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Background: The use of smartphone apps in cancer patients undergoing
systemic treatment can promote the early detection of symptoms and
therapy side effects and may be supported by machine learning (ML) for
timely adaptation of therapies and reduction of adverse events and
unplanned admissions.
Objective: We aimed to create an Early Warning System (EWS) to predict
situations where supportive interventions become necessary to prevent
unplanned visits. For this, dynamically collected standardized electronic patient
reported outcome (ePRO) data were analyzed in context with the patient’s
individual journey. Information on well-being, vital parameters, medication,
and free text were also considered for establishing a hybrid ML model. The
goal was to integrate both the strengths of ML in sifting through large
amounts of data and the long-standing experience of human experts. Given
the limitations of highly imbalanced datasets (where only very few adverse
events are present) and the limitations of humans in overseeing all possible
cause of such events, we hypothesize that it should be possible to combine
both in order to partially overcome these limitations.
Methods: The prediction of unplanned visits was achieved by employing a white-
box ML algorithm (i.e., rule learner), which learned rules from patient data (i.e.,
ePROs, vital parameters, free text) that were captured via a medical device
smartphone app. Those rules indicated situations where patients experienced
unplanned visits and, hence, were captured as alert triggers in the EWS. Each
rule was evaluated based on a cost matrix, where false negatives (FNs) have
higher costs than false positives (FPs, i.e., false alarms). Rules were then ranked
according to the costs and priority was given to the least expensive ones. Finally,
the rules with higher priority were reviewed by two oncological experts for
plausibility check and for extending them with additional conditions. This hybrid
approach comprised the application of a sensitive ML algorithm producing
several potentially unreliable, but fully human-interpretable and -modifiable
rules, which could then be adjusted by human experts.
Results: From a cohort of 214 patients and more than 16’000 available data
entries, the machine-learned rule set achieved a recall of 19% on the entire
dataset and a precision of 5%. We compared this performance to a set of
conditions that a human expert had defined to predict adverse events. This
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“human baseline” did not discover any of the adverse events recorded in our
dataset, i.e., it came with a recall and precision of 0%. Despite more plentiful
results were expected by our machine learning approach, the involved medical
experts a) had understood and were able to make sense of the rules and b) felt
capable to suggest modification to the rules, some of which could potentially
increase their precision. Suggested modifications of rules included e.g., adding
or tightening certain conditions to make them less sensitive or changing the
rule consequences: sometimes further monitoring the situation, applying certain
test (such as a CRP test) or applying some simple pain-relieving measures was
deemed sufficient, making a costly consultation with the physician unnecessary.
We can thus conclude that it is possible to apply machine learning as an
inspirational tool that can help human experts to formulate rules for an EWS.
While humans seem to lack the ability to define such rules without such
support, they are capable of modifying the rules to increase their precision
and generalizability.
Conclusions: Learning rules from dynamic ePRO datasets may be used to assist
human experts in establishing an early warning system for cancer patients in
outpatient settings.

KEYWORDS

cancer, ePROs, systemic therapy, digital patient monitoring, interactive machine learning,
early warning systems (EWS)
Introduction

Potential complications in cancer patients undergoing systemic

treatments need to be recognized during hospital stays and, in out-

patient settings. Continuous monitoring of vital parameters in

conjunction with electronic health records provides vast amounts

of data which can be used to explore indicative patterns and

correlations for predicting patient outcomes (1).The prediction of

such outcomes is a progressively increasing field of applications

of machine learning in medicine. Current approaches aim at

gaining insight into the practice patterns of physicians and at

improving physician workforce- forecasting models (2, 3).

Early warning score (EWS) systems are developed to indicate

deterioration of common vital parameters such as heart rate,

respiration rate, systolic blood pressure, oxygen saturation, and

temperature and explored in a variety of clinical and oncological

settings (4, 5). Numerous studies have focused on automating

medical event and condition predictions such as septic shock,

cardiac arrest and hospital re-admission (6–8). Machine learning

and artificial intelligence techniques are currently developed for

clinical data modeling in pediatric critical care and promoted

development of clinical decision support systems (CDSS) (9). In

cancer patients undergoing immunotherapies and systemic

anticancer treatments a risk factor structure is frequently assessed

by big data primarily derived from electronic health records.

However, several approaches also use datasets consisting of

electronic symptom questionnaires for pre-defined

immunotherapy related adverse events (irAEs) (10). Although

patient-reported outcomes were recorded electronically as an

input for ML and predictive algorithms, this was often not

offered in a dynamic manner and potentially harbored a bias

towards a focus on medication-specific symptoms.
02
Earlier, we had developed and implemented an interactive

medical device application, mediduxTM, that enables patients to

spontaneously report on more than 90 clinical relevant

symptoms as well as wellbeing in a standardized and structured

manner (11, 12). The application offers the dynamic electronic

reporting of symptoms and their associated grade as defined

according to the Common Terminology Criteria of Adverse

Events (CTCAE). In addition, the patient’s functional status, vital

parameters, cognitive state, medication, and free text notes are

made available in a validated quality and used in routine clinical

practice during chemotherapy and immunotherapeutic

interventions. Based on their electronic input, the software

notifies patients to contact the treatment team if symptoms are

outside the acceptable range. The ensuing patient

empowerment is stimulated also through symptom-specific

tips offered for the self-management of side effects, may

stabilize daily functional activity, and improve communication

with treatment teams and timely symptom control thereof

(10–12). To date, only a few applications have gained attention

and quality with respect to improving efficacy and safety data

in clinical trials in oncology. The continuous measurement of

ePRO creates a high level of concordance (κ = 0.68) for

symptom ratings between the patient and treating physician

and reliable information for appropriate symptom

management (13). Improved assessment, graphical displays for

structured reporting on well-being and symptoms, automatic

algorithms for alert notifications if symptoms worsen and

augmented stakeholder communication allows for early and

effective responsiveness and can reduce unplanned visits and

hospitalizations in real-world care (12–15).

However, the current integration of ePROs for symptom

monitoring and decision making during routine cancer care
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frequently requires intensive patient-to-physician or nurse

specialist communication (15, 16).

Machine learning is understood as an emerging artificial

intelligence method, which is widely used to explore predictive

factors and establish associated models in healthcare (7, 8) and

has been identified as the most successful approach among

various data analysis-based methods in clinical risk prediction

(17). Although ML has shown success in enhancing predictions,

many clinicians may not find such generated algorithms for the

purpose an EWS based on out-patient information plausible and

helpful (6), often due to a lack of understanding of the reasons

for raised alerts. However, future models will (18), emphasize the

importance of genuinely human-interpretable models to achieve

transparency. Furthermore, interpretable models can become

competitive with deep learning, especially when meaningful

structured features are present, and their transparency can lead

to better models through improved insights during testing. Thus,

ML models tend to benefit from incorporating expert knowledge,

such as feature weighting, and through the integration of human

expertise (19, 20). This approach involves examining the

differences between human and ML assessments of clinical risk

to derive continuous improvements in the model.

In cancer, only limited data exist on how to stimulate the

processes of reviewing patient-reported symptoms to provide

algorithms for real-time monitoring and self-care interventions and

prevention of unplanned visits and acute admissions (21). To date,

“big-data initiatives” may not have adequately included

standardized and structured ePROs according to the CTCAE and/

or do not provide dynamic real-time analysis. As such, our

intention was to narrow this gap by using validated ePRO data

from previously published clinical trials (ClinicalTrials.gov

NCT03578731) for the development of a real-time EWS for cancer

patients, which is based on ML algorithms, but also incorporates

expert knowledge. As we targeted patients who were undergoing

various anti-cancer treatments (including cytotoxic compounds,

antibody-drug conjugates, and checkpoint inhibitors) that often

come with significant side effects, as well as other conditions, e.g.,

infections, we initially focused on identifying and predicting clinical

situations that would require immediate medical attention.

By connecting the event of an unplanned visit or

hospitalization to the associated reports of symptoms, well-being,

vital parameters, medication, and free text, we intended to

analyze and learn under what conditions the frequency, quality

and grade of data entries and their various combinations might

indicate critical situations that will trigger these events. For this,

we directly employed human-interpretable models which are easy

to understand by physicians and can also be modified

accordingly if indicated.
Material and methods

Smartphone application

The smartphone app mediduxTM was developed to

dynamically record symptoms and treatment side effects in
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cancer patients according to the CTCAE (11, 12) but was not

designed to send questionnaires to patients.

Data entry displays for patients allowed the intuitive recording

of symptoms, well-being, and activities of daily living, and was

implemented with the help of doctors, nurses, and patients.

Graphical displays for indicating symptom severity, with easily

understandable descriptions based on the CTCAE, could be

selected via a horizontal slider (range from 0 to 10). Symptom

entries and ratings could be reviewed collaboratively by

physicians and patients, and a reliable level of congruency (Қ =

0.68 for common symptoms) between patient- and clinician-

reported toxicity in cancer patients receiving systemic therapy

has recently been demonstrated for the smartphone app (12).

The symptom history was displayed on a timeline with

individual colors for each symptom. In addition, diary entries

and information on diagnosis and therapy were indicated

separately.

Usability and adherence for entering well-being, symptoms and

corresponding grading, medications, as well as the “graphical

timeline” of the patients’ history of symptoms have been

described in previous publications (11, 12).

Patients could also add private notes or additional symptoms

and any medical measures undertaken as free text or in a

structured manner, and daily functional activity according to the

Eastern Cooperative Oncology Group (ECOG) performance

status and reviewed information for self-care (symptom specific

tips) were displayed by the app depending on the severity of

symptoms upon data entry. Structured vital parameter

acquisition was available for body temperature, blood pressure,

oxygen saturation, weight, and blood glucose level. The history of

recorded data was displayed automatically also to care teams.
Patient demographics

Patient data for analysis were derived from a retrospective

multicenter, observational study that had collected ePROs from

214 patients through a certified medical device application

(NCT03578731). Results from the study demonstrated a

substantial congruency (Қ = 0.68) for common symptoms of

collaborative symptom grading between patients and physicians,

indicating a high data quality made available for the hybrid ML

approach. (11, 12).

Figure 1 shows the demographics of the 214 patients included

in this study in terms of age, sex, their primary tumor, and systemic

therapy. Patients aged 18 or older with breast, colon, prostate, and

lung cancer, as well as hematological malignancies, initiating

adjuvant or neoadjuvant systemic therapy were eligible to

participate after giving written informed consent. The mean age

of patients in this cohort was 58.4. In addition, participants had

to speak German and own a smartphone. Eligible participants in

the observational study had been recruited consecutively and

without pre-selection.

Recording of well-being and symptoms usually started on the

day of the initiation or change of anticancer treatment and

continued during an observational period of 12 weeks. Patients
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FIGURE 1

Patient demographics.
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were assigned to medical oncology visits every 3 weeks for shared

reporting. During consultation visits, doctors and nurses reminded

the participants to use the app, and participants additionally

received push notifications every 3 days.

Furthermore, the app randomly selected, at regular intervals,

two patient-reported symptoms that had been recorded during

the past 20 days; patients and doctors were then prompted to

perform a detailed and shared review of these symptoms in

order to focus on the collection and appropriate interpretation

regarding awareness and guidance for symptom severity

grading (11, 12).

Less than one third (n = 51; 28%) of the patients received

treatment for advanced disease with non-curative intention, and

17 different chemotherapy regimens were administered (not

shown), including anti-hormones, CDK4/6-inhibitors and

immunotherapies. For the data analysis, informed consent was

obtained from all patients.

Overall, the dataset available for analysis contained 16,670

diary entries where a diary entry refers to an entire day’s worth

of patient entries. Figure 2 shows the distribution of the number

of symptom entries per patient (mean: 63.0). When not

aggregated day-wise, the data contains 76,385 individual entries

of symptoms, wellbeing, use of medication or notes. Regarding

data accuracy and the use for subsequent ML analysis, a total of

181 patients had performed at least one intended symptom

review with their physician, and, from a subset of 110 patients
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(60.8%), more than two collaborative symptom reviews of

patients with their physicians were available for analysis,

indicating a presumably high data quality (11, 12).
Unplanned visits

Within the overall observational period, 40 patients had

experienced unplanned visits, which amounted to 54 events

overall, including 31 unplanned medical consultations and 23

hospitalizations. No other serious adverse events (SAEs) were

recorded during the entire study period. We had expected a

higher rate of unplanned consultations and hospitalizations—

which would presumably have led to an increased quality of

ML and prediction; however, the retrospective nature of

the study did not allow for any expansion of data available

for analysis.
Data characteristics and preparation

Apart from patient demographics and unplanned visits, our

dataset also contained diagnosis details (as free text), as well as

the ePROs symptom entries, well-being, medication, and

additional free-text notes. Table 1 shows an overview of all

features that were available.
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TABLE 1 Data available for patients' diary entries (ePROs).

Attribute
(s)

Number of
attributes

Description Type/values

Birth year 1 Numeric

Sex 1 {Male, female}

Primary
tumor

1 {Breast, gut,
blood/lymph,
lung, prostate}

Wellbeing 1 Subjective wellbeing [0…100]

Therapy form 1 Frequency of treatment {Daily, weekly, bi-
weekly, 3- weekly,
4-weekly}

Drugs 88 Cancer drugs, other
drugs

[1,nan]

Symptom
grading

52 Strength of relevant
symptoms, based on
CTCAE

[0…1,nan]

Diagnosis
terms

246 Terms occurring in
diagnosis details of
patient

Numeric (TF/IDF)

Note terms 311 Terms occurring in
patient notes

Numeric (TF/IDF)

Unplanned
visit

1 Class attribute

FIGURE 2

Distribution of number of diary entries during a maximum observational period of 170 days.

Trojan et al. 10.3389/fdgth.2024.1443987
In terms of data missingness [see reporting guidelines for ML

studies in (22)], the demographic attributes (age, sex and

primary tumor) were almost complete, with only age and sex

missing for one out of the 214 patients. Values for diagnosis and

therapy form were also available for all patients. A value for the

patient’s wellbeing is missing in 931 of the 16,670 entries and

only 5,000 of these entries come with a note captured by the

patient. Finally, since patients can capture multiple symptoms

and drugs per day, we pivoted these, i.e., created columns for
Frontiers in Digital Health 05
each symptom and drug, where the maximum symptom strength

reported on a day was used in case of multiple entries for the

same symptom. This pivoting operation results in a very sparse

matrix where some symptoms only have a few non-null values.

Therefore, we needed to make sure that our chosen algorithm is

able to deal well with missing values.

Each patient-day combination in the dataset available for

analysis represented one training example where we assigned a

class attribute called “unplanned visit” to each instance as

follows: we labeled the attribute as “yes” not only on the day

when an unplanned visit had occurred, but also on the three

preceding days. This approach aligned with our goal of creating

an early warning system (EWS) that anticipates issues several

days in advance. This allows to raise timely warnings for

potential problems occurring on weekends (e.g., predicting a

problem that will occur on Sunday evening is predicted already

on Friday morning; as such, a visit during regular practice hours

would become feasible). Another positive effect of using this

rather large time frame is that the number of positive training

examples (i.e., flagged diary entries) increases when compared to

a shorter timeframe of e.g., 48 h. Finally, this approach resulted

in 166 diary entries being flagged as “yes”, i.e., as ones where an

alert should have been raised. This corresponded to roughly 1%

of all entries, indicating a heavily imbalanced data set where the

number of examples for one outcome is much larger than the

number of examples for the other outcome (here: non-critical vs.

critical situations), a more challenging prediction of the rarer

outcome was expected.

As mentioned above, drugs and symptom gradings were

represented using a set of attributes where each attribute

indicated the presence or grading of the symptom on a specific

day. To encode symptom grading on a scale from 0 to 100,
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patients were provided with a guideline that included definitions

and descriptions of symptoms and their associated grading

according to the CTCAE. Symptoms that had not been reported

by a patient on any given day were encoded as “null”/”nan”

values, which were ignored when constructing rules. This was

found to be more appropriate than encoding them with a value

of 0 as the latter approach led to the identification of a large set

of non-relevant rules with “negative conditions” and

consequences—e.g., “if patient has no fever and no cough, then

do not raise an alarm”. We also converted the free-text attributes

“diagnosis” and “notes” using a so-called bag-of-words approach

with TF/IDF weights [term frequency/inverse document

frequency, see (23), with the resulting attributes prefixed as

“diag” and “note”.

We deliberately prioritized readability over predictive

performance, avoiding approaches like “word embedding”, to

maximize rule interpretability for medical experts. No further

pre-processing was applied to the data.
Human baseline

Before applying machine learning to our data, we wanted to

explore the ability of human experts to predict adverse events.

We asked a human expert to define a set of conditions under

which he would expect such events to occur. The expert first

defined problem categories, i.e., areas that could lead to

complications in cancer patients under treatment, including

infections, kidney-related, lung-related, as well as cardiac/

respiratory problems and side effects of cancer drugs. For these

categories, the expert then defined more concrete conditions that

read as follows:
• Fever, fatigue, joint pain and cough (infection)

• Strong diarrhea (infection)

• Burning during urination (infection)

• Weight gain and shortness of breath (kidney)

• Nikotin abuse (stated in diagnosis) and chest pain (lung)

• Weight gain, fatigue and either shortness of breath or chest pain

(cardiac/respiratory)

• Loss of appetite, fatigue and weight loss (side effects of

cancer drugs)
We then used the CTCAE scales to define suitable thresholds of

symptom strengths for the symptoms occurring in these rules

and applied the rules to the data.

It turned out that the rules did not discover a single adverse

event recorded in the data, i.e., we start with a system that

achieves 0% precision and recall. It is important to note here

that this does not lead us to believe that the human knowledge is

worthless or not applicable at all. Rather, it seems necessary to

complement it with more detailed insights from the actual

patient data—e.g., to find better thresholds—in order to increase

the recall.
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It has been shown by (20) that it is possible to derive rules for

the prediction of medical conditions using machine learning. In

(20), it is further shown that an inspection and rating of ML-

discovered rules by humans can lead to the detection of hidden

confounders and poorly generalizing rules. Interestingly, human

intervention in (20) did not improve the predictions on the test

set—but it did so on another data sample, i.e., in an out-of-

sample evaluation. This is an important finding: while humans

are often limited in their ability to formulate precise rules (see

previous section), they are in fact capable of spotting conditions

in ML-generated rules that do not generalize well: if the data

used for training an ML system has weaknesses, such as

confounders or spurious correlations, humans can use their

general medical knowledge to spot and remove them.

The overarching goal of our approach is thus to empower

medical experts to design a rule-based early warning system

(EWS) with the help of machine learning.

Because of the given imbalance of the data (only 1% of entries

being flagged as alert-worthy) and the somewhat limited amount of

our data, we did not expect a machine-learned rule set to exhibit a

good performance. Instead, we used ML mainly as an aid and

inspiration for the human expert—to suggest rules that are based

on real occurrences of adverse events and that the expert might

not have readily thought of. This approach is based on the

assumption that humans and ML algorithms both have strengths

that can complement each other, where human intervention can

be especially useful e.g., in cases where one tries to predict rare

events (24).

To this end, we made the ML algorithm sensitive to the few

adverse events (see description of cost-sensitive classification

below), accepting a rather low precision. At the same time, we

enforced a certain coverage (support) of rules by applying a

weight threshold to rule conditions. This approach results in

rules that are rather general—but because of the increased

sensitivity, some of them might still be too specific. Finally, we

expected that both a lack of precision and an over-specialization

of rules can be corrected by humans.

Therefore the EWS consisting of a set of rules was constructed

as follows:
- We applied the simple, but often quite effective, rule-learning

algorithm RIPPER (25) to train an ML model on the data

described in the previous subsection. The resulting model

consisted of rules that had certain combinations of symptom

strengths, diagnosis terms, etc., as condition and—when the

conditions were fulfilled—would predict the occurrence of an

unplanned visit. Our main rationale for choosing a rule

learner was the fact that rules are very easy to interpret by any

human due to their intuitive if-then structure (18). On the

other hand, they stand out among other interpretable models

in that it is rather easy to modify them, e.g., by adding

condition clauses. The effect of such a modification (namely

increasing the specificity of the rule/decreasing its coverage) is
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also obvious because rule conditions are expressed as a

conjunction of clauses.

- The rule learner was combined with cost-sensitive classification

(26) with various cost matrices. In our reported results, false

positive predictions (”false alarms’”) were assigned a cost of 1,

while false negatives (undetected critical situations) had a cost

of 10. Our medical experts endorsed this approach, accepting

a higher number of false alarms to identify additional critical

situations, i.e., reaching higher sensitivity, at the cost of lower

specificity. Interestingly, when using a 1:1 cost ratio, no rules

were generated. Using a 1:20 ratio instead of 1:10 yielded

similar numbers and characteristics of rules.

- To avoid overfitting of the algorithm to certain specifics of

patients or situations in the training data, we complemented

the increased sensitivity with a minimum weight threshold for

the conditions of rules. This was done in such a way as to

allow only rules that cover at least 5 positive examples. More

precisely, the parameter determining the minimum total

weight of instances in a rule was set to 42. Since each

unplanned visit will generate up to 4 positive examples (the

day of the visit and the three days before), and since the

weight of each flagged entry is slightly above 9, this ensures

that a rule usually covers at least two distinct critical

situations that resulted in a visit. We will see later that the

visits discovered by our rules also stem from at least two

different patients in each case. Finally, we set the number of

folds to three such that two folds were used for growing rules

and one for pruning them.

- Rules were ranked by their cost and then presented to medical

experts, together with some performance metrics on the entire

training data (above all precision and recall). Two oncological

experts (A.T., M.M.), each with more than 20 years of

experience in internal medicine and medical oncology,

examined the ML rules in ranked order and decided whether

to accept, remove or modify a rule, e.g., by removing or

adding conditions. These modified rules underwent statistical

evaluation and were accepted if their cost on the test set was

deemed acceptable.

Results

Performance of ML models

In order to evaluate the model’s performance, we constructed a

training set covering 85% of all our entries and used the remaining

15% of the data (corresponding to 2,500 entries) as a test set. To

avoid leakage of patient-specific data from the training into the

test set, we made sure that patients whose data were used in the

training set did not appear in the test set.

As expected—given by our approach of assigning a high cost to

false negatives—there was a substantial amount of false alarms on

the test set (122). The machine-learned rule set achieved a recall of

19%, successfully identifying 6 out of the 32 critical situations in

the test set. Because of the 122 false alarms, the precision of this

rule set was rather low at about 5% (while keeping in mind that
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for 2,346 entries no alarm was raised correctly). All statistics and

metrics were collected using the WEKA machine learning

workbench (27) and the corresponding evaluation methods had

been applied according to state-of-the-art ML algorithms and

data pre-processing tools (28).

Assuming—as introduced above—a cost of 1 for false alarms

and a cost of 10 for missed critical situations, the baseline of

never raising an alarm causes costs of 320 (all 32 situations are

missed, each at a cost of 10), whereas our rule set causes slightly

higher costs at 122 (false alarms) + 260 (missed alarms) = 382. If

we assume higher costs for missed alarms, we will observe that

our initial rule set causes lower costs than the baseline. Doing so

may be justified in practice (and note that the costs used for

evaluation do not need to be the same as the ones for cost-

sensitive learning!) when considering that a missed alarm can be

life-threatening in some cases. For instance, a ratio of 1:20 has

been assumed for a fall prediction model in (29) emphasizing,

however, the difficulty to estimate these costs precisely, which

also applies in our case.

In any case however, without human intervention, these results

may not be very useful, although they may improve with a larger

dataset. Thus, we would like to re-emphasize that the purpose of

applying ML in our approach is mainly to aid humans in setting

up a rule base. Humans may change rule conditions (e.g.,

inserting an additional clause) and decide on the rule

consequence, which is not necessarily to contact a physician. For

instance, the precision of many rules might be improved by

triggering the capturing of additional (vital) parameters, e.g.,

measuring blood pressure or making blood tests.
Rule interpretation and modification

All in all, our configuration resulted in 7 rules which are

summarized in Figure 3. These results were obtained by training

rules on the entire dataset and applying them accordingly. The

reported figures also apply to the entire dataset. The first

observation is—as already mentioned—that all rules cover 2 or

more distinct patients. Taken together, the rules cover 56 of the

166 flagged entries in the entire dataset.

The inspection of the rules by medical experts with long

standing clinical experience in internal medicine, medical

oncology, and study conduct, provided us with the following

insights:

- It was easy for the medical experts to interpret the meaning of

the rules. This is the biggest strength of rule learners, also

implying the possibility to adjust the rules (see below).

Although theoretically the order of rules needs to be

considered when interpreting the output of RIPPER, this is

not the case for a binary classification problem like ours such

that experts can understand and judge rules independently.

- All rules except the last rule were considered both reasonable

and useful. In the following, we only discuss about rules 1–6.

- Some of the rules were considered slightly too general, e.g., rule

5 and 6. However, for all rules involving pain and fever (i.e.,
frontiersin.org

https://doi.org/10.3389/fdgth.2024.1443987
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 3

The seven rules with lowest cost discovered by our cost-sensitive rule learner.
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rules 1, 5 and 6), the experts judged that additional data capture

could be useful to increase their precision, e.g., by performing a

CRP test to identify potential infections. If we take rule 6 as an

example, the medical experts judged that the low level of fever

and the somewhat reduced wellbeing did not per se justify a

warning being raised. They assumed that the patient (who had

come for an unplanned visit) was a rather careful person and

that, with a high probability, the situation would have

improved without intervention. However, applying a CRP test

to verify this assumption would have been informative and

useful. Another example rule that was finally discarded (not

shown in the figure) stated that a warning should be raised

when the diagnosis of a patient contained “metastasized

carcinoma” and abdominal pain was indicated above 0.42.

Here, the experts judged that the rule condition was too

generic since the abdominal pain could have many causes

(e.g., constipation or aszites…). In such cases, their

recommendation was to monitor the symptom trend and react

when the pain level increases (i.e., use a somewhat higher

threshold in the rule). In summary, the experts identified

some rules that they found slightly too weak and where they

would only raise a warning after doing additional tests (e.g.,

CRP) or after further monitoring the situation.

- For rule 3 (patients with clipmarkers and reduced wellbeing),

the experts suggested adding an extra condition of either a

raised level of nausea, fatigue or pain to make the rule

more precise.

- Rule 2 suggests raising a warning in case of a patient receiving

treatment with the medication Endoxan® (Cyclophosphamide),

reporting a rather strong loss of appetite and well-being

dropping below 47. This likely indicates a situation of systemic

chemotherapy where intensified measures for the alleviation of

treatment-associated symptoms could be suggested. Thus,

learned rules may lead to different kinds of alternative actions,

implying some sort of “level-setting procedure” of the early

warning system, where obviously not all raised warnings must

result in a patient’s hospitalization.

- We could observe that the learned rules—and this is also true for

the rules that are not shown here—make use of most of the
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attribute types that were used as an input, i.e., age (rules 4

and 6), wellbeing (rules 1–3 and 6), drugs (rule 2), symptoms

(all except rule 6), diagnosis terms (rule 3) and patient notes

(rule 5). In general, the attributes sex, primary tumor and

therapy form did not appear frequently in rules. We did not

quantify the contributions of attributes here in more depth,

since this seems less adequate for rule learners and might

be misleading.

- We are aware that different treatments might require

monitoring of various parameters. The medical device app

“mediduxTM” was not designed for sending out questionnaires

according to the type of cancer or related treatment, but

rather offers the opportunity to choose from more than 93

different symptoms that can be reported dynamically and thus

will presumably cover all relevant side effects, as has been

indicated in previous work (11, 12). On average, more than 3

different symptoms were entered per patient and day.

However, most of the rules are derived from symptoms

reported by breast cancer patients, which might be considered

a limitation of this study.

While fewer than 18.7% (40/214) of the participants treated for

solid cancer (breast, colon, lung, prostate) and hematologic

malignancies required unplanned consultations or emergency

services due to treatment-related side effects and toxicities, our

analysis shows a potential to develop an early warning system

jointly between an ML algorithm and human experts. Although

the limitations of the data imply that learned rules have a low

precision, we saw several examples of rules where experts were

able to suggest measures for increasing precision, e.g., by

performing additional tests or by inserting additional conditions.

Importantly, no serious adverse events related to the use of the

app were recorded during the entire observational study period.
Discussion and conclusions

In cancer outpatients, only limited data exist on how to

provide algorithms for improved real-time monitoring and
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intervention to reduce symptom severity and to predict situations

where unplanned visits will become likely (13, 21). Here, we

propose two approaches for high-rate EWS computation and

time-series prediction based on standardized and dynamically

reported symptoms and vital parameters indicated by cancer

patients who experienced unplanned consultations and

hospital admissions.

Our data indicate that machine-learned rules—when applying

a cost-sensitive classification to make them more sensitive—could

detect a certain number of critical situations, respectively novel

alert conditions, in the cohort of outpatients. In their original

form, these rules did not allow for reliable predictions on a test

set. However, according to our analysis, medical experts can

validate these proposed rules and suggesting modifications to

specific rule conditions or alternative types of alerts to be raised

based on longstanding clinical and oncological experience. While

most of these suggested modifications can only be evaluated in

future work, one referred to an additional clause in the rule

condition. Evaluating it on our data revealed that—as expected—

it increases the precision of the rule, while also decreasing its recall.

Overall, the most valuable contribution of human-machine

collaboration to the EWS is certainly the suggestion of

(alternative) actions to be performed when a rule fires. Because

alarms are relatively rare, it would be virtually impossible to

learn these actions from the data only. However, since the

medical experts were able to understand the rules, it was not

difficult for them to suggest a suitable course of action to

be undertaken.

In fact, this is the underlying idea for the procedure of

interactive ML (30) as presented here: on the one hand, the

discovered rules indicate that ML is likely to identify patterns in

electronically captured PROs that medical experts would not

think of readily. On the other hand, ML alone using cost-

sensitive classification renders newly discovered rules sensitive,

but, at times, imprecise. Cost-sensitive learning was, as discussed

above, a necessity because of the highly imbalanced data (1%

critical situations), which would otherwise lead to trivial rules

that never raise any alert—whereas other authors have used e.g.,

oversampling to increase the sensitivity of their alert systems (31).

The imprecision of the discovered rules, however, can

potentially be compensated by the experience of medical experts

who can estimate whether a rule may generalize beyond the

specific training data or not and thus help to increase precision

even in the face of comparatively little training data (20). Thus, a

human-machine collaboration might successively facilitate an

ever more reliable and hybrid rule-based EWS, as experts interact

with the ML model.

While medical experts appear confident in understanding and

creating reverse interpretations of the rules, iteratively modified

rules can be expected to generalize better to unseen data because

the modifications usually eliminate case-specific aspects that may

not apply to most other patients (20). Moreover, thorough

medical expert review would allow to define a variety of rule

consequences, implementing plausible and more diverse

recommendations to patients and caregivers that would
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circumvent unplanned physician consultations or admission

to hospital.

Of note, when comparing the effectiveness of the derived rules

to the rules that our medical experts had formulated without the

support of ML in advance, our results offer a clear improvement

over the human baseline and justify the use of machine learning

as an “inspirational” tool for medical experts.

The present study was limited with respect to the patient

demographics (and absolute numbers of the data available for

analysis, i.e., bias through predominantly female patients with

breast cancer treatments), the retrospective character of the ML,

and the limited number of medical experts for review and

adaptive rule management. It is worth noting here that none of

the discovered rules used the attribute “PrimaryTumor”, i.e., the

cancer type. This indicates that the patterns underlying the

recorded adverse events are of a general nature, not specific to

any particular cancer type.

To further validate this insight, we ran an additional

experiment where we filtered the data so that only entries of

breast cancer patients were retained, thus reducing the size of the

dataset by 15%, from 16,670 diary entries to 14,060. We observed

that the resulting rules had a small overlap with the ones learned

from the full dataset and that the rules that differed from the

initial ones were harder to interpret. Taken together, these

additional findings suggest that predictive performance is mostly

influenced by the size of the training data and does not strongly

depend on the purity of the data with respect to the cancer type

of involved patients. Thus, future work should focus on the

collection of larger sets of training data.

Finally, to perform a real-time EWS and initiate a prospective

confirmation study, further software development and the proper

calculation of the needed number of patients and events would

be required. We also did not aim at discovering SAEs for

patients as early as possible by using multi-modal data, since the

retrospective analysis did not support an extension of these

events. However, we believe that next generation medical device

apps and their interoperability with IoT devices and diagnostic

laboratories might boost the design and improvement of

predictive approaches. In fact, we saw that our medical experts

advocated the use of such devices to confirm the alerts raised by

certain rules (mostly the ones incorporating pain and fever) and

thus increase the precision of these rules. In addition, a more

precise prediction will likely be achieved with more and

continuous data samples, which could result from wearables and

related sensors.

Besides the extended recording of standardized and structured

ePROs, interactive ML systems for patient centered health care will

benefit from more plentiful data, by integrating dynamic

measurements of vital parameters, real-time laboratory tests and

cognitive abilities that will allow to predict critical situations far

more accurately and timely (13, 15, 21). Finally, with dedicated

medical experts validating novel sets of rules, the proposed

system can be extended continuously as new ePRO data become

available and may conceivably outperform personnel-intensive

monitoring of cancer outpatients.
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