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Introduction: Endometriosis (EMs) and adenomyosis (AD) are common
gynecological diseases that impact women’s health, and they share symptoms
such as dysmenorrhea, chronic pain, and infertility, which adversely affect
women’s quality of life. Current diagnostic approaches for EMs and AD involve
invasive surgical procedures, and thus, methods of noninvasive differentiation
between EMs and AD are needed. This retrospective cohort study introduces a
novel, noninvasive classification methodology employing a stacked ensemble
machine learning (ML) model that utilizes peripheral blood and coagulation
markers to distinguish between EMs and AD.
Methods: The study included a total of 558 patients (329 with EMs and 229 with
AD), in whom key hematological and coagulation markers were analyzed to
identify distinctive profiles. Feature selection was conducted through ML
(logistic regression, support vector machine, and K-nearest neighbors) to
determine significant hematological markers.
Results: Red cell distributionwidth,mean corpuscular hemoglobin concentration,
activated partial thromboplastin time, international normalized ratio, and
antithrombin III were proved to be the key distinguishing indexes for disease
differentiation. Among all the ML classification models developed, the stacked
ensemble model demonstrated superior performance (area under the curve =
0.803, 95% credibility interval = 0.701–0.904). Our findings demonstrate the
effectiveness of the stacked ensemble ML model for classifying EMs and AD.
Discussion: Integrating biomarkers into this multi-algorithm framework offers a
novel approach to noninvasive diagnosis. These results advocate for the
application of stacked ensemble ML utilizing cost-effective and readily available
peripheral blood and coagulation indicators for the early, rapid, and noninvasive
differential diagnosis of EMs and AD, offering a potentially transformative
approach for clinical decision-making and personalized treatment strategies.
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Introduction

Endometriosis (EMs) and adenomyosis (AD) are both benign,

estrogen-dependent chronic gynecological disorders (1, 2). EMs

affects approximately 5%–10% of women of reproductive age (3),

and the diagnosis rate is up to 50% among women seeking

treatment for infertility (4). This condition is characterized by

the presence of endometrial-like epithelium and/or stroma

outside the uterine lining and muscular layer, often accompanied

by associated inflammatory processes (5, 6). AD refers to a

condition where the endometrial tissue infiltrates and grows

within the uterine muscle layer, typically surrounded by

hypertrophic smooth muscle cells and areas of fibrosis, forming

diffuse or localized lesions on the anterior and/or posterior

uterine wall (7). AD affects 19.5% of women of reproductive age

(7). Both conditions can lead to dysmenorrhea, chronic pain, and

infertility, severely impacting the quality of life of patients (6, 8).

Although EMs and AD share similarities in their

pathophysiology, their etiologies and clinical manifestations are

significantly different (9). This implies that their treatment

strategies and prognoses differ, necessitating that clinicians be

able to accurately differentiate between the two for diagnosis.

However, current diagnostic methods often rely on highly

invasive surgical procedures and histopathological diagnosis (6,

10), which has led to a delay in the early differentiation of the

two conditions.

In recent years, the application of machine learning (ML)

technologies in the medical field has expanded significantly,

particularly demonstrating tremendous potential in the areas of

disease diagnosis and classification (11, 12). Stacked ensemble

ML is a method that integrates multiple distinct models to

enhance predictive performance and has been successfully

applied in the classification and prediction of various diseases,

offering new possibilities for noninvasive diagnostic approaches

(13–16). With the increasingly important role of biomarkers in

disease surveillance and diagnosis being recognized, the

application of peripheral blood and coagulation markers in

gynecological diseases has received extensive attention (17–25).

Using peripheral blood and coagulation parameters, this study

developed a new classification method for EMs and AD using a

stacked ensemble model. The highlights of this work are as follows:

(1) By utilizing a large retrospective cohort, we provided strong

evidence for the effectiveness of the classification model

presented in this paper, adding significant value to the

existing methods for differentiating EMs and AD.

(2) This study was the first to apply specific biomarkers from

peripheral blood and coagulation markers to the

noninvasive diagnosis of EMs and AD, which could

potentially reduce the need for invasive surgical procedures.

(3) A stacked MLmodel was applied to the differentiation of EMs

and AD, integrating multiple distinct algorithms to enhance

the accuracy of distinguishing between these conditions.

(4) The findings of this study may have paved the way for earlier

and noninvasive diagnostic options for women suffering

from gynecological conditions such as EMs or AD.
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Materials and methods

Study design

This was a single-center, retrospective cohort study of

consecutive women who presented with EMs and a comparative

group with AD who attended Shuguang Hospital Affiliated with

Shanghai University of Traditional Chinese Medicine (TCM).

The diagnostic accuracy of the EMs and AD groups was

evaluated based on a retrospective study design.
Patient recruitment

Patients with EMs or AD were enrolled in the study through

the Shuguang Hospital Affiliated with Shanghai University of

TCM electronic clinical database. The recruitment process

followed several steps to identify and select suitable candidates

with complete and relevant data.

(1) Patient records: Potential participants with EMs or AD were

identified by reviewing the medical records of patients who

attended the obstetrics and gynecology inpatient

departments at Shuguang Hospital affiliated with Shanghai

University of TCM, between January 2016 and

December 2023.

(2) Inclusion criteria: Patients with EMs or AD were identified

through a retrospective review of medical records from the

obstetrics and gynecology inpatient department at Shuguang

Hospital Affiliated with Shanghai University of TCM,

covering the period from January 2016 to December 2023.

To ensure diagnostic accuracy, only those with a confirmed

diagnosis of either EMs or AD, based on laparoscopic

surgery and subsequent pathological examination, were

included in the study. For each patient, only the laboratory

and diagnostic test results from their first laparoscopic and/

or pathological diagnosis were included in the analysis.

(3) Exclusion criteria: Women who had taken hormone

medications within the three months prior to the study were

excluded. Additionally, those with severe medical conditions,

comorbidities, or acute inflammatory diseases that could

confound the analysis were not included. We also excluded

women with missing essential demographic details or

incomplete routine blood test and coagulation function metrics.

Independent variables

This study investigated the potential value of a comprehensive set

of key hematological and biochemical parameters in the diagnosis

and prediction of EMs and AD. Venous blood samples were

collected from patients and analyzed using an automated

hematology analyzer for complete blood cell counts, including red

blood cell count, white blood cell count, and platelet count.

Additionally, platelet indices and coagulation function markers

were measured using chemiluminescence immunoassay techniques.
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Statistical analysis

In the statistical analysis that was conducted using SPSS version

26.0, the significance threshold was set at α = 0.05. Because the data

in this study did not adhere to a normal distribution, the results are

presented as medians with the 25th and 75th percentiles [M (Q25,

Q75)], and the Mann‒Whitney U test was applied for intergroup

comparisons. The Delong test was used to assess differences in

the area under the curve (AUC) between the models. A P-value

less than 0.05 (P < 0.05) was interpreted as indicating a

significant difference between the groups under analysis.
Feature selection

Feature selection helps remove irrelevant features to prevent

overfitting. Feature selection was conducted before ML modeling to

reduce data dimensionality, enhance model training efficiency and

predictive performance, and improve the generalization ability of

the model to new data (26). Within the EMs and AD groups, data

demonstrating significant discrepancies underwent normalization

via the Z score technique to mitigate variances across numerical

scales. Three ML algorithms were used to screen for hematological

feature factors: logistic regression (LR), support vector machine

(SVM) classification, and K-nearest neighbors (KNN) classification.

The specific parameters are detailed in Supplementary Table S1. LR

classification measured the importance of feature variables through

the coefficients obtained after L1 regularization. SVM classification

and KNN classification both assessed the importance of features

using the Recursive Feature Elimination (RFE) method, where

feature importance was determined by cumulative weight values.

Subsequently, the feature factors selected through machine learning

were cross-validated to identify the optimal feature factors for use

in further research. A Venn diagram was generated using jvenn (27).
Model construction and performance
evaluation

In this study, we conducted analyses using five classic ML

models: the LR classifier, eXtreme Gradient Boosting (XGBoost)

classifier, multilayer perceptron (MLP) classifier, SVM classifier,

and random forest (RF) classifier. Our methodology divided the

dataset into training (80%) and validation (20%) sets. This

approach, which is designed to sequentially rotate the test set,

enhances the reliability of our results by reducing random

variance. For each algorithm, we adopted a rigorous training

regimen using fivefold nested cross-validation on the training

dataset. The determination of the optimal parameters for each

model was facilitated through a comprehensive grid search, the

specifics of which are listed in Supplementary Table S2. Building

on this foundation, we enhanced our methodology by developing

a stacked ensemble model. The model, which integrated three

selected basic classifiers, was constructed with LR as the stacking

algorithm of the meta-classifier. This integration aimed to

enhance the accuracy and generalizability of our results.
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The LR classifier is recognized as a classic and commonly

utilized model for risk prediction because of its simplicity in

model configuration, rapid training speed, and excellent

interpretability (28). The XGBoost classifier has emerged as a

popular ML algorithm that is renowned for its high performance

and flexibility, serving as an effective implementation of the

gradient boosting framework (29). The MLP classifier, which is

also a classic in the ML domain, employs backpropagation to

train the network, calculates the error between the actual and

predicted outputs and adjusts the weights by propagating this

error back through the system. Thus, it is highly effective for

complex problem solving (30). The SVM classifier, which

leverages kernel functions, achieves linear separation in high-

dimensional space and is recognized for its stability (31). The RF

classifier is known for its robustness. It operates by constructing

numerous decision trees during training and deriving the class

by the mode of the classes of individual trees for classification

tasks. This model has demonstrated its effectiveness across a

variety of classification problems (32). Stacked ensemble

algorithms is a widely applied ensemble learning method that

combines basic classifier models to yield predictions with higher

accuracy and better generalization capabilities (33).

Model performance was assessed through receiver operating

characteristic (ROC) analysis, and the area under the curve

(AUC) and 95% confidence interval (CI) were used as the key

metrics for evaluating model efficacy. Then, the accuracy,

sensitivity, and specificity were calculated. In addition, a

calibration curve was used to evaluate the model performance.

All ML processes were carried out using Python 3.7 with

several essential libraries: Scikit-learn (1.1.3) for implementing

machine learning models, including Logistic Regression with L1

regularization, SVM, and KNN. Pandas (1.2.4) for data

manipulation. NumPy (1.20.2) for numerical computations.
Results

Characteristics of the cohort

The study cohort included a total of 558 patients, 329 in the EMs

group and 229 in the AD group. The age range of the participants in

this study ranged from 22 to 67 years. Specifically, the age in the EMs

group was 33 (29, 39) years, and in the AD group, it was 34 (30, 39)

years. There was no significant difference in age distribution between

the two groups (P > 0.05), indicating that the hematological indices

were comparable. The hematological indices of the participants,

which included complete blood cell counts, platelet indices, and

markers of coagulation function, are presented in Table 1. Analysis

of these indices revealed significant differences in several

parameters (P < 0.05), including white blood cells (WBCs), mean

corpuscular volume (MCV), mean corpuscular hemoglobin

concentration (MCHC), red blood cells (RBCs), platelets (PLTs),

red cell distribution width (RDW), mean corpuscular hemoglobin

(MCH), basophilic granulocytes, plateletcrit (PCT), monocytes,

international normalized ratio (INR), activated partial

thromboplastin time (APTT), prothrombin time (PT), fibrin
frontiersin.org
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TABLE 1 The baseline characteristics of the participants [M (Q25, Q75)].

Variables Endometriosis group
(n = 329)

Adenomyosis group
(n= 229)

Statistical
magnitude

P-value

Age, years 33 (29, 39) 34 (30, 39) −1.227 0.219

White blood cell, *109/L 7.490 (5.480, 10.550) 6.700 (5.150, 9.630) 2.079 0.038

Eosinophilic granulocyte, *109/L 0.060 (0.014, 0.110) 0.060 (0.024, 0.120) −0.959 0.337

Hematocrit, / 0.347 (0.316, 0.379) 0.349 (0.299, 0.389) 0.155 0.877

Hemoglobin, g/L 114.000 (103.000, 126.000) 114.000 (91.400, 127.000) 1.665 0.096

Mean corpuscular volume, fL 88.600 (84.700, 91.400) 87.000 (80.000, 90.400) 3.489 <0.001

Mean corpuscular hemoglobin concentration, g/L 330.000 (322.000, 337.000) 324.000 (310.000, 332.000) 6.344 <0.001

Mean platelet volume, fL 9.900 (8.800, 10.800) 9.700 (9.000, 10.500) 0.893 0.372

Red blood cell, *1012/L 4.010 (3.660, 4.330) 4.130 (3.720, 4.480) −2.157 0.031

Platelet, *109/L 226.000 (184.000, 273.000) 244.000 (199.000, 290.000) −2.365 0.018

Red cell distribution width, % 13.100 (12.500, 14.300) 14.600 (13.100, 17.800) −7.630 <0.001

Neutrophil, *109/L 5.200 (3.300, 8.500) 4.410 (3.200, 7.550) 1.599 0.110

Average hemoglobin volume, pg 29.400 (27.700, 30.400) 28.300 (25.200, 29.900) 5.119 <0.001

Lymphocyte, *109/L 1.410 (1.100, 1.800) 1.380 (1.100, 1.780) 0.563 0.573

Platelet distribution width, fL 16.000 (13.400, 16.500) 15.900 (14.500, 16.500) 0.848 0.396

Basophilic granulocyte, *109/L 0.020 (0.000, 0.030) 0.020 (0.010, 0.030) −3.086 0.002

Plateletcrit, / 0.220 (0.180, 0.260) 0.240 (0.190, 0.280) −2.438 0.015

Monocyte, *109/L 0.480 (0.330, 0.630) 0.420 (0.300, 0.580) 2.323 0.020

International Normalized Ratio, / 1.050 (1.000, 1.120) 1.030 (0.970, 1.080) 3.260 0.001

Thrombin time, s 16.200 (15.200, 17.000) 16.300 (15.500, 17.300) −1.640 0.101

Activated partial thromboplatin time, s 29.600 (26.800, 35.500) 28.000 (25.400, 32.300) 4.422 <0.001

Prothrombin time, s 12.700 (11.900, 13.500) 12.300 (11.600, 13.100) 3.019 0.003

Plasma D-dimer, mg/L 0.700 (0.290, 1.580) 0.549 (0.233, 1.575) 1.052 0.293

Fibrinogen, g/L 2.840 (2.400, 3.540) 2.820 (2.400, 3.460) 0.037 0.971

Fibrin degradation product, ug/ml 3.100 (1.600, 5.830) 2.100 (1.242, 5.600) 2.307 0.021

Antithrombin Ⅲ, % 87.000 (77.773, 95.700) 89.000 (82.500, 96.600) −2.154 0.031

Wang et al. 10.3389/fdgth.2024.1463419
degradation product (FDP), and antithrombin III (AT-III), between

the EMs and AD groups.
Variable filter

This study selected differential hematological indices from cohort

characteristics for feature factor screening. The LR algorithm of L1

regularization was used to filter important variables. The top ten

variables identified were RDW, APTT, PCT, MCHC, PT, INR,

MCV, PLTs, RBCs, and AT-III. For further analysis, a SVM

classification algorithm was employed, revealing the top ten

variables: RDW, INR, APTT, PT, MCH, RBCs, MCHC, monocytes,

FDP, and AT-III. Additionally, the KNN classification algorithm

was utilized to identify the top ten variables: RDW, INR, basophilic

granulocyte, AT-III, APTT, WBCs, MCHC, monocytes, MCH, and

PLTs. The importance coefficients of the feature factors identified

by these three feature selection methods are illustrated in

Figures 1–3. A Venn diagram was constructed to identify the

intersection of feature factors derived from the LR, SVM, and

KNN algorithms. The intersection targets for the three datasets

were RDW, APTT, MCHC, INR, and AT-III (Figure 4).
ML model evaluation

First, five classic ML models were developed and validated, and

the model performances are listed in Tables 2, 3 and Figures 5–7.
Frontiers in Digital Health 04
Among these, the model with the best performance on the training

set was the XGBoost classification model (AUC) = 0.865, 95%

CI: 0.832–0.899), followed by the RF classification model

(AUC = 0.816, 95% CI: 0.776–0.855), the MLP classification

model (AUC = 0.731, 95% CI: 0.683–0.778), the LR classification

model (AUC = 0.725, 95% CI: 0.678–0.773), and the SVM

classification model (AUC = 0.724, 95% CI: 0.676–0.772). The

XGBoost classification model also showed the best performance

in the validation set (AUC = 0.747, 95% CI: 0.652–0.842),

followed by the MLP classification model (AUC = 0.744, 95%

CI: 0.650–0.839), the LR classification model (AUC = 0.735,

95% CI: 0.640–0.831), the RF classification model (AUC = 0.731,

95% CI: 0.634–0.827), and the SVM classification model

(AUC = 0.727, 95% CI: 0.631–0.824).

Subsequently, the ROC curves of the five ML methods were

tested using the DeLong test. The results indicated that there was

no statistically significant difference in the ROC curves of the

aforementioned machine learning models (P > 0.05), as shown in

Table 4. Calibration curves of the validation set for multiple models

(Figure 8) demonstrated that the predicted probabilities of the five

machine classification models were close to the actual probabilities.

A stacked ensemble model was constructed by selecting the

three best-performing base learners (XGBoost, RF, and MLP).

The stacked ensemble model was built on the second-layer LR

meta-model based on the first layer of base learners, with the

following model parameters: regularization factor: 1, number of

iterations: 100, type of regularization: l2, convergence

metric: 0.0001. Compared to XGBoost (AUC = 0.754, 95% CI:
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FIGURE 2

Analysis of feature importance for hematological markers selected using the SVM model.

FIGURE 1

Analysis of feature importance for hematological markers selected using the LR model.

Wang et al. 10.3389/fdgth.2024.1463419
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FIGURE 3

Analysis of feature importance for hematological markers selected using the KNN model.

Wang et al. 10.3389/fdgth.2024.1463419
0.647–0.860; Specificity = 0.669), RF (AUC = 0.778, 95% CI: 0.673–

0.883; Specificity = 0.846), and MLP (AUC = 0.802, 95% CI: 0.698–

0.906; Specificity = 0.863), the stacked ensemble model achieved an

AUC = 0.803 (95% CI: 0.701–0.904; Specificity = 0.875), as detailed

in Table 5 and Figure 9. These results showed that the ensemble

model outperformed the individual models in terms of

classification accuracy for EMs and AD, with improved

performance and stronger generalizability.
Discussion

Contextualizing with previous research

EMs and AD are distinct but closely related conditions

involving the presence of endometrial tissue outside the uterine

lining. EMs is a chronic inflammatory disease that significantly

impairs quality of life, often causing cyclic pain and infertility.

AD is characterized by the invasion of endometrial tissue into

the myometrium, leading to myometrial hypertrophy (34, 35).

Currently, the definitive diagnosis of both conditions relies on

invasive surgical or pathological examination, which is not

always feasible. This underscores the need for non-invasive

diagnostic methods to improve patient management (36).

Recent studies have explored the use of ML for non-invasive

diagnosis of EMs and AD. Guerriero et al. (37) used LR to

differentiate EMs from AD based on ultrasound imaging. Balica

et al. (38) employed five ML models (Xception, Inception-V4,
Frontiers in Digital Health 06
ResNet50, DenseNet, and EfficientNetB2) to assist in ultrasound

diagnosis, achieving an AUC of 90% and an accuracy of 80%.

Raimondo et al. (39) developed a deep learning model for

ultrasound-based diagnosis of AD, noting its potential to reduce

overdiagnosis. However, ultrasound diagnosis is heavily

dependent on the examiner’s expertise, which can result in

missed or incorrect diagnoses, particularly in early or deep

pelvic lesions. Our study offered a novel approach by

integrating readily accessible peripheral blood and coagulation

markers into a stacked ensemble ML model. This approach

enhanced the accuracy and reliability of differentiating between

EMs and AD. It addressed a critical gap in the non-invasive

diagnosis of these conditions and contributes to early diagnosis

and personalized treatment strategies.
Identification of key hematological and
coagulation markers

In this study, we demonstrated the feasibility and sensitivity of

applying ML methods to screen for characteristic factors, including

complete blood counts, platelet indices, and coagulation markers,

that could differentiate between EMs and AD. Five features were

selected as hematological indicators for assessing EMs and AD

and were identified as key potential factors for discriminating

between the two diseases. Furthermore, based on five classic ML

models, we identified the three with the best performance for the

construction of a stacked ensemble model. The stacked model
frontiersin.org
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FIGURE 4

Venn diagram combining feature factor selections from machine learning models.

Wang et al. 10.3389/fdgth.2024.1463419
emerged as the optimal model for distinguishing between EMs and

AD (AUC = 0.803, 95% CI: 0.701–0.904).

Considering the computational resources wasted on redundant

and irrelevant features within the original feature set during model

training and prediction (40), we employed three ML methods (LR,

SVM, and KNN) for feature selection and performed cross-

validation to retain useful feature factors. L1-regularized LR

improves model efficiency and generalization by reducing the

number of features, as it retains only those features that

significantly contribute to predictions while eliminating noise (41).

In contrast, SVM and KNN excel at handling non-linear

relationships. When using RFE, they can recursively eliminate the
Frontiers in Digital Health 07
least impactful features, allowing the models to focus on the most

relevant aspects of the data, thereby enabling faster and more

accurate predictions (42). The combined use of the three methods

effectively leverages the strengths of different models. Precise

feature factor selection not only enhances model performance but

also increases model transparency and interpretability (43). More

intriguingly, this study identified key features, particularly RDW,

MCHC, APTT, INR, and AT-III, through machine learning

techniques, highlighting the hematological differences between

patients with EMs and patients with AD. These findings

underscore the potential differences in bleeding and coagulation

between the two conditions.
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TABLE 3 Performance metrics of machine learning models on the
validation cohort.

Model AUC (95% CI) Accuracy Sensitivity Specificity
LR
classifier

0.735 (0.640–0.831) 0.643 0.684 0.710

XGBoost
classifier

0.747 (0.652–0.842) 0.693 0.803 0.652

MLP
classifier

0.744 (0.650–0.839) 0.702 0.658 0.770

SVM
classifier

0.727 (0.631–0.824) 0.627 0.699 0.688

RF
classifier

0.731 (0.634–0.827) 0.684 0.665 0.741

FIGURE 6

ROC curve for multiple classic model classifications of the validation
set.

FIGURE 5

ROC curve for multiple classic model classifications of the training
set.

TABLE 2 Performance metrics of machine learning models on the
training cohort.

Model AUC (95% CI) Accuracy Sensitivity Specificity
LR
classifier

0.725 (0.678–0.773) 0.664 0.695 0.645

XGBoost
classifier

0.865 (0.832–0.899) 0.788 0.767 0.806

MLP
classifier

0.731 (0.683–0.778) 0.694 0.623 0.747

SVM
classifier

0.724 (0.676–0.772) 0.666 0.669 0.666

RF
classifier

0.816 (0.776–0.855) 0.746 0.753 0.745

Wang et al. 10.3389/fdgth.2024.1463419
Clinical relevance of hematological findings

Our study revealed that, as significant characteristic factors in

the peripheral blood for these two diseases, the RDW in patients

with AD was greater than that in patients with EMs, and the

MCHC in patients with AD was lower than that in patients

with EMs. RDW represents the standard deviation or coefficient

of variation percentage of RBC volume, indicating significant

size disparities in certain anemias. An increase in RDW reflects

a severe disruption in erythrocyte homeostasis, including

impaired erythrocyte production and abnormal erythrocyte

survival (44). The MCHC is a critical indicator among the

erythrocyte parameters that often suggests anemia when

decreased (45). Dugdale et al. (46) reported a negative

correlation between RDW and hemoglobin concentration over

several months. An increase in RDW precedes a clinically

significant decrease in hemoglobin levels by weeks; therefore,

RDW is recommended as a valuable routine marker for the

early detection of iron deficiency anemia. AD patients often

exhibit clinical manifestations of increased menstrual flow (7),

but EMs patients do not. This may explain the differences in

the RDW and MCHC, suggesting a greater likelihood of

bleeding and a predisposition to anemia in AD patients.

In our research, we identified three specific coagulation factors

related to clotting: APTT, INR, and AT-III. The APTT and INR in

the AD cohort were lower than those in the EMs cohort, and the

AT-III levels were greater in the AD cohort. The APTT is a

critical parameter for coagulation that is commonly used to

predict bleeding tendencies and hypercoagulable states. A
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decrease in APTT is associated with hypercoagulability, indicated

by an increase in thrombin generation and a greater risk of

thrombosis (47). INR is a standardized PT that adjusts for

variations in coagulation activator reagents, allowing the PT

values measured by different laboratories and reagents to be

comparable. A lower INR suggests an increased risk of
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FIGURE 7

Forest plot of AUC scores for multiple classic model classifications.
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thrombosis (48). This study demonstrated that patients with AD

have a greater hypercoagulable state and greater thrombotic risk

than patients with EMs. Lin et al. (49) reported that APTT is

decreased in AD patients, indicating a hypercoagulable state.

Yang et al. (24) reported a significant decrease in APTT among

AD patients with thrombosis. A study indicated that shorter

APTT in EMs patients might be related to a potential

hypercoagulable state associated with the disease, and the role of
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the local coagulation system in the disease pathogenesis cannot

be excluded (50). Lin et al. (49) also showed a negative

correlation between coagulation markers and hemoglobin in AD

patients with anemia. Anemia can affect coagulation parameters

and increase the risk of thrombus formation (51). Yamanaka

et al. (52) suggested that the coagulation dysfunction caused by

AD could be a possible reason for thrombosis formation and

menorrhagia. Menorrhagia can lead to anemia, further promoting
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FIGURE 8

Calibration curves for the validation sets of multiple models.

TABLE 4 Delong detection results for multiple model classification.

Machine learning model LR classifier RF classifier SVM classifier MLP classifier
XGBoost classifier Z-value 0.319 0.809 0.506 0.524

P-value 0.769 0.504 0.626 0.634

MLP classifier Z-value 0.966 0.949 1.159

P-value 0.430 0.487 0.382

SVM classifier Z-value 0.912 0.857

P-value 0.472 0.452

RF classifier Z-value 0.770

P-value 0.520
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a hypercoagulable state and possibly leading to thrombosis in a

vicious cycle (49). Based on these studies, we hypothesize that

menorrhagia-induced anemia and subsequent hypercoagulable

changes are the reasons for the specific differences in coagulation

markers between patients with AD and patients with EMs, but

the related underlying physiological mechanisms require further

investigation. Interestingly, AT-III levels were greater in the AD

cohort than in the EMs cohort, which seems inconsistent with

the trends in APTT and INR. EMs is an inflammatory disease

characterized by increased expression of inflammatory and

angiogenic factors (53). The peritoneal fluid of patients with EMs

contains high levels of macrophages and immune cells, which

secrete cytokines, angiogenic factors, and growth factors (54–56).

AT-III is a nonvitamin K-dependent protease that regulates

coagulation and inhibits inflammation within the endothelium

(57, 58). Therefore, we speculate that AT-III is activated in the

inflammatory response caused by the abnormal growth of

endometrial tissue in EMs patients and plays an anti-

inflammatory role by increasing its consumption within

the vasculature.
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Evaluation of the stacked ensemble model

Compared with traditional clinical diagnostic prediction

models, the stacked ensemble model based on multiple

machine learning algorithms successfully developed by us

exemplifies a powerful and flexible strategy in machine

learning. It integrates numerous learners and strategically

adjusts using a meta-learner. Thus, this model achieves

exceptional classification performance and significantly

enhances the ability to generalize to new data (59). While

stacked ensemble models are widely used in other areas, their

application to the noninvasive diagnosis of EMs and AD has

not been extensively explored. This study applies a stacked

ensemble model in this specific clinical context, contributing

to the understanding of its potential in this area. Our research

demonstrates that the stacked ensemble model outperforms

traditional models by achieving a higher AUC (0.803) and

excelling in specificity (0.875). This consistent advantage

underscores its potential for more accurate and reliable

differentiation between EMs and AD. The model’s balanced

performance in both accuracy and specificity highlights its

robustness and suitability for clinical applications where

precision and reliability are crucial.
Limitations and future directions

Furthermore, peripheral blood and coagulation markers are

cost-effective and readily available indicators. Thus, our study

was able to screen for early classification predictions of EMs

and AD without the need for invasive diagnostic methods. This

advancement aids clinicians in the early identification of high-

risk patients and in taking timely measures to address relevant

risk factors, thereby devising more rational diagnostic and

therapeutic plans. It is important to note the limitations of our

study. Our research was conducted as a single-center study,

and further research will need to collect data from patients

across different countries or regions to enhance the

generalizability of the research findings. While it is effective in

differentiating between EMs and AD, further development and

validation would be required to extend its application to a

broader diagnostic context. Expanding the model’s capability to

identify these conditions among a wider range of possible
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FIGURE 9

Comparison of ROC curves between the stacked ensemble machine
learning model and basic machine learning models.

TABLE 5 The performance metrics of the comparison between the stacked ensemble machine learning model and classical machine learning models.

Model AUC (95% CI) Accuracy Sensitivity Specificity
Stacked ensemble model 0.803 (0.701–0.904) 0.774 0.667 0.875

XGBoost classifier 0.754 (0.647–0.860) 0.693 0.711 0.669

MLP classifier 0.802 (0.698–0.906) 0.774 0.706 0.863

RF classifier 0.778 (0.673–0.883) 0.721 0.656 0.846
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diagnoses could significantly advance computer-assisted

diagnostic tools.
Conclusion

In this study, we developed a model based on stacked ensemble

machine learning algorithms for the classification prediction of

patients with EMs and AD. The results indicate that RDW,

MCHC, PTT, INR, and AT-III are significant characteristic

factors for distinguishing between EMs and AD. The model

demonstrates excellent classification prediction accuracy and

clinical utility, enabling the early, convenient, and noninvasive

identification of patients with EMs and AD. The model also

assists in clinical decision-making, supporting physicians in

implementing personalized treatment plans.
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