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In clinical nutrition research, the medical industry chain generates a wealth of
multidimensional spatial data across various formats, including text, images,
and semi-structured tables. This data’s inherent heterogeneity and diversity
present significant challenges for processing and mining, which are further
compounded by the data’s diverse features, which are difficult to extract. To
address these challenges, we propose an innovative integration of artificial
intelligence (AI) with the medical industry chain data, focusing on constructing
semantic knowledge graphs and extracting core features. These knowledge
graphs are pivotal for efficiently acquiring insights from the vast and granular
big data within the medical industry chain. Our study introduces the Clinical
Feature Extraction Knowledge Mapping (CFEKM) model, designed to augment
the attributes of medical industry chain knowledge graphs through an entity
extraction method grounded in syntactic dependency rules. The CFEKM
model is applied to real and large-scale datasets within the medical industry
chain, demonstrating robust performance in relation extraction, data
complementation, and feature extraction. It achieves superior results to several
competitive baseline methods, highlighting its effectiveness in handling
medical industry chain data complexities. By representing compact semantic
knowledge in a structured knowledge graph, our model identifies knowledge
gaps and enhances the decision-making process in clinical nutrition research.

KEYWORDS

semantic knowledge graphs, clinical nutrition research, artificial intelligence (AI)
integration, medical equipment, feature extraction

1 Introduction

In the era of big data and precision medicine, integrating AI with healthcare data has

become pivotal to uncovering new insights in clinical nutrition research. This data’s

multidimensional nature presents opportunities and challenges for knowledge discovery,

motivating the need for advanced analytical techniques such as semantic knowledge

graphs (1). These highly complex and multifaceted data chains comprise natural

language text, images, semi-structured tables, and other forms (2). They are employed
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to comprehend the interactions, relationships, and dependencies

among various entities in the petition process, supply chain (3),

and value chain. However, these data’s significant heterogeneity

and diversity pose major challenges to computer processing.

Therefore, appropriate techniques and methods must be

employed to exploit their value fully.

Clinical nutrition research has traditionally relied on

observational studies and experimental designs. However, with

the advent of AI and machine learning, there is a paradigm shift

towards data-intensive discovery, which can process vast

amounts of medical industry chain data more efficiently.

Meanwhile, due to technological advances, market trends,

environmental factors, government regulations, consumer

expectations, and other factors, the structure and features of

medical industry chain data will change along with time

dynamically (4). Therefore, the ability to update and express

these data becomes increasingly important. Due to the

complexity and uncertainty of the data, traditional processing

techniques cannot provide accurate and relevant insights from

medical industry chain data (5, 6). Data scientists and

researchers face a major challenge in extracting valuable

information, providing information for business decision-making,

and understanding the dynamics and evolution of medical

industry chain data (7, 8). The construction of knowledge graphs

and extracting core features are the core technologies for

unlocking the value of medical industry chain data (9).

Knowledge graphs provide a semantic representation of data,

capturing the relationships between various entities and helping

to identify patterns that may not be obvious through traditional

data analysis techniques (10, 11). Core feature extraction refers to

identifying and selecting the most critical features that can

represent or distinguish entities of interest in the data (12–14).

However, the medical industry chain data’s evolution, dynamics,

and variability require efficient knowledge graph construction

and effective core feature extraction to reveal valuable insights.

Using traditional methods may not yield the best results (15).

Therefore, capturing the complexity, dynamics, and variability of

medical industry chain data is necessary.

Despite AI’s potential in clinical nutrition, existing methods

often fail to effectively handle the complexity and heterogeneity

of medical industry chain data. This has led to a gap in the

literature regarding developing robust, adaptive models capable

of extracting meaningful insights from such data.
1.1 Challenges in medical industry chain
knowledge graph construction

In the rapid development of the medical industry chain, the

multiscale data in the medical industry chain present a

significant characteristic of being massive, diverse, heterogeneous,

and mutually inclusive in the granularity of fine and coarse (16).

Such complexity, diversity, and magnitude should provide more

information to users. However, due to the lack of effective

knowledge mining, organization, and retrieval tools, such

richness and diversity of information causes users to experience
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knowledge confusion (17). Users’ demand for efficient knowledge

organization, rapid knowledge mining, and high-quality

knowledge retrieval tools has become increasingly urgent (18).

To enable multigrain, massive, sparse-related, and diverse

heterogeneous data in many industries to provide high-quality

knowledge services to users, we face the following challenges: (1)

The scale and value of text data are massive and sparse in

cyberspace, making it difficult for knowledge mining (19); (2)

Data in multi granularity are diverse and heterogeneous, making

it difficult for knowledge representation (20); and (3) User needs

are diverse and variable, making knowledge retrieval difficult (21).
1.2 Research trends in medical industry
chain knowledge graph construction

Advancements in knowledge graph construction and core

feature extraction are set to revolutionize handling massive and

complex data within the medical industry chain. Applying

sophisticated methods is essential to extract valuable knowledge

and insights from this data. Artificial intelligence, machine

learning, and particularly deep learning have opened new

avenues for addressing the complexities and dynamics inherent

in medical industry chain data, as highlighted by Sharma et al.

(22). Future research endeavors should delve into more

sophisticated techniques, such as graph neural networks,

reinforcement learning, and natural language processing, to

enhance the efficacy of knowledge graph construction and core

feature extraction in this domain.

In this paper, we develop knowledge graphs and extract core

features from medical industry chain data, acknowledging its

dynamic and evolving nature. We introduce a novel CFEKM

method for constructing knowledge graphs and extracting core

features from this data. Our approach utilizes a syntax and

dependency rule-based entity extraction method for fine-grained

data, sentence alignment, and comparison based on the

constructed knowledge graph. The goal is to distill compact

semantic knowledge from extensive multigrain medical industry

chain data and organize it within a knowledge graph framework.

Our model is designed to deliver robust results in relationship

extraction, completion, and feature extraction, surpassing the

performance of several popular feature extraction models when

evaluated on real datasets and large-scale medical industry chain

datasets. The imperative drives this research to fill existing gaps

by employing an innovative strategy that harnesses the

capabilities of semantic knowledge graphs, thereby advancing

clinical nutrition research and facilitating more personalized and

effective nutritional interventions.
1.3 Enhancing clinical nutrition with medical
medical industry chain data

The intersection of clinical nutrition and the medical industry

chain is a burgeoning frontier in healthcare. Clinical nutrition,

which focuses on the relationship between food intake and
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https://doi.org/10.3389/fdgth.2024.1439113
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Chen et al. 10.3389/fdgth.2024.1439113
health, increasingly relies on data-driven insights to personalize

dietary recommendations and improve patient outcomes (23).

With its vast data repository encompassing pharmaceuticals,

medical devices, healthcare providers, and patient records, the

medical industry chain offers a rich source for mining such

insights (24). By integrating AI with the medical industry chain

data, we can enhance clinical nutrition research and practice in

several ways:

Personalized Nutritional Assessment: AI algorithms can

analyze individual patient data from electronic health records to

predict nutritional needs and tailor dietary plans, leading to

more effective clinical interventions (25). Chronic Disease

Management: Leveraging patterns within medical industry chain

data, AI can identify at-risk populations and recommend

preventive nutritional strategies, thus pivotal in managing

chronic diseases (26). Health Management and Decision Support:

Knowledge graphs constructed from medical industry chain data

can provide clinicians with a comprehensive view of the

nutritional landscape, facilitating informed decision-making for

patient care (27).

Knowledge graph construction, while showing promise in

various domains, is still emerging in its application to the

medical industry. Medical industry data’s high heterogeneity,

complexity, and dynamic nature challenge the process. Deng

et al. (28) highlight these challenges and underscore the necessity

for developing efficient and effective methods specifically tailored

to the medical industry’s data characteristics.

This paper contributes to the field by proposing new methods

for knowledge graph construction and core feature extraction from

medical industry chain data. The contributions include (1)

Introducing a syntax and dependency rule-based entity extraction

method to refine the granularity of the data and supplement the

knowledge graph with missing attributes. (2) Developing a

sentence alignment and comparison method using the knowledge

graph to enhance the efficiency and effectiveness of core feature

extraction. (3) A comparative evaluation of the proposed method

with existing state-of-the-art models on real, large-scale medical

industry data, demonstrating its superior performance in F1

score and extraction efficiency.

We organize the paper into sections that describe the data and

existing methods, introduce our proposed model and its

optimization algorithm, present the experimental results, and

summarize our research findings.
TABLE 1 Medical industry chain dataset.

Data
source

Chemical
agent#

Medical
equipment

Biological
medicine

Entity# 15,137 22,136 9,235
2 Data and evaluation indicators

2.1 Medical industry chain data

To verify the validity of the CFEKM model, this paper adopts

the big data method to collect the node data of the medical industry

chain. Based on the node data, medical industry chain mapping is

constructed, and the collection process is divided into three steps.

First, this paper collects big data information in three predefined

medical industry chain dimensions: “inclusion, upstream and

downstream.” This information includes annual reports, industry
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and industry research reports, and company announcements.

This information lets us determine which entity names will likely

be the first node and calculate the confidence level. The

confidence level is calculated based on the ratio of the

occurrences of a specific entity identified as “entity-downstream”

in the company’s annual reports, announcements, and research

reports over the past five years to the maximum value of all

entities. The higher the confidence level, the higher the likelihood

that the entity name will become the first node.

In the subsequent phase of our research, we systematically

gather extensive data across three key dimensions

—“containment,” “upstream,” and “downstream”—to identify the

entities that could serve as the initial node. This process

continues the method initiated in the first step. We scrutinize the

entity names collected during the second step, comparing them

for repetition or high similarity with those from the first step.

Concurrently, we evaluate the confidence levels assigned to these

names. Should the confidence level in the second step exceed

that of the first, the entity in question is then identified as the

second node in the chain.

Finally, this paper repeats the above steps to determine the

medical industry chain’s third, fourth, fifth, and other nodes. The

following shows the sources and sources of the pharmaceutical

industry chain data collected in this paper. This paper selects

three pharmaceutical industry chains: chemical preparations,

medical devices and biomedicine. It collects the entity data of

these medical industry chains listed in Table 1.
1. Enterprise business scope and company profile: The table

begins with data items related to the business scope and

company profiles, such as company names and business

scopes. These data are sourced from the National Enterprise

Credit Information Publicity System, accessible via http://

www.gsxt.gov.cn.

2. Patent information: The second section focuses on patent

information, including patent names and abstracts. Data are

provided by the Patent Big Data Comprehensive Service

Platform, available at http://www.soozl.cn/.

3. Qualification certificates: The third section pertains to

qualification certificates, including certificate names and

summary information. Data are sourced from the National

Construction Market Supervision Public Service Platform,

which can be queried at http://jzsc.mohurd.gov.cn/home.

4. News information: The news information section provides

public information from the WeChat public platform,

accessible via a link (the specific link was not fully displayed

in the original text).

5. Software copyright: The software copyright section lists

copyright names, with data provided by the China Copyright
frontiersin.org
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Protection Center, detailed information can be obtained at

http://www.ccopyright.com.cn/.

6. Administrative licenses: The sixth section introduces

administrative licenses, with data also sourced from the

National Enterprise Credit Information Publicity System.

7. Corporate websites: The corporate websites section provides

external purchase data and information on IT Orange listed

companies, available at https://www.itjuzi.com.

8. Periodic reports: The final section concerns periodic reports,

including quarterly and annual reported data, provided by the

Shanghai Stock Exchange, detailed information can be

inquired at http://www.szse.cn/disclosure/listed/fixed/index.html.
2.2 Test dataset

This paper outlines a three-step method for constructing entity

datasets for three distinct medical industry chains without

standardized test datasets. Initially, we selected artificial

intelligence, institutional, and human entities as the primary

categories. We randomly sampled 50 entities from each within

the chemical agents, medical equipment, and biological medicine

chains, totaling 150 entities. We then manually identify and

compile related entities from their respective data sources,

resulting in a dataset of 450 aligned entities, as detailed in Table 2.

In the second step, we process the summary text of these

entities, performing word separation and linguistic annotation,

and cluster the data using the LDA algorithm. We categorize

each cluster into three groups and align entities according to

their data sources, calculating semantic and structural similarities

to pair entities within each segment.

In the final step, we adjust model parameters to measure entity

matching accuracy and assess model performance under varying

noise levels. We collect entity data using life cycle, investment

heat, and R&D dimension indicators for the three medical

industry chains, with detailed information presented in Table 2.

The selection of life cycle indicators is based on the

understanding that medical industry chain nodes progress

through distinct developmental stages, with only those in the

start-up and growth phases being viable as target nodes. The

investment fever indicator reflects the capital market’s

preferences. In contrast, the R&D dimension indicator ensures

the technological sophistication of the target nodes, which is

crucial for promoting industrial upgrading and sustainable

economic development.
TABLE 2 Medical industry chain test dataset.

Category Chemical
agent

Medical
equipment

Biological
medicine

Life cycle entities 50 50 50

Investment in hot
entities

50 50 50

R&D
dimensional
entities

50 50 50
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2.3 Evaluation metrics

In the experimental phase of this research, a suite of established

performance metrics was engaged to evaluate the efficacy of the

Clinical Feature Extraction Knowledge Mapping (CFEKM)

model. These metrics encompass recall, precision, and the F-

measure, recognized as the cornerstones in information retrieval

and data analytics. As defined by Powers (29), Recall quantifies a

retrieval system’s capability to identify all pertinent instances

within a dataset. Precision, conversely, reflects the proportion of

retrieved instances that are contextually relevant. The F-Measure,

introduced by Christen et al. (30), harmonizes Recall and

Precision into a single metric, offering a balanced system

performance assessment. Given the comprehensive treatment of

these metrics in the extant literature, specifically within Powers

(29), this manuscript eschews redundancy by directly referencing

the seminal definitions and theoretical underpinnings

provided therein.
3 Medical industry chain knowledge
mapping construction

Medical industry chain knowledge mapping is a structured

knowledge representation method that can represent the

relationships among enterprises, entities, technologies, and other

entities in the medical industry chain and the hierarchical

structure of the medical industry chain. Knowledge mapping can

better explain the operation mechanism of the medical industry

chain, discover potential cooperation opportunities and risk

points, and provide effective support for enterprises’ decision-

making. The CFEKM model extracts the associated compact

semantic knowledge from the massive granularity of the medical

industry chain big data by mining it and organizing and

expressing it using knowledge mapping. This model can

significantly improve the speed of knowledge construction and

thus better meet the enterprise’s demand for knowledge.
3.1 Medical industry chain data

Constructing a comprehensive knowledge graph is essential for

its effective application. The process significantly influences

subsequent operations. Typically, developing a knowledge graph

encompasses tasks such as entity identification and relationship

extraction. Additionally, the efficient organization and storage of

the knowledge graph are crucial for rapid access and manipulation.

Creating an industry chain map in the medical industry is

crucial for analysis and investment promotion. By illustrating the

connections between the upstream and downstream nodes of the

medical industry chain, this mapping provides precise guidance

for enterprises to align with the appropriate industry chain

nodes. Enterprises can accurately align themselves with industry

chain nodes based on criteria such as their main sources of

business income, thereby establishing a solid foundation for
frontiersin.org

http://www.ccopyright.com.cn/
https://www.itjuzi.com
http://www.szse.cn/disclosure/listed/fixed/index.html
https://doi.org/10.3389/fdgth.2024.1439113
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


Chen et al. 10.3389/fdgth.2024.1439113
analyzing extended, complementary, and robust medical industry

chains. The construction of a medical industry chain knowledge

map can be divided into two phases: ontology and entity layer

learning. Ontology layer learning includes term extraction,

synonymy extraction, concept extraction, categorical and

noncategorical relationship extraction, and axiomatic rule

learning. The entity layer learning, or entity filling or ontology

enrichment, involves the conventional steps of entity discovery

and attribute supplementation—identifying the entity first and

then adding its attributes and values. This process corresponds to

the primary studies of entity matching and entity linking.

Given that data for non-listed companies are dispersed and

lack structured entity data, the proposed solution consolidates

most business data within the medical industry chain and the

enterprise matching process. It primarily includes enterprise

basic data (such as enterprise name, business scope, and

enterprise introduction), patent information, qualification

certificates, administrative licenses, construction qualifications,

software copyrights, enterprise official websites, standard

development, and other data dimensions.

However, we observe that factual knowledge acquired by

identifying additional entities and their attribute relationships can

broaden the knowledge graph’s scope. Despite the relative

scarcity of this type of knowledge, it is distinguished by its

abundance, dynamism, and extensive coverage. Nevertheless, the

knowledge map constructed from structured medical industry

chain data is limited in some entity categories and attributes to

those listed in the table. From these categories and attributes, it

is evident that a knowledge graph built solely with medical

industry chain data presents the following two issues:

(1) The current medical industry chain entity knowledge map

is limited in its representation of attributes. It primarily includes

basic enterprise data such as names, business scopes,

introductions, patent information, qualification certificates,

administrative licenses, construction qualifications, software

copyrights, official websites, and standard settings. However, it

lacks comprehensive details on these entities’ life cycles and

investment trends. (2) Furthermore, the relationships depicted

between entities in the map are sparse, based solely on the

hierarchical structure of the medical industry chain. This limited

connectivity can restrict the scope of feasible solutions for

knowledge mapping inference, thereby impacting the precision of

the inference outcomes.

To remedy the problems of single entity attributes and sparse

relationships between entities in the existing medical industry

chain entity knowledge map, this paper first extracts the

attributes and relationships of relevant entities from the life cycle.

For the convenience of description, the lifecycle information is

defined as follows:

The entity lifecycle class information is based on the entity

lifecycle information composition, and the entity is represented

as the following five-tuple baike_entity_info ¼ (entity_name,

desc _text, info_box, other_info, entity_type), where entity_name

refers to the entity name. desc_text is the entity description text,

info_box is the attribute information box, the List of entity-

related dimensions and other dimensions of the entity
Frontiers in Digital Health 05
description information is represented as other_info, and

entity_type is the entity type information.

The situation in the above example is common in the fusion of

data from three entity classes, and the problem is summarized in

this paper as two problems:

(1) For one word with multiple meanings, the same word

represents different entities in different entity class data sources.

(2) Multiple words have one meaning, and the same entity has

different names in different entity class data sources. How to

address the situation of multiple meanings and multiple words is

an important problem to be solved in this paper when fusing

data from various entity class sources in the medical industry

chain. At the same time, how to add accurate fused medical

industry chain entity attribute relationship information to the

constructed medical industry chain entity knowledge map is also

a problem to be solved in this paper.

This paper addresses the entity alignment challenge stemming

from homographs—instances where a single word has multiple

meanings. The research integrates comprehensive entity

description information by consolidating descriptions of the

same entity from various entity class data sources. To tackle the

issue of polysemy—where a single meaning is represented by

multiple words—the paper proposes a method to map entity

attribute information extracted from online entity class data onto

the spatial entities of the medical industry chain. This mapping

is achieved by aligning entities within the medical industry chain

to their corresponding spatial entities, enriching the knowledge

map with missing attributes and relationships.
3.2 Alignment of entities in the medical
industry chain

The primary objective of entity alignment is to address the

challenge of linking high-quality data across diverse data sources.

In this section, we employ the entity alignment technique to

amalgamate entity class data from various sources, achieving a

more exhaustive understanding of entity attribute relationships.

To manage the extensive data volume, we implement the concept

of data chunking, which simplifies computational complexity and

circumvents the Cartesian entity operation inherent in entity

matching. The detailed procedure is depicted in Figure 1.

Initially, we combine data from three entity classes; each entity is

characterized by its name and the descriptive text on the entity

class web page. We then leverage the robust topical features of

the Latent Dirichlet Allocation (LDA) model to cluster the

entities within the database into K topics, with each entity

assigned a K-dimensional topic vector. Following this, the k-

means algorithm clusters the entities into manageable chunks.

Ultimately, entities within each topic are categorized into three

classes based on their origins, and their similarities are computed

to complete the entity alignment process. Figure 1 illustrates the

multi-entity alignment process.

Figure 1 illustrates the process of multi-entity alignment,

highlighting the data chunking approach used to reduce

computational complexity in entity matching. This method is
frontiersin.org
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FIGURE 1

Complementary visualization of the data chunking approach for entity alignment in the CFEKM framework.
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integral to the Clinical Feature Extraction Knowledge Mapping

(CFEKM) model. The figure provides a visual representation of

how entities are clustered and matched, emphasizing the

efficiency gains achieved by our approach.

According to the display of the entity alignment process in the

above Figure 1, this paper divides the main processing process into

two core parts, data chunking and entity similarity calculation, and

the specific calculation steps are as follows:

3.2.1 Industry standard word splitting processing
In this section, we enhance the precision of industry-standard

terminology about each data dimension by undertaking a word

segmentation process and conducting semantic analysis with

natural language processing (NLP) techniques. We also establish

synonyms and keywords for select industry-standard terms to

align with various data dimensions, yielding preliminary matches

between enterprises and the medical industry chain. Since entity

matching across disparate data sources resembles a Cartesian

entity operation, the time complexity escalates exponentially with

the number of data sources involved. Such complexity becomes

prohibitive when dealing with many data source entities. To

mitigate this, we implement a data chunking strategy, grouping

entities with identical descriptions into the same data block and
Frontiers in Digital Health 06
calculating entity similarities, thereby reducing computational

complexity.

Another benefit of using clustering for entity chunking is its

ability to differentiate entities with the same name but pertain to

different information classes, ensuring they are allocated to

distinct data blocks. In this paper, we base our chunking

approach on the desc_text field within baike_entity_info,

leveraging it as a mechanism for entity disambiguation. This

approach streamlines the matching process and ensures the

resulting matches are more accurate and contextually relevant.

Through the above analysis, it can be seen that this paper

converts the problem of performing entity chunking in the

knowledge graph into the problem of clustering the desc_text

text descriptions in the baike_entity_info of entities. The corpus

F of the LDA used for training in this paper is the desc_text of

the word entity that is a mixture of three entity classes. These

data are the input because the desc_text can describe the entity

well and eliminate the ambiguity between entities. The model

describes the Fth entity as {Ve1, Ve2, . . . , VeN }, where VeNK is

the number of topics, i.e., the number of chunks of entities to be

divided into, and the time complexity of the matching algorithm

is O
QN

i¼1 jEij
� �

If the data are chunked uniformly, the time

complexity will be reduced to O
QN

i¼1
jEj
N�K

� �
. The time
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complexity is effectively reduced when the value of K is larger.

However, in the following, we will use the topic distribution of

entity desc_text for entity similarity measurement, and the

dimension of K will affect the complexity of similarity

calculation. Hence, the value of K needs to be considered

comprehensively.

3.2.2 Industry standard word and company
matching algorithm

This section elucidates our methodological strategy for

leveraging word splitting and TrieTree construction to

synchronize node tags and keywords within the medical industry

chain. We begin by acquiring the results of word separation for

node labels through a dedicated word separation interface. These

results are then utilized to build a TrieTree, a benchmark for

text-matching outcomes. Furthermore, we incorporate medical

industry-related keywords into the dictionary for subsequent

text-matching processes.

We employ the Aho-Corasick automaton algorithm to map the

outcomes of node subword structures that match their respective

nodes. Concurrently, the keyword node mapping table correlates

the results of keyword matching to the pertinent nodes. Within

the scope of this paper, we harness entity similarity to align

industry standard terms with enterprises, thereby quantifying the

entities’ degree of similarity. Following the initial acquisition of a

candidate entity set through data chunking, we calculate entity

similarity by comparing the entities’ similarities. We adopt a

feature-matching approach that relies on a similarity function,

which harmonizes the structural attribute similarity and semantic

similarity of entity pairs. The specific entity similarity metric is

delineated in Equation 1.

sim e1, e2ð Þ � (1� a)simsenaulic e1, e2ð Þ þ asim4B e1, e2ð Þ (1)

where sim(e1, e2) is the entity-to-semantic similarity calculation

function, a is the adjustment factor for both, simsemantic (e1, e2)

is the entity pair attribute structure similarity function, and

sim4B(e1, e2) is the entity pair attribute structure similarity function.

This paper considers the same entities in different medical

industry chain data sources. We find that the semantic

information expressed by these entities, the contextual semantic

environment in which they appear, and the topics describing the

text are the same. Therefore, this expressed semantic

information, the contextual environment in which it occurs, and

the topic describing the text are themselves another

representation of the entity. This paper has trained the entity’s

topic distribution matrix ue in performing data chunking. Where

the entity ei can be expressed as ei ¼
n
p (topic

1
ei
),

p (topic
2
ei
Þ, . . . , p (topic

K
ei
Þ
o
,
PK

k¼1 p (topic
k
ei
Þ ¼ 1. When

k ¼ 1, the model can well portray the semantic relationship of

entities at the topic level.

Entities in the knowledge graph contain rich semantic

relationships and are presented as graphs. Structural similarity

between entities is also an indispensable factor in measuring

entity similarity. Similar entities tend to have identical graph
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structures, e.g., they may have the same attribute values,

neighboring entities, and the number of shortest paths between

entity pairs in the network topology. Neighbor node counting is

one of the simplest methods to calculate structural similarity. It

obtains the structural similarity of an entity pair by directly

counting the number of neighbors common to the set of

neighbor nodes of the two entities (31). The Jaccard correlation

coefficient is another simple but effective method to calculate

structural similarity. It measures the similarity of an entity pair

by calculating the ratio of the set of neighbors common to the

concatenated set of the entity pair (32). Both methods treat

neighboring attributes and relationships as having the same

weight, but in practical problems, different entity attributes and

relationships do not have the same magnitude of influence on

entities (33). For this reason, there is an idea of assigning

weights to entity attributes and relations, i.e., the calculation

gives entities with more associated relations lower weights. The

similarity calculation formula of this algorithm is Equation 2.

simAdar ei, ej
� � ¼

P
NB(e)[NB ejð Þ...B ejð Þ u(NB(e))P

i u(NB(e))
(2)
where NB(e) denotes the set of relationship attributes of entity

NB(ei), and u(NB(e)) is the importance of entity e’s relationship.

The objective of this paper is to employ an evaluation system to

quantify the structural similarity between entities and to refine the

computation of U(e). Contrary to the common assumption that “an

abundance of related entities results in a diminished weight for

them as neighboring nodes in the calculation,” this paper posits

that the significance of each attribute and entity about another

can be gauged by its capacity to differentiate that entity.

Accordingly, this paper adopts a method akin to TF-IDF to

ascertain the distinctiveness of each attribute. The formula for

this calculation is presented in Equation 3.

u NBi(e)ð Þ ¼ num NBi(e)ð ÞPNB(e)
i¼1 num NBi(e)ð Þ � cluster NBi(e)ð Þ (3)
Where num (NBi(e)) is the number of occurrences of NBi(e) the

number of occurrences in the knowledge graph, the more

occurrences, the more important the attribute is, cluster (NBi(e))

is the clustering coefficient of the node. The higher the value is,

the tighter the connection between the neighboring nodes of the

node and the greater the possibility that its neighboring nodes

belong to the same kind of entities, then the attribute belongs to

the common attribute of a certain class of entities; if num

(NB, (e)) is high and the clustering coefficient of the node cluster

(NBi(e)) is very small, it means that the attribute is a common

attribute of entities. Then, the differentiation of the attributes will

be small.
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3.3 Complementing entity relationships in
the medical industry chain through textual
data analysis

In this paper, we employ multi-granularity medical industry

chain data to enhance the knowledge map, addressing the

limitations of relying solely on such data for map construction.

We recognize that utilizing entity class data for knowledge graph

enrichment can be problematic if essential terms related to

medical industry chain entities are absent or the available

information is insufficient for completing entity attribute

relationships. Moreover, knowledge graph inference requires

substantial factual knowledge, typically found in unstructured

texts like news events, seldom present in medical industry chain

data and entity class web pages. We extract entity relationships

from unstructured news-like texts to address these challenges and

enrich our knowledge graph. However, this approach can

introduce noise due to irrelevant information. Consequently, we

implement a key sentence extraction algorithm to identify and

extract sentences that contain more entity relations while

minimizing redundancy.

This paper delves deeper into extracting entity relationships by

leveraging key sentence sets. For an entity E, the key sentence set

comprises the crucial and non-redundant sentences culled from

the text associated with that entity. The formal representation of

this set is depicted in Equation 4.

This paper further addresses entity relationship extraction

employing key sentence sets. The set of key sentences of an

entity E is the set of important and low redundant sentences

extracted from the related text of that entity. Its formal

representation is as Equation 4.

sum Esentencei

� �
¼ , Sent ji , weight .j j [ [0, N]

n o
(4)

Where. , Sent ji , weight > is the binary representation of a sentence

in the set of key sentences of the entity E, related text. Sent t ji is the

text content of the sentence, weight is the semantic value of the

sentence at the time of sentence extraction, and N denotes the

size of the set of key sentences of the entity.

In this paper, the core sentences in the corpus are extracted

using the key sentence extraction algorithm to realize entity

relationship extraction further. In the text, generic named entity

sentences such as research reports and industry white papers

contain rich entity pairs and their semantic descriptions,

constituting entity relations. To accurately extract entity pairs

and their semantic descriptions, this paper relies on two entities

of the relationship. It defines them formally as pair

(ei, e j) ¼ { , ei, type (ei)i, ¡ e j, type (e j) . }, where ei refers to

an entity, type (e j) denotes the type of that entity, e.g., research

report, industry white paper, etc.

The entity pair description feature sequence is a collection of

terms that encapsulate the semantic interconnection between a

pair of entities, potentially including their contextual

information. Specifically, this paper utilizes the set of verbs found
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along the shortest dependency path within the dependency

syntax tree of the two entities. This sequence is employed as the

descriptor for the entity pair. The entity pair description feature

sequence is represented as fs(ei, e j). As shown in the definition of

Equation 5.

fs ei, e j
� � ¼ wi j pos wið Þ [ {v, n}, 1 � i � Kf g (5)

In this paper, we refine our approach to effectively mine and

understand the relationships between entity pairs by employing

the previously defined entity pair description feature sequences.

Here, pos (wi) signifies the part of speech of the word wi, where

‘v’ and ‘n’ represent verbs and nouns, respectively. The variable

K denotes the length of the feature sequence. By leveraging these

sequences, we aim to capture the nuanced semantic connections

between entities more accurately and contribute to advancing our

understanding in this domain.

Bunescu and Mooney (34) proposed and proved a hypothesis

that if an entity pair (ei, e j) occurs in some sentence S. There

exists some relationship R between the two entities in this pair

(ei, e j), then this relationship is almost entirely concentrated in

the dependent syntactic tree of the sentence S. Entities ei to e j on

the shortest path. The discourse in question refers to the shortest

dependency path between an entity pair, effectively extracting

entity relations in simple sentences with only two entities.

However, the complexity of Chinese sentence structures, which

often include multiple components, poses a challenge for this

approach. When a sentence encompasses relationships among

various entities, extracting entity pairs from such a sentence

necessitates incorporating grammatical knowledge, which this

paper lacks.

Furthermore, in complex sentences, the shortest paths of entity

pairs may overlap or intersect, complicating the extraction process

for feature sequences. Typically, when a sentence includes only two

entities, their relationship is more discernible, making extracting

feature sequences more straightforward. The proximity of word

editing distances within a sentence correlates with the strength of

the semantic relationship between those words. Thus, the

following guidelines should be adhered to when extracting

entity pairs:

Since the dependency relationship between words decreases as

the dependency distance increases, the entity pair feature sequence

words should be directly connected to the entity words, i.e., words

with dependency edges connected. If the sentence contains three

entities e1, e2, e3, then it can be determined that it contains two

entity pairs. Pair (e1, e2), and the dependence path

dependencePath (e1, e3) contains dependencePath (e2, e3), then

the shortest dependence paths for each of the two entities are as

Equations 6, 7.

shortPath pair e2, e3ð Þð Þ ¼ dependencePath e2, e3ð Þ
shortPath pair e1, e3ð Þð Þ ¼ dependcePath e1, e3ð Þ (6)

� dependcePath e2, e3ð Þ (7)
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Algorithm 1 The specific mining process.

Input: List , cluster no, sample list . clusterlist ¼ k�means(k, F)
while k > k _max do
for i ∈ (0, k − 1) do

List , cluster no, sample list . twoCluster ¼ 2�means(F, clusterList:get(i));
if BIC(F, clusterList.get(i)) ¡ BIC(F, twoCluster) then

clusterList.remove(i);
clusterList.addAll(twoCluster);

end
if clusterList.size() == k then

break;
end
else

clusterList.remove(i);
clusterList.addAll(twoCluster);

end
if clusterList.size() == k then

break;
end
else

k = clusterList.size();
end

end
end
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This study identifies entity pairs with semantic dependencies

within sentences by the semantic pointing rule. It extracts the

descriptive feature sequences of these entity pairs using the

feature description sequence extraction rule. Notably, when an

entity pair exhibits multiple dependency paths, each triad

consisting of the entity pair and the feature description sequence

is considered distinct. This approach allows for recognizing

various relationships between the same entity pair. The detailed

mining procedure is delineated in Algorithm 1.

As shown in Algorithm 1, it describes a complex data mining

process encapsulated within a structured and iterative framework.

It initiates with applying the k-means clustering technique to

segment the dataset into k distinct clusters, each represented by a

cluster number and a sample list. Subsequently, the algorithm

iteratively refines these clusters by employing a two-step

clustering process on the feature space F to enhance the

clustering granularity. This iterative enhancement is governed by

the Bayesian Information Criterion (BIC), which assesses the

quality of the clustering by balancing the fit of the model to the

data against the complexity of the model. Should the BIC of the

refined two-cluster configuration outperform that of the original

cluster, the original cluster is replaced, thereby continuously

optimizing the clustering configuration. This process is reiterated

until the number of clusters reaches a user-defined maximum,

ensuring an adaptive and dynamic clustering solution that closely

aligns with the underlying data distribution.
3.4 Unsupervised entity relationship
extraction based on clustering

This paper examines the feature clustering of entity pairs that

share the same relationship to further abstract the relationships

between entities. The research is structured in a three-step

process: initially, the similarity of entity pair feature sequences is
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assessed; subsequently, entity pairs with similar feature sequences

are grouped; and ultimately, the relationship labels of entity pairs

within the same cluster are extracted and appropriately assigned.

Given that numerous entity pairs in the medical industry chain

data exhibit identical feature sequences, the findings of this study

are instrumental in enhancing the level of abstraction for entity

pair relationships.

The foundation of entity clustering and classification lies in the

similarity of entity-to-feature description sequences. Common

methods for calculating similarity fall into two principal categories:

similarity-based and distance function-based. Similarity-based

methods quantify the degree of similarity between entities by

computing a similarity metric. Prominent algorithms within this

category include the cosine similarity calculation, the Pearson

correlation coefficient, and the Jaccard similarity coefficient.

Conversely, distance function-based methods represent the features

of each entity as a high-dimensional vector and assess their

similarity by measuring the distance between them. Notable

algorithms in this category encompass the Euclidean and the

Manhattan distance, among others.

Since the length of the sequence of entity pair feature

descriptions extracted in this paper is not fixed, it isn’t easy to

perform clustering and classification by common feature

sequence similarity calculation methods. For this reason, this

paper adopts the Bunescu and Mooney (34) proposed similarity

calculation method based on semantic sequence kernel functions,

which performs well in dealing with feature description

sequences of different lengths and is widely used. The semantic

relationship between entities can be portrayed by calculating the

entity pair similarity using the sequence kernel function, which is

calculated as Equation 8.

K(X, Y) ¼ 1
Z(X, Y)

XK
n¼1

Kn(K , Y) (8)

Where X and Y denote the sequence of feature descriptions of two

entity pairs, and it is not required that the two sequences are of the

same length; Z(X, Y) is the normalization factor, which is defined

as Equation 9.

Z(X, Y) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XjXj
n¼1

Kn(X, X)�
XjYj
n¼1

Kn(Y , Y)

vuut (9)

The semantic kernel function is shown in Equation 10 and is

calculated as follows:

Kn(X, Y) ¼
X

u[
P

n

X
i : u¼X[i]

X
j : u¼Y[j]

ll(i)þl(j)

�
Yn
k¼1

SIM Xik � word, Yk � wordð Þ
(10)

Where u represents the common subsequence of two entity pairs of

feature sequences; i ¼ [i1, i2, . . . , In] denotes the indexed subset of
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the feature sequence X, X[i] is the subsequence of X. Similarly,

j ¼ [j1, j2, . . . , jn] is the indexed subset of Y ; j [i] denotes the

width of X[i] in the original sequence, i.e., the difference between

the maximum and the minimum value of the index; l is the

decay factor with the value range of (0, 1), generally taking the

value of 0.5, and its index is j[i]þ j[j] indicates that the weight is
inversely proportional to the sequence span, and SIM() is the

lexical similarity calculation function. This paper uses the entity

class full-text training word vector to calculate the semantic

similarity between two words by the word vector Word2Vector

similarity proposed by Mikolovt et al. (35), whose calculation

formula is as Equation 11.

SIM WA, WBð Þ ¼ � WA �WB

WA�k kWBk (11)

In this paper, the similarity between entity pairs is calculated using

Equation 11, which leverages the word vectors WA and WB and

their magnitudes kWAk and kWBk. This method is advantageous

as it accommodates feature description sequences of varying

lengths and mitigates the impact of these variations on the

similarity assessment. However, the primary drawback of this

approach is its computational complexity, which is largely

dependent on the length of the feature sequences. Fortunately,

since this study utilizes the shortest dependency path as the

feature description sequence, the sequence length is controlled,

thereby keeping the computational expense manageable.

In the initial phase of entity pair feature sequence clustering,

the paper calculates the similarity between entity pairs to

evaluate their degree of resemblance. Subsequently, the paper

groups entity pairs with analogous relationships into a cluster

based on similarity. A similarity matrix for the entity pairs is

constructed to achieve this, employing the matrix expression

detailed in Equation 12, which computes the pairwise similarities.

This process enables an organized and systematic approach to

clustering entity pairs based on their relational similarities.

k 1, 1ð Þ � � � k 1, nð Þ
..
. . .

. ..
.

k n, nð Þ � � � k n, nð Þ

0
B@

1
CA (12)

This paper employs the spectral clustering algorithm to cluster the

feature description sequences of entity pairs, thereby categorizing

the set of entity pairs into classes with high similarity. The

spectral clustering algorithm relies on the similarity matrix for

clustering, with k-means being the most widely used method.

However, due to the multi-granularity nature of medical industry

chain data, the exact number of entity relationships within the

entity pair set cannot be predetermined, rendering the k-means

clustering algorithm unsuitable.

The paper adopts the X-means clustering algorithm introduced

by Pelleg et al. (36) to address this. This algorithm utilizes a

splitting criterion to identify clustering centers and assesses the

clustering outcome using the Bayesian Information Criterion
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(BIC) score. The X-means algorithm effectively addresses several

limitations of the k-means algorithm, such as its fixed

computational scale, the requirement to manually set the number

of clusters X, and the propensity for the search to converge to

local optima. The BIC score is calculated using Equation 13,

designed to measure the model’s goodness of fit while penalizing

models with larger parameters to avoid overfitting. This criterion

aids in determining the optimal number of clusters by balancing

the model’s fit with its complexity.

BIC Mj
� � ¼ l̂j(D)� pj

2
log jRj (13)

where l̂j(D) is the likelihood of model Mj given the data D, pj is the

number of parameters in model Mj, and jRj is the number of

data points.
4 CFEKM model construction

This paper systematically constructs entity characteristics by

examining three distinct medical industry chains: Chemical

Agents, Medical Equipment, and Biological Medicine. The

process involves a meticulous alignment of the entities within

these sectors. Specifically, the paper extracts and analyzes the

relationships of entities along the life cycle, investment

attractiveness, and research and development (R&D) dimensions.

By doing so, the study can identify and define the characteristics

of entities comprehensively, taking into account the multifaceted

interactions and dependencies within the Medical industry. This

approach allows for a deeper understanding of the entities and

their roles within the broader context of the industry, ultimately

leading to a more nuanced and informed representation of their

features and relationships.
4.1 CFEKM model construction

This paper introduces the CFEKM (presumably a custom

model name for something specific to the paper’s context)

model, developed through a series of processes, including

relationship label extraction, entity alignment, and feature

extraction. The methodology for these extractions is outlined in

Figure 2, titled “Data Acquisition,” which illustrates the specific

techniques and steps employed to gather and process the

necessary data for the model. This approach ensures that the

CFEKM model is built upon a solid foundation of accurately

identified relationships and well-aligned entities, enriched with

extracted features crucial for its intended applications.

Figure 2 serves as a comprehensive illustration of the CFEKM

model’s architecture, highlighting the essential elements of the

model and the relationships between them. By clearly depicting

the flow of information and the dynamic interactions between

the various modules of the model, the diagram aids in

conceptualizing the operational dynamics of the CFEKM model.
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FIGURE 2

Architectural blueprint of the clinical feature extraction knowledge mapping (CFEKM) model.
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It provides a clear roadmap for how data is processed, analyzed,

and utilized within the model, underscoring the significance of

each component in the overall system.
4.1.1 Entity pairs and description of the feature
extraction process

This paper delves into relationship label extraction to identify

and extract suitable words from the feature description sequences

of a specific class of entity pairs to serve as relationship labels for

that class. The approach begins by assigning higher weights to

words frequently observed within the particular category of

interest. Conversely, words that exhibit high frequency across all

categories have their weights diminished.

This method aims to pinpoint the most distinctive words within

the category’s feature description sequences and employ these words

as labels for that class. This extraction is based solely on the

frequency of word occurrence, emphasizing the importance of

identifying common and unique words within the category. Thus,

the labels’ discriminatory power for classifying entity relationships

is enhanced. This strategy is crucial for accurately categorizing and

understanding the nuances of different entity relationships within

the medical industry chain data.

In the initial phase of the research presented in this paper,

feature terms are identified through the application of Equation

14. This equation presumably analyzes the feature description

sequences and isolates the most relevant and informative terms

for the subsequent study steps. By employing Equation 14, the

paper aims to establish a solid foundation of feature terms that

will be instrumental in relationship label extraction, entity

alignment, and constructing the CFEKM model. The specific
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details of Equation 14 would provide the mathematical or

computational basis for this feature term discovery.

WCi,k ¼ log2 dfi,k þ 1ð Þ
log2 Nk þ 1ð Þ (14)

In the context provided, the equation seems to be part of a process

to evaluate the significance of feature terms within different

categories of entity pairs. The term df i,k represents the document

frequency of a specific feature term i within category k, which is

the count of entity pairs that include this particular feature term.

On the other hand, f i refers to the frequency of the feature term

i across all categories, which is essentially the count of all entity

pairs in the dataset that contain this term. NK is the total

number of entity pairs that belong to category k.

This approach likely aims to identify feature terms that are

frequent within a specific category and relatively unique compared

to their distribution across other categories. Normalizing the

document frequency concerning the total number of entity pairs

in the category and potentially comparing it across categories can

highlight more discriminative and informative terms for classifying

or analyzing entity pairs within each category. The definition

formula is shown in Equation 15.

CCi ¼ log
N†maxk[Ci WCi,kf gPN

k¼1 WCi,k

† 1
logN

(15)

where Ci The set of all classes containing the feature word fi is the set

of classes, and N is the total number of classes: 1
logN One is the
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regular factor, which limits CCi the range of [0, 1] �WCi,k and CCi

denote the importance of feature word fi within class k and between

classes, respectively. The feature word is calculated by Equation 16, fi
weight within the class (fi). Finally, the feature word with the greatest

weight in each class is extracted as the relationship label of that class.

Weight fið Þ ¼
W2

i,k � CC2
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2
i,k � CC2

i

q (16)

In this paper, we directly apply category labels to denote specific

relationships, which is too broad to capture the nuanced semantic

details of individual relationships. Words that signify the

relationship between entity pairs appear within their feature

description sequences. Consequently, after extracting the category

labels, we employ Equation 17 to identify the word that exhibits

the greatest similarity to the category label vocabulary. This

approach allows us to more effectively retain the precise semantic

information inherent in the relationships between entity pairs.

arg fi
max sim fi, f

C
i

� �
(17)

Among them. fi [ fs(ei:e j) is the tag word from that entity to pair

(ei:e j) from the feature sequence of that entity pair. f ci is the

category tagging vocabulary of the category in which the entity pair

is located; the sim(fi:f ci function calculates the similarity between

the feature sequence vocabulary and the category label words.

This paper employs the semantic pointing rule to identify entity

pairs with semantic dependencies within sentences. Subsequently,

we extract the description feature sequences for these entity pairs

using the feature description sequence extraction rule. Notably,

when an entity pair exhibits multiple dependency paths, each triad

consisting of the entity pair and its corresponding feature

description sequence is considered a distinct entity. This approach

permits multiple relationships to be associated with the same entity

pair. The detailed mining procedure is outlined in Algorithm 2.
Algorithm 2 The specific mining process.

Input: List , clusterno, samplel ist . clusterList ¼ k�means(k, F)
while k > k – max do
for i in (0, k – 1) do

List , clusterno, samplel ist . twoCluster ¼ 2�means(F, clusterList:get(i));
if BIC(F, clusterList.get(i)) ¡ BIC(F, twoCluster) then

clusterList.remove(i); clusterList.addA11(twoCluster);
end
if clusterList.size()==k then

break
end
else

clusterList.remove(i); clusterList.addA11(twocluster);
end
if clusterList.size()==k then

break
end
else

k = clusterList.size();
end

end
end
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Algorithm 2 presents a comprehensive methodology for

extracting entity relationships from textual data, underpinned by

a robust clustering technique. The algorithm’s operational flow

begins with initializing a dataset partitioning through the

k-means clustering approach, which segregates the data into ‘k’

distinct clusters, represented by a list of cluster numbers and

their corresponding sample lists.

The algorithm then enters an iterative refinement phase, where

each cluster is evaluated for potential division into two sub-clusters

using a two-step clustering process. This bifurcation is contingent

upon the Bayesian Information Criterion (BIC), denoted as:

BIC(F, clusterList.get(i)).

This BIC value measures the quality of the clustering

configuration, striking a balance between the model’s fit to the

data and its complexity. If the BIC of the proposed two-cluster

configuration exceeds that of the existing single cluster, the

original cluster is replaced, effectively enriching the granularity of

the clustering.

The following conditions govern the iterative enhancement

process: (1) A two-cluster configuration is proposed for each

cluster ‘i’ in the range from 0 to k� 1. (2) The BIC of the

existing cluster is compared with that of the proposed two-

cluster configuration. (3) If the BIC of the two-cluster

configuration is higher (indicating a better fit with increased

complexity), the original cluster is replaced by the two new clusters.

This process continues in a loop, adjusting ‘k’ dynamically

based on the size of the cluster list until a user-defined

maximum cluster count is reached, ensuring an adaptive

clustering strategy that closely aligns with the data’s inherent

structure. The inputs to Algorithm 2 include the initial number

of clusters ‘k’ and the feature space ‘F’. The output is a refined

list of clusters, each with an enhanced representation of the

data’s underlying relationships and a deeper level of granularity.

The algorithm’s mathematical formulation is encapsulated

within the BIC calculation, which is pivotal for the iterative

refinement process. The BIC score is calculated using the formula:

BIC Mj
� �� l̂j(D)�

pj
2
log jRj

where hatlj(D) is the likelihood of model Mj given the data D, pj is

the number of parameters in model Mj, and jRj is the number of

data points. This criterion is essential for the model to determine

the optimal number of clusters by balancing the model’s fit with

its complexity, thereby guiding the algorithm’s decision-making

process in refining the clustering configuration.
4.1.2 Analysis of relationship extraction results
This paper uses an entity relationship extraction method

grounded in syntactic dependency rules to identify entity

relationships within sentences and extract varying numbers of key

sentences. The accuracy of these results is assessed through manual

evaluation. The experimental findings of this paper are as follows:

1. As the number of key sentences increases, the number of

extracted entity relationships increases. However, until the
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FIGURE 3

Syntactic dependency-based analysis of entity relationship extraction accuracy.
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number of sentences is below 600, the number of extracted

entity relations increases rapidly with the number of

sentences. When the number of sentences exceeds 600, the

number of extracted entity relations stabilizes due to the

increase in redundant information in the sentences.

2. As the number of sentences increases, the accuracy of relation

extraction gradually increases and eventually stabilizes. The

highest accuracy rate in this paper reached 0.803.
Upon analyzing the sentences, this paper discerns that the cause for

the result one is attributed to the top-ranked sentences being longer

and encompassing more entity relationships. Consequently, the

extraction of entity relationships accelerates with an increasing

number of key sentences. Subsequently, this rate of increase

stabilizes as the first approximately 600 sentences encapsulate the

primary information pertinent to the entity in question.

Concurrently, adding further sentences introduces redundant

information, causing a decline in the quantity of extracted

entity relationships.

Upon a deeper examination of the entity pair extraction results

from 600 key sentences, this paper extracted 765 entity pairs. A

meticulous manual review determined that our algorithm’s

accuracy of entity pair extraction is remarkably high, at 0:949.

After mitigating the impact of erroneous entity pairs on the

results, the accuracy of relationship extraction improved to 0:935.

The subsequent analysis revealed that inaccurate entity
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identification was the primary cause of incorrect entity

pair extraction.

Figure 3 provides a detailed analysis of relational extraction,

illustrating the impact of syntactic dependency rules on

extraction accuracy. It demonstrates how the quantity of key

sentences influences the extraction process and the point at

which the extraction relationship stabilizes after reaching

600 sentences.
4.2 Entity feature extraction

The entity-relationship extraction method described earlier

generates features that suffer from high dimensionality and

sparsity, posing challenges for traditional classification algorithms

to discern the most relevant features. To address this, our paper

undertakes feature selection by leveraging deep clustering

techniques, thereby diminishing the impact of extra features on

developing the CFEKM model. In the course of entity

relationship extraction, we encapsulate the relationships with k

features, akin to the process of generating key text sentences.

Additionally, to align the extracted feature set more closely with

the contextual environment of the entity expansion set, we

introduce dynamic features. This allows the core entity features

to produce feature sets that adhere to varying contextual

knowledge constraints, contingent upon the specific contextual

context. As a result, the feature sets derived from entity
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relationship extraction exhibit enhanced informativeness and

novelty, aligning more closely with practical application

requirements. Utilizing the CFEKM model, we can better classify

and predict entity relationships.

Given the set of related entities {e1, e2, . . . , en} # Res(ei), we

aim to extract a core set of features of length K for each entity.

This task can be formulated as a 0-1 knapsack problem, leading

to the following objective function:

maximize
XjRes(e)j
i¼1

XjRes(e)j
j¼i

XFS eið Þj j

a¼1

XFS e jð Þj j

b¼1
wf aei f

b
ej
�xi,a�x j,b

s.t.
XFS eið Þj j

a¼1
xi,a � min K , FS eið Þj jf g, xi,a [ {0, 1}

(18)

In this Equation 18, K represents the predetermined size of the core

feature set for each entity. The weight wf aei f
b
ej
corresponds to the

value of selecting features f aei , f
b
ej that contribute to the overall

objective. The selection of these features is intended to fulfill the

three objectives outlined in this paper. The constraints ensure

that the number of features selected for each entity does not

exceed the minimum of K or the total number of features

available. Each feature is included (1) or excluded (0) from the

core set.

wf aei f
b
ej
¼

a�rank f aei

� �
, if ei ¼ ej, a ¼ b

�b�sim f aei f
b
ej

� �
, if ei ¼ ej, a = b

g�sim f aei , f
b
ej

� �
, if ei = ej

8>>><
>>>:

(19)

In Equation 19, a, b, and g are within the range [0,1]. a and b

jointly determine the level of informativeness and novelty among

the features within an entity’s feature set. The parameter g

controls the extent of influence between contextual entities; a

higher value of g indicates a stronger relationship between the

extracted features of different entities, meaning they are more

influenced by contextual knowledge, and the opposite is also

true. The feature extraction process is detailed in Algorithm 3.

The Algorithm 3 commences its operation by identifying key

sentences associated with the query entity, leveraging an existing

mining process to unearth these pivotal textual data points.

Subsequently, it proceeds to recognize and enumerate relevant

entities from the ensemble of key sentences, setting the stage for
Algorithm 3 Entity Core Feature Extraction Algorithm.

Input: query entity ei, number of entity features k, number of core sentences K
Output: entity feature set CFEKM(e)
List , Sentenceei . Using Algorithm 1 to mine the set of key sentences with the
query entity as the core;
FS(ei) Identify relevant entities from a collection of key sentences;
for i in (0, |FS(ei)|) do
for j in (0, k) do

ECF(e) ¼
ECF(e)
ArgMax

PjRes(e)j
i¼1

PjRes(e)j
j¼i

P FS eið Þj j
a¼1

P FS e jð Þj j
b¼1 wf aei f

b
e j
�xi,a�x j,b

end
end
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a feature extraction endeavor. The algorithm’s essence lies in

optimizing an objective function, which is meticulously

formulated to maximize the informativeness and novelty of the

selected features, subject to constraints that ensure the selection

of a feature subset of a predetermined size. This function is

elegantly crafted to balance the informativeness within an entity’s

feature set and the influence of contextual knowledge from

related entities. The algorithm meticulously selects features,

assigning binary values to indicate inclusion or exclusion in the

core feature set, thereby enabling a tailored representation of the

entity that is concise and rich in pertinent information. The

process is encapsulated within an iterative framework, ensuring

an exhaustive exploration of the feature space and culminating in

a refined set of core features succinct yet comprehensively

representative of the entity’s salient attributes. The inputs to this

algorithm include a query entity, the number of entity features k,

and the number of core sentences K . The output is the entity

feature set CFEKM(e), a curated collection of features that

encapsulate the core attributes of the entity in question.

The CFEKM model adopts an entity extraction method based

on syntactic dependency rules in response to the above-

mentioned data heterogeneity and diversity issues. This method

enables the model to dynamically adapt to data changes and

accurately represent the evolving medical industry chain. In

addition, the model effectively handles the challenges brought by

large data scale and sparsity through its advanced feature

extraction and alignment mechanism.
5 Entity alignment experiments and
evaluation in multi-granularity medical
industry chain data

To validate the proposed model’s effectiveness, this paper

conducts experimental evaluations on a computational platform

that operates Mac OS 10.14 and Ubuntu 16.04 LTS, equipped

with 64 gigabytes of RAM and a terabyte of hard disk storage.

The suite of tests is designed to assess the performance

characteristics of the CFEKM model under the purview of a

comprehensive and heterogeneous computational environment,

thereby ensuring the robustness of the findings.
5.1 Contrast model

The Path Ranking Algorithm (PRA) (37) is a widely recognized

relational path-based inference method primarily utilized in link

prediction tasks within knowledge graphs. The relational paths

identified by PRA are akin to Horn clauses, which allow the

path-based features generated by PRA to be converted into

logical rules. This conversion aids in uncovering and

comprehending the latent knowledge embedded within the

knowledge graph. The core principle of PRA is to forecast a

specific relationship between a pair of entities by identifying a

collection of relational paths that link them. The algorithm is
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lauded for its high interpretability and capacity to uncover

inference rules autonomously.

Nevertheless, PRA is not without its limitations. First, it

struggles with handling relationships that occur infrequently.

Second, it is less effective in sparse data scenarios, particularly

low-connected graphs. Third, extracting paths becomes

computationally expensive and time-consuming in the context of

extensive graphs. These drawbacks must be considered when

applying PRA in various knowledge graph scenarios.

TransE, introduced by Bordes et al. (38), is a technique for

gauging the plausibility of triples within vectorized knowledge

graphs. Its fundamental concept is to reframe the problem of

triple validity by measuring the distance between the head and

tail entities. The crux of the TransE approach lies in the

formulation of the scoring function, which typically leverages the

inherent rationality of the relationship to project the head entity

towards the tail entity, thereby assessing the entity relationship.

Drawing inspiration from the concept of word vectors, TransE

allows for mapping head and tail entities in the knowledge graph

into a vector space, treating their connections as relationships

within a triplet. The model boasts the benefits of simplicity and

rapid training times, making it an attractive choice for certain

applications. However, TransE, while simple and fast, is primarily

suited for one-to-one relationships and may not effectively

handle the complexities of more intricate relational patterns.
5.2 Effect of noise on the system model

This paper deliberately introduces various noise levels to

assess the system model’s resilience to noisy data effectively.

To this end, datasets about Chemical Agents, Medical

Equipment, and Biological medicine are created. The paper

performs five experiments for each dataset to evaluate the

algorithm’s performance across three key metrics: recall rate,

accuracy rate, and the F. The paper provides a detailed

account of the number of entities in each dataset, the number

of entity groups successfully aligned by the algorithm to date,

and the number of different entity types successfully matched

after algorithmic alignment.

The experimental findings of this paper demonstrate that the

presence of noise impacts the performance of entity alignment.

However, it is observed that as the noise level in the dataset

diminishes, the entity alignment performance markedly

improves. Throughout the experiments, entities categorized as

lifecycle entities, investment heat entities, and R&D dimension

entities are matched with high precision across various datasets.

The paper substantiates the effectiveness of the proposed method

by comparing its performance metrics against those of other

algorithms. In conclusion, the entity alignment approach

introduced in this paper can effectively tackle the challenges

associated with entity alignment. It exhibits a high degree of

robustness to noise, along with commendable practicality and

scalability. The method has also been proven to deliver high

accuracy in experiments.
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As depicted in Figure 4, the successful pairing accuracy for all

three types of entities declines with the introduction of varying

noise levels. The table shows that the algorithm presented in this

paper achieves an average accuracy of 86.4% across five

experiments conducted without noise, potentially reaching as

high as 91%. The experimental outcomes indicate that while an

increase in noise notably diminishes the accuracy rate and

F-measure, the accuracy rate remains above 50%, and the

F-measure consistently exceeds 40%. It is noteworthy that

although recall is typically sensitive to the addition of noise, this

metric appears to have a minimal impact on the algorithm of

this paper, still yielding satisfactory matching outcomes. In

summary, the CFEKM method demonstrates commendable

results in entity matching. Figure 4 further investigates the

impact of noise on the system model’s performance, highlighting

the CFEKM model’s robustness against different noise levels. The

figure correlates the introduction of noise with fluctuations in

recall, accuracy, and F-measure metrics, thereby emphasizing the

model’s practical viability in real-world applications.
5.3 Entity relationship completion in the
medical industry chain analysis

The integrity and precision of entity relationships within the

medical industry chain are essential for a holistic representation

of knowledge and for deriving subsequent data-driven clinical

nutrition insights. This section focuses on completing entity

relationships, highlighting their critical importance in enhancing

the semantic knowledge graphs at the core of our research. The

thoroughness of these relationships is not just a technical

requirement but a fundamental aspect that ensures the reliability

and utility of the knowledge graphs for clinical applications.

The experimental outcomes from the three datasets—Chemical

Agents, Medical Equipment, and smart computing—as illustrated

in Figure 5, reveal that the PRA model fails to predict links,

unlike the CFEKM model. Additionally, the results indicate that

concentrating on the entities and their relationships along the

path yields superior results compared to focusing solely on the

relationships along the route. However, when comparing the

performance across these three datasets, it is observed that the

model presented in this paper generally excels in the context of

the Biological knowledge graph. Upon further examination, this

superior performance is attributed to the fact that the entities

and relationships within the Biological knowledge graph are not

sufficiently dense, and the Medical Equipment dataset

encompasses complex relationships that challenge other models.

In conclusion, the complementation method introduced in this

paper demonstrates a clear advantage over other models. It is

adept at handling complex knowledge graphs and can deliver

satisfactory results in knowledge graph complementation. This

method outperforms its counterparts and showcases its

robustness and efficacy in practical applications, particularly in

domains with intricate relational structures.

Figure 5 showcases the entity relationship completion within

the medical industry chain, emphasizing the model’s capability
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FIGURE 4

Assessment of noise impact on system model performance in medical industry chain data alignment.

FIGURE 5

Entity relationship completion in medical industry chain knowledge graphs: CFEKM model efficacy.
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to bolster semantic knowledge graphs. It compares the CFEKM

model’s performance against other models, underscoring its

superiority in managing complex knowledge graphs. The

figure serves as a visual testament to the model’s effectiveness
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in enhancing the completeness and accuracy of entity

relationships, which is crucial for comprehensive knowledge

representation and the derivation of insightful clinical

nutrition data.
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FIGURE 6

Entity feature extraction efficiency in medical industry chain datasets: a comparative study with K ¼ 10.
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5.4 Medical industry chain entity feature
extraction

Integrating diverse data sources from the medical industry

chain through knowledge fusion enriches the multi-entity

relationship attributes, significantly enhancing the recall rate of

the knowledge graph. However, as the graph expands, the

characteristics of entities continue to increase. The medical

industry chain data encompasses many entities, with sparse

correlations between entity attributes, leading to high attribute

dimensionality within the knowledge graph and substantial

redundancy across multiple entities.

Consequently, the effective extraction of entity features from

the medical industry chain data emerges as a primary

methodology for assessing the model’s robustness. To rigorously

validate the model, this paper extracts an ideal feature set for

each dataset and conducts 100 experiments for each feature set.

The outcome is determined by averaging the results of these

experiments, providing a comprehensive evaluation of the

model’s performance and reliability in handling complex and

extensive medical industry chain data.

To validate the efficacy of the proposed algorithm, this

scholarly work employs a state-of-the-art entity summarization

approach, designated as RELIN, in conjunction with the widely

recognized entity extraction methodology, LinkSum. These

established techniques serve as benchmarks for comparative

analysis within the study (39, 40). Furthermore, the research

introduces an innovative set of metrics specifically crafted to

assess the performance of algorithms predicated on the CFEKM

framework. The delineation of these precise evaluative criteria is
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as follows:

Agreement¼ 2
n(n�1)

Xn
i¼1

Xn
j¼iþ1

ECFl
i(e)> ECFl

j(e)
���

���

Quality (ECF(e))¼ 1
n

Xn
i¼1

ECF(e)> ECFl
i(e)

�� ��
(20)

Equation 20 is used to assess the consistency of participants’

features of interest, where ECFI
i (e) denotes the ideal set of

features, and k denotes the feature sets provided by different

participants. The closer the Agreement value is to 1, the more

consistent the participants recognize the features of interest and

vice versa. Equation 20 is also used to evaluate the quality of the

feature sets automatically generated by the algorithm, where

ECF(e) denotes the feature set generated by the algorithm. The

core idea of the algorithm is to assess the quality of the feature

set generated by the algorithm by calculating the average overlap

between the extracted feature set and the ideal feature set

provided by multiple users. Quality (ECF (e)) The closer the

value is to k The closer the quality value is to, the better the

feature set generated by the algorithm is and the better it meets

the user requirements, and vice versa.

In the medical equipment dataset, the CFEKM algorithm’s

performance is closely aligned with the RELIN method, achieving

scores of 4.82, 5.01, and 5.23, paralleling the RELIN method’s

62.07% success rate. This congruence indicates the CFEKM

algorithm’s adeptness at managing the intricacies of medical

equipment data, thereby ensuring a reliable and robust feature

extraction process.
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FIGURE 7

Entity feature extraction efficiency in medical industry chain datasets: a comparative study with K ¼ 20.
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A comparative analysis with the LinkSum algorithm, which

recorded higher scores of 4.68, 6.22, and 7.25, reveals that the

CFEKM algorithm, while not outperforming, is a formidable

contender. The proximity of scores between CFEKM and

LinkSum suggests that both algorithms are efficacious in feature

extraction, albeit through divergent methodologies and

underlying mechanisms. The CFEKM algorithm’s consistently

high scores across various datasets and key entity features signify

its versatility and reliability as a feature extraction tool in diverse

medical industry applications.

The inclusion of the BINDER and GPT-NER algorithms, as

delineated in (41), has been instrumental in refining the CFEKM

algorithm’s feature extraction process, particularly in the context

of the Chemical Agent medical industry chain dataset at k ¼ 20.

The CFEKM algorithm’s scores of 10.23, 11.06, and 13.02

significantly eclipse the RELIN method’s scores of 6.85, 6.68, and

7.96, underscoring its capacity for high-precision and relevant

feature extraction essential for in-depth industry analysis.

Furthermore, when juxtaposed with the LinkSum algorithm,

the CFEKM algorithm consistently secures higher scores,

suggesting a more sophisticated feature extraction methodology

that could enrich data representation.

In the Biological Medicine dataset, the RELIN method attains

an extraction quality of 84.06% at k ¼ 20, which, while

commendable, falls short of the CFEKM algorithm’s 66.9%

success rate in the Chemical Agent medical industry chain

dataset. This comparative analysis underscores the CFEKM

algorithm’s superior performance in specific applications.

As shown in the Figure 6, in the Medical Equipment dataset,

the RELIN method's extraction quality significantly lags, at

merely 51.1% of the CFEKM algorithm’s success rate, thereby

accentuating the latter’s effectiveness in navigating complex data

relationships and ensuring a more accurate feature extraction
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process. In the Biological Medicine dataset, the RELIN method

achieves 79.77% of the CFEKM algorithm’s extraction results,

indicating that despite sparser inter-entity relationships, the

CFEKM algorithm retains a competitive edge, albeit with a less

pronounced performance gain.

Figure 7 visually benchmarks the feature extraction ratio for

entities within the medical industry chain, showcasing the

CFEKM algorithm’s effectiveness in reducing dimensionality

while enhancing the informativeness of the extracted features.

This comparative analysis, along with Figure 7, accentuates the

CFEKM algorithm’s potential to notably elevate the quality of

feature extraction in medical industry applications.

In conclusion, the CFEKM algorithm, fortified with the

BINDER and GPT-NER algorithms as cited in Li and Zhang

(41), demonstrates a robust and versatile feature extraction

capability across various datasets within the medical industry

chain. Although its performance gain in the Biological Medicine

dataset may not be as pronounced as in other datasets, it offers a

competitive advantage, solidifying its standing as a valuable tool

for feature extraction in the medical industry.

Although the model recall has decreased in some cases,

this may be due to the higher complexity and noise level of

certain medical industry chain data types included in the

test dataset. The CFEKM model has considered these

factors when designing and includes corresponding data

cleaning and preprocessing steps to improve its robustness in

practical applications.
6 Conclusion

The Clinical Feature Extraction Knowledge Mapping (CFEKM)

model significantly integrates artificial intelligence with the medical
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industry chain, enhancing clinical nutrition research by

constructing semantic knowledge graphs. The model has

demonstrated robust performance in processing complex and

dynamic medical data, excelling in relation extraction, data

complementation, and feature extraction tasks. Future work will

focus on generalizing the model for broader medical applications,

ensuring scalability, customizing user experiences, integrating

with additional AI techniques, processing real-time data,

expanding interdisciplinary research, addressing ethical and

privacy concerns, and developing an intuitive user interface.

These advancements aim to solidify the CFEKM model’s position

as a versatile and reliable tool in the medical industry,

contributing to more personalized and effective clinical

nutrition interventions.
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