f ) [ R,

8t, f
(1)

In Equation 1, the function f(t) is given by the Equation 2:

f (t) ¼ X(t)þ jX̂(t) (2)
FIGURE 1

The first signal and the processed signal: (a) the first signal. (b) processed s

Frontiers in Digital Health 05
In this context, the operator X̂(t) is the Hilbert transform,

defined by Equation 3:

X̂(t) ¼ X(t) w
1
pt

(3)

Equation 4 yields the quantity of the signal energy X(t) of a

WVD:

E ¼
ð ð

W(t, f ) dt df (4)

The spectral energy density and instantaneous power can be

obtained from the marginal distribution of W, as it is described

by Equation 5 and Equation 6:

ð
W(t, f ) df ¼ jX(t)j2 (5)

ð
W(t, f ) dt ¼ jX(f )j2 (6)

The properties of time and frequency shifting in the WVD are

formulated in Equations 7, 8:

X(t) ¼ Y(t � t0)()WX(t, f ) ¼ WY (t � t0, f ) (7)

X(t) ¼ Y(t) e�j2pf0t()WX(t, f ) ¼ WY (t, f � f0) (8)

Also, the properties of time and frequency scaling in the WVD

are formulated in Equations 9, 10:

X(t) ¼ Y(t � t0)()WX(t, f ) ¼ WY (t � t0, f ) (9)

X(t) ¼
ffiffiffi
k

p
Y(kt)()WX(t, f ) ¼ WY kt,

f
k

� �
(10)
ignal.
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Instantaneous frequency is a term that describes the behavior

of local frequencies as a function of time (13). Let

X(t) ¼ A(t) e jw(t) (11)

Where both the magnitude A(t) and the phase w(t) are real-valued

functions. Then, given Equations 9, 10 and 11, < f >t can be

determined using Equation 12:

, f .t¼ 2p
Ð
fW(t, f ) dfÐ

W(t, f ) df
¼ 2p

Ð
fW(t, f ) df

jA(t)j2 ¼ w0(t) (12)

In WVD, the local time behavior is defined as a function of

frequency via group delay. Suppose the Fourier transform of the

signal X(t) is equal to X(f ) ¼ A(f ) e jc(f ). The value of c0(t) is

called the group delay, which is obtained from the Equation 13

for the Wigner-ville distribution (13):

Ð
tW(t, f ) dtÐ
W(t, f ) dt

¼
Ð
tW(t, f ) dt

jA(f )j2 ¼ �c0(t) (13)

We can now extract the WVD of the ECG signal as a two-

dimensional image and use it as input for a deep neural network.

One crucial aspect of this image is its uniqueness for each
FIGURE 2

Two-dimensional image of a heartbeat (from different individuals).

FIGURE 3

Overview of Google Net layers (37).

Frontiers in Digital Health 06
sample, which plays a vital role in data authentication. In

Figure 2, we present a WVD representation of heart rates from

multiple samples. These images are used for training, testing, and

evaluation of the deep neural network.
3.3 Deep learning based authentication
model

Convolutional neural networks (CNNs) are powerful tools for

image classification and processing. These networks come in

different architectures, each with varying speed, accuracy, and

complexity. It has been observed in the literature that increasing

the number of layers in a CNN significantly improves its

performance. However, increasing the number of layers can be

expensive for large networks due to the common problem of

over-fitting. To address the challenges faced by large networks,

the GoogleNet architecture has been developed, which

incorporates the Inception module (37). The GoogleNet

architecture has proven effective in solving many of the issues

encountered by large networks (47). In this research, we have

utilized the GoogleNet architecture to process the image data

obtained from the pre-processing step. In the following, we will

delve into the details of this network. A diagram of GoogleNet

architecture is depicted in Figure 3. Also Table 1 specifies the

layers of GoogleNet (37).
frontiersin.org
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TABLE 1 Details of Google Net layers (37).

Type Patch size/
stride

Output size Depth 1 × 1 3 × 3 reduce 3 × 3 5 × 5 reduce 5 × 5 Pool proj Params ops

Conv 7 × 7/2 112 × 112 × 64 1 – – – – – – 2.7K 34M

Max pool 3 × 3/2 56 × 56 × 64 0 – – – – – – – –

conv 3 × 3/1 56 × 56 × 192 2 – 64 192 – – – 112K 360M

Max pool 3 × 3/2 28 × 28 × 192 0 – – – – – – – –

Inception 3a – 28 × 28 × 256 2 64 96 128 16 32 32 159K 128M

Inception 3b – 28 × 28 × 480 2 128 128 192 32 96 64 390K 304M

Max pool 3 × 3/2 14 × 14 × 480 0 – – – – – – – –

Inception 4a – 14 × 14 × 512 2 192 96 208 16 48 64 364K 73M

Inception 4b – 14 × 14 × 512 2 160 112 224 24 64 64 437K 88M

Inception 4c – 14 × 14 × 512 2 128 128 256 24 64 64 463K 100M

Inception 4d – 14 × 14 × 528 2 112 144 288 32 64 64 580K 119M

Inception 4e – 14 × 14 × 832 2 256 160 320 32 128 128 840K 170M

Max pool 3 × 3/2 7 × 7 × 832 0 – – – – – – – –

Inception 5a – 7 × 7 × 832 2 256 160 320 32 128 128 1072K 54M

Inception 5b – 7 × 7 × 1024 2 384 192 384 48 128 128 1388K 71M

Avg pool 7 × 7/1 1 × 1 × 1024 0 – – – – – – – –

Dropout 40% – 1 × 1 × 1024 0 – – – – – – – –

Linear – 1 × 1 × 1000 1 – – – – – – 1000K 1M

Softmax – 1 × 1 × 1000 0 – – – – – – – –

Maleki Lonbar et al. 10.3389/fdgth.2024.1463713
In the following, the layers of the GoogleNet architecture will

be described.
3.3.1 Convolution layer
The initial layer of the GoogleNet architecture is a

convolutional layer that utilizes a (7� 7) size filter, as shown in

Figure 3. Its main goal is to reduce the input image size without

losing spatial information. In this layer, the input image is

reduced to a size of (112� 112).
3.3.2 Max pooling layer
After the first convolutional layer, there is a max pooling layer

that further reduces the image size to (56� 56). Before reaching

the first Inception layer, there is another max pooling layer that

reduces the image size to (18) of the original. The number of

feature maps increases as the image size decreases, as indicated

in Table 1, from 64 in the first convolutional layer to 192 in the

second convolutional layer (37).
3.3.3 Inception module
The Inception module is a neural network design that utilizes

convolutional layers and other filters to perform feature

recognition at various sizes, while reducing the computational

cost of training a large network by decreasing its dimensionality.

The main idea behind the Inception module is to approximate

an optimal local sparse structure in a convolutional network. It

involves analyzing the correlation statistics of the last layer and

clustering them into groups of highly correlated units. These

clusters form the units of the next layer, which are connected to

the units of the previous layer. Each unit from the previous layer

corresponds to a region of the input image and is grouped into

filter banks. One of the key advantages of this architecture is that
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it allows for a significant increase in the number of units in each

phase without increasing computational complexity.

After the two convolutional layers, the GoogleNet architecture

incorporates nine Inception modules (37), as illustrated in Figure 3.

The purpose of these modules is to perform multiple operations in

parallel, including integration and convolution, using filters of

various sizes. The use of filters with different sizes helps capture

diverse features in the images. It is worth mentioning that there

are two levels of max pooling between the Inception modules.

These max pooling layers are used to further reduce the size of

the input as it propagates through the network, effectively

reducing the width and height of the image. Additionally, the

input image is progressively shrunk within the Inception

modules, contributing to a reduction in the network’s

computational burden. The architecture of the Inception module

is depicted in Figure 4 (37).
3.3.4 Dropout layer
Following this, a dropout layer with a rate of 40% is applied

before the fully connected (linear) layer. The dropout layer is a

regularization technique used during network training

to mitigate overfitting. It helps prevent the network

from relying too heavily on specific features by

randomly dropping a fraction of the nodes during each

training iteration.
3.3.5 Linear layer
The linear layer consists of 1,000 nodes, which correspond to

the 1,000 classifications in the ImageNet dataset. This layer

performs a linear transformation on the input data, mapping it

to a 1,000-dimensional feature space.
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FIGURE 4

Inception module (37).
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3.3.6 Softmax layer
The last layer of the network is a Softmax layer. The Softmax

function, an activation function, is used in this layer to calculate

the probability distribution of a collection of integers based on

an input vector. The Softmax activation function is defined using

Equation 14 (37):

s(zi) ¼ eziPk
j¼1 ez j

for i ¼ 1, 2, . . . , k and

z ¼ (z1, . . . , zk) [ Rk

(14)

The Softmax function takes an input vector (z) and computes a

vector of values representing the likelihood of each class or event.

The sum of all these values equals one, ensuring a valid

probability distribution. So far, we have discussed the different

layers of the GoogleNet architecture. However, there is another

important component of this architecture that we need to

address: the Auxiliary Classifier.

3.3.7 Auxiliary classifier
As mentioned earlier, the Vanishing Gradient problem is one

of the most significant challenges in neural networks. This

problem occurs when the weight updates during backpropagation

in the earlier layers become very small, resulting in a diminished

gradient. In other words, the network’s training progress slows

down or even stops. To mitigate this issue, auxiliary classifiers

are added to the middle layers of the architecture, specifically in

the eighth (Inception 4a) and eleventh [Inception 4 (d)] layers.

3.3.8 Auxilary classifier function
During training, additional classifications are introduced to the

network through these auxiliary classifiers. These classifiers evaluate
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the data and provide feedback to the middle layers of the network,

contributing to the overall loss estimation. The error from the

auxiliary classifier is weighted at 0.3, meaning it has a smaller

impact on the overall loss compared to the main classifier. An

illustration of the auxiliary classifier can be seen in Figure 5 (37).

One of the notable advantages of this architecture is its ability to

significantly increase the number of units per stage without a

proportional increase in computational complexity. The GoogleNet

network is designed with computational and practical efficiency in

mind, making it suitable for deployment on devices with limited

computational resources and low memory requirements.
4 Experiments

In this section, we will describe the simulation method, the tests

performed, and the results using real data. As mentioned, we used

two datasets: MITDB and NSRDB. It should be noted that all

simulations were programmed in Python, and due to the large

volume of data and the need for intensive data processing, they

were implemented in the Google Colab Pro environment. Google

Colab Pro is highly suitable for research involving deep learning,

offering 32 GB of RAM with GPU support (P100 and T4).
4.1 ECG signal preprocessing

First, we obtain the raw ECG signal from theMITDB andNSRDB

datasets using the WFDB library in Python and plot a heartbeat, as

shown in Figure 6a. Then, we clean the raw signal using the Pan-

Tompkins algorithm to obtain a smooth and continuous signal. The

output of the cleaned signal is shown in Figure 6b.
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Now that the signal is smooth and clean, we can easily detect

the R peak and extract the key characteristics of the signal.

However, during signal extraction, noise (such as patient

movement or device interference) can cause anomalies,

resulting in signals that are inappropriate and need to be

removed. This ensures that the neural network is not confused

in the future and can more easily recognize valid signals. To
FIGURE 7

Integrated representation of the heartbeats of sample 122 from the MITDB

FIGURE 6

(a) The raw ECG signal and (b) the cleaned one with Pan Tompkins.

FIGURE 5

Auxiliary classifier (37).
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better illustrate this issue, we will display all the heartbeats in a

single figure for clearer comparison. We will then remove the

incorrect signals, as they do not represent valid data from the

person and could disrupt the authentication process. As shown

in Figure 7a, some signals do not match the original signal, so

we remove them to retain only the correct signals, as depicted

in Figure 7b.
database (a) display all heartbeats. (b) remove different heartbeats.
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To remove unbalanced signals, the following steps are applied

to the signal:

1. The distance between all R peaks (R-to-R interval) is measured,

and its mode is obtained. Then, all signals that deviate by more

than 30 samples from the mode are considered incorrect.

2. The size of all R peaks is measured, and their mode

is calculated. Any signals with R peak sizes smaller or larger

than 0.15 millivolts from the mode are considered incorrect.

In this step of the pre-processing method, the prepared data is

then applied to the Wigner-Ville distribution.
4.2 Application of Wigner-Ville distribution
on the ECG signal

The proposed preprocessing steps are shown in Figure 8. As

mentioned before, they are as follows:

• Applying Pan-Tompkins algorithm to the raw ECG signals and

separating the ECG signals into unit heartbeats.

• Applying WVD to each person’s heartbeat separately, as they

are different.

• Transforming 1D vector to 2D image data.

In the study by Akdeniz et al., an ECG arrhythmia detection

algorithm based on the Wigner-Ville Distribution is

proposed, which monitors chronic patients through a

telemedicine system utilizing contemporary mobile information

and communication technologies (48). Similarly, in the study by

Desai et al., electrocardiogram (ECG) signals were employed

to identify various cardiovascular diseases and abnormalities. In

this research, ECG signals were converted into time-frequency

images using the pseudo-Wigner-Ville Distribution. These images

are divided into training and testing datasets and

subsequently fed into a Convolutional Neural Network (CNN)

model to differentiate between normal and abnormal heartbeats.

This method demonstrates significant clinical applications (49).

The primary rationale for using this distribution is the need for

input in the form of images, and we identified it as a suitable input

format for the two-dimensional convolutional neural network. To

visualize the Wigner-Ville Distribution, we utilized the

wigner_ville_spectrum library in Python, with the following

settings:

• wigner_ville_spectrum(data, delta, time_bandwidth,

smoothing_filter)
FIGURE 8

ECG signal preprocessing diagram.
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• The data parameter is the same as the input signal, one

heartbeat from each sample is considered, and its type is

numpy.ndarray.

• The delta parameter is the data sampling interval, which we

have considered as 10.

• The time_bandwidth parameter is the bandwidth time, which is

considered equal to 3.5.

• Finally, we have set the parameter type of smoothing_filter as

Gaussian. The above values are considered experimentally.
4.3 Experimental setup and evaluation
metrics

In this work, the performance of the proposed ECG

identification method is evaluated on the MITDB and NSRDB

datasets. In this model, the ratio of training, evaluation, and test

datasets is 80, 10, and 10 respectively. The following are the

necessary parameters used to define the metrics:

True positive (TP): A test result that correctly shows the

existence of a condition or characteristic.

False positive (FP): A test result that falsely indicates that a

certain condition or characteristic is present.

False negative (FN): A test result that falsely indicates that a

certain condition or characteristic is not present.

True negative (TN): A test result that correctly indicates the

absence of a condition or characteristic.

The performance of the proposed biometric system is evaluated

using the following metrics:

Accuracy: In a system, accuracy is equal to the ratio of the

number of correct predictions to the total number of predictions

made. If we consider the correct predictions TP and TN, the

accuracy is calculated from Equation 15.

Accuracy ¼ TN þ TP
TN þ TP þ FN þ FP

(15)

Precision: According to Equation 15, accuracy alone does not

distinguish between False Negatives (FN) and False Positives (FP).

To differentiate them, the Precision metric is defined as follows:

Precision ¼ TP
TP þ FP

(16)
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Based on Equation 16, we can see that the Precision metric

focuses on the model’s positive predictions and determines what

percentage of those positive predictions were correct.

Recall: This metric was introduced to address the limitations of

Precision. It focuses on the data that is truly positive and is

calculated from Equation 17. The Recall metric is sometimes

referred to as the sensitivity metric.

Recall ¼ TP
TP þ FN

(17)

F1 score: This metric is a combination of precision and recall, and

for unbalanced data, it can serve as a good benchmark for

comparison. It is obtained from Equation 18.

F1 ¼ 2(Precision� Recall)
Precisionþ Recall

(18)

False Acceptance Rate (FAR): It is defined as the ratio of the

number of false acceptances to the total number of

authentication attempts (Equation 19):

FAR ¼ FN
TP þ FN

(19)

False Rejection Rate (FRR): It is defined as the ratio of the number

of false rejections to the total number of authentication attempts

(Equation 20):

FRR ¼ FP
FN þ FP

(20)

Equal Error Rate (EER): The error rate at which FAR and FRR are

equal (the point of compromise between FAR and FRR).
FIGURE 9

Loss function after 40 epochs: (a) MITDB database. (b) NSRDB database.
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4.4 Results for database MITDB and NSRDB

In this system, we have used 34,713 and 36,000 images

(heartbeats converted into images) from the MITDB and NSRDB

databases, respectively. The model is simulated with Epoch = 40

and batch_size = 64, and the results after 40 epochs for the

MITDB and NSRDB databases are shown in Figures 9, 10. We

achieve very high accuracy in the initial steps. Additionally, the

accuracy of the model surpasses 90% after just 3 epochs, making

this approach suitable for applications where the speed of

training is of great importance.

Table 2 shows a comparison between the results of running the

model on the MITDB and NSRDB datasets. The model requires 1.4

and 1.3 ms per heartbeat for authentication, respectively.

The confusion matrix for the classes of the two databases is

shown in Figure 11.
4.5 Comparative analysis

Based on the obtained results, we conducted a comprehensive

analysis and comparison of previous studies in the field of ECG

authentication using the MITDB and NSRDB databases,

alongside our own study. As we know, each database has its own

characteristics. For instance, previous research has indicated that

achieving high accuracy in the MITDB database is more

challenging compared to other databases. While some studies

have achieved 100% accuracy in certain databases, such a result

has not yet been reported in the MITDB database.

One of the strengths of our system is that it allows for a

comprehensive comparison of the proposed method with

recent research, not limited to neural network-based

approaches. In fact, we have conducted this comparison by

considering the latest published studies on the MITDB and

NSRDB databases. See Tables 3, 4 for the results on the

MITDB and NSRDB, respectively.
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TABLE 2 Comparison of MITDB and NSRDB results.

Parameter NSRDB MITDB
Total number of images 36,000 34,713

Total number of images 34,713 36,000

RAM is occupied 22 24

Training duration (For a heartbeat) 73 ms 71 ms

Authentication duration (For a heartbeat) 1.4 ms 1.3 ms

Precision 99.1 98.65

Recall 99.3 98.67

F1 99.2 98.66

Loss 0.028 0.065

Accuracy 99.3 99.004

FAR 0.7 1.33

FRR 0.9 1.35

EER 0.8 1.34

FIGURE 11

Confusion matrix for the classes of the two databases: (a) MITDB database.

FIGURE 10

Model recognition accuracy after 40 epochs: (a) MITDB database. (b) NSRDB database.
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According to Tables 3, 4, the proposed model in this study

achieved accuracies of 99.004% and 99.3% for the MITDB and

NSRDB databases, respectively. These accuracies are the highest

reported among studies conducted on these two databases.

The proposed system processes a single heartbeat signal for

authentication, whereas the study (52) used 3 and 9 heartbeats.

Additionally, that study utilized a combination of LSTM and CNN

methods to achieve the reported results, which increases the

complexity. In the study (53), 3 heartbeats were used for

authentication, and the authentication duration was 7ms. In

contrast, our proposed system requires only 1.3ms for authentication.

The study (54) employed the RNN method. One advantage of

this system, compared to our proposed approach, is that all models

work independently, and there is no need to retrain all the models
(b) NSRDB database.
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TABLE 4 Comparison of authentication model accuracy on the MITDB
dataset.

Authors Method Accuracy EER
Zhang et al. (50) CWT,CNN 91.1 –

Wang et al. (55) MSDF 94.68 5.3

Chu et al. (7) CNN 95.99 4.74

Salloum et al. (33) LSTM 96 3.5

Wang et al. (56) FV,CNN 97.66 –

Fatimah et al. (57) FD,ML 97.92 –

Belo et al. (54) RNN 97.92 –

Tan et al. (29) DWT 98 –

Li et al. (53) GNMF 98.03 10.44

El Boujnouni et al. (58) WT,CN 98.2 –

Lynn et al. (52) CNN 98.4 –

Meltzer et al. (59) AC,DCT 98.8 –

Proposed CNN 99.004 1.34

TABLE 3 Comparison of authentication model accuracy on the NSRDB
dataset.

Authors Method Accuracy EER
Zhang et al. (50) CWT,CNN 95.1 –

Mai et al. (51) QRS,MLP 98 2

Kim et al. (4) CNN 98.2 –

Tan et al. (29) DWT 99 –

Proposed CNN 99.3 0.8

Maleki Lonbar et al. 10.3389/fdgth.2024.1463713
when adding a new person. However, despite being less accurate

than our proposed system, this system has significantly higher

complexity, resulting in a lengthy training time for each person.

In the aforementioned study, using the Nvidia GTX 1080Ti

graphics processor, the average training time was 36 h, which is

impractical for real-world applications. Also, according to recent

published reports, Table 3 compares the FAR metric, and

Table 4 compares the EER metric.
5 Conclusion

This research focuses on the authentication of ECG signals and

utilizes two databases, MITDB and NSRDB, for analysis. The

signals were processed using the Pan-Tompkins algorithm,

followed by the removal of segments that deviated significantly

from expected patterns to extract a clean representation. The

extraction of a clean signal is critical, as it directly impacts the

accuracy of the study. In this research, signals from individuals

with minimal noise and effective cleaning achieved a 100%

accuracy rate. For example, the recall metric for the NSRDB

database achieved a 100% success rate for 12 individuals, while

in the MITDB database, the recall metric also reached 100% for

31 individuals. These results underscore the potential for perfect

accuracy with meticulous signal acquisition. Each processed

signal was then transformed into the frequency domain, where

the Wigner-Ville distribution was applied to generate images that

served as inputs for the deep neural network. These frequency-
Frontiers in Digital Health 13
domain images were subsequently input into the GoogleNet

architecture, leading to the development of an authentication

system. This model achieved accuracies of 99.004% and 99.3%

for the MITDB and NSRDB databases, respectively. These

accuracy rates surpass those of other studies while maintaining a

lower level of complexity. Overall, this research demonstrates the

significance of signal cleaning, frequency domain analysis, and

the utilization of convolutional neural networks and deep

learning in achieving high accuracy and reduced complexity in

ECG signal authentication.
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