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Background: In South Africa, between 1966 and 2014, there were three kidney
transplant eras defined by evolving access to certain immunosuppressive
therapies defined as Pre-CYA (before availability of cyclosporine), CYA (when
cyclosporine became available), and New-Gen (availability of tacrolimus and
mycophenolic acid). As such, factors influencing kidney graft failure may vary
across these eras. Therefore, evaluating the consistency and reproducibility of
models developed to study these variations using machine learning (ML)
algorithms could enhance our understanding of post-transplant graft survival
dynamics across these three eras.
Methods: This study explored the effectiveness of nine ML algorithms in
predicting 10-year graft survival across the three eras. We developed and
internally validated these algorithms using data spanning the specified eras.
The predictive performance of these algorithms was assessed using the area
under the curve (AUC) of the receiver operating characteristics curve (ROC),
supported by other evaluation metrics. We employed local interpretable
model-agnostic explanations to provide detailed interpretations of individual
model predictions and used permutation importance to assess global feature
importance across each era.
Results: Overall, the proportion of graft failure decreased from 41.5% in the Pre-
CYA era to 15.1% in the New-Gen era. Our best-performing model across the
three eras demonstrated high predictive accuracy. Notably, the ensemble
models, particularly the Extra Trees model, emerged as standout performers,
consistently achieving high AUC scores of 0.95, 0.95, and 0.97 across the eras.
This indicates that the models achieved high consistency and reproducibility in
predicting graft survival outcomes. Among the features evaluated, recipient
age and donor age were the only features consistently influencing graft failure
throughout these eras, while features such as glomerular filtration rate and
recipient ethnicity showed high importance in specific eras, resulting in
relatively poor historical transportability of the best model.
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Conclusions: Our study emphasises the significance of analysing post-kidney
transplant outcomes and identifying era-specific factors mitigating graft failure.
The proposed framework can serve as a foundation for future research and
assist physicians in identifying patients at risk of graft failure.

KEYWORDS

kidney transplant, immunosuppressive regimen, transplantation era, graft survival,
machine learning, reproducibility, consistency
1 Introduction

Kidney transplantation is the standard of care for the management

of kidney failure, significantly enhancing quality of life and

increasing longevity compared to the alternative, which is chronic

dialysis treatment (1–5). Nonetheless, a kidney transplant’s long-

term success relies on the transplanted organ’s survival, known as

graft survival. Over the years, considerable progress has been made

regarding maintenance immunosuppression regimens to improve

graft survival post-kidney transplant (6–8). In Johannesburg, three

eras of post-kidney transplant maintenance immunosuppression

therapy are described (i) from 1966 to 1983 using combined

azathioprine and cortisone; (ii) from 1983 to 2000 replacing

azathioprine with cyclosporine; and (iii) starting in 2001, the

introduction of sirolimus, everolimus, and mycophenolate mofetil

(9–11). These advancements in immunosuppressive therapy have

improved graft survival rates over the years. (12, 13). Identifying

prognostic factors contributing to graft failure could inform the

post-kidney transplant management of recipients to improve long-

term graft survival.

Globally, and in South Africa, preserving the long-term

survival of the graft after kidney transplant is the ultimate goal,

not only for the enhanced survival benefits and improved quality

of life of the recipient but also because organ donor shortages

persist. In the event of graft failure, maintenance dialysis must be

re-initiated, and re-transplantation must be considered with

adverse consequences for the patient and a disproportionate

increase in the cost of care (when compared with the cost of

maintenance immunosuppression therapy) (14–16). Studies have

identified donor-related and recipient-related factors that impact

kidney transplant outcomes. More specifically, previous research

in South Africa has shown the impact of donor type, delayed

graft function, recipient age, and self-reported ethnicity on graft

survival based on univariate and multivariate survival models

(10, 13, 17, 18). These earlier studies have significantly

contributed to transplantation outcomes in African settings.

However, they are primarily based on conventional statistical

methods. While traditional statistical methods can offer insights

into how prognostic factors influence survival, some approaches

used in these previous studies may not provide a realistic

representation of real-life situations when identifying factors

influencing outcome (19). Furthermore, many of these studies

are constrained by complete case analysis or the exclusion of

important variables due to missing information, and none of

these studies considered exploring graft survival across the three

eras (10, 13, 18).
02
Medical research studies have extensively employed machine

learning (ML) to enhance predictive risk assessment, resulting in

more accurate predictions (20–25). This approach can assist

physicians in risk assessment by identifying patients who might

be at a higher risk of graft failure following kidney

transplantation. In recent years, ML models have gained

increasing attention in medical research for developing diagnostic

and predictive models for medical outcomes (21, 26–29). These

ML models have also been successfully used in kidney transplant

studies and have demonstrated good performance in predicting

graft survival at different survival times (30–33). For example,

Moghadam and Ahmadi (34) developed a clustering method

using the Red Deer Algorithm (RDA), together with other ML

classification algorithms and proposed a three-stage clustering-

based undersampling approach to better handle class imbalances.

Topuz et al. (35) designed a method that combines the Bayesian

belief network algorithm, feature selection, and multiple ML

techniques to predict kidney graft survival using data from over

31,000 U.S. patients. The study suggests that this approach can

be applied to other transplant datasets. Fabreti-Oliveira et al. (36)

employed two gradient boosting algorithms to analyse data from

627 kidney transplant patients and identified that serum

creatinine levels at discharge, pre-transplant weight and age were

key factors affecting early graft loss. The study highlights the

potential of ML for informed decision-making in transplantation.

Although ML has not been utilised to pinpoint significant

prognostic factors in South African transplant units, there are

other knowledge gaps concerning previously developed models.

Most of these models have yet to be validated outside of the

study cohort in which they were developed. It has been observed

that many ML models are constrained by factors such as

geographical location, study interval, historical period, and

methodological approach (20, 28, 37). Hence, these models may

not generalise well when transported to patients with dissimilar

characteristics compared to those used to develop the model.

In this study, we developed and validated ML models to predict

10-year graft survival using clinical and socio-demographic

characteristics of kidney transplant recipients and their donors in

Johannesburg between 1966 and 2014 – covering three eras of

maintenance immunosuppression regimens. Our era-based

models were designed to examine the risk factors associated with

each transplant era and to gauge the ML algorithms’

discriminative capability between outcome classes, namely graft

failure or survival. By focusing on era-specific models, we

ensured that our findings are consistent (stable and reliable) and

reproducible (valid and replicable) across different historical
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contexts, capturing variations in risk factors and outcomes.

Additionally, we tested the transportability of our models by

developing them using data from one era and validating them in

another era, highlighting the difficulty of applying ML models

across different settings and emphasizing the need for tailored

approaches. This research is relevant because it is region-specific,

addressing challenges such as limited access to organ transplant

facilities and improving kidney transplant graft survival outcomes

in resource-limited settings countries. Finally, the developed

models will serve as the foundation for future model

development and external validation within and beyond the

study area.

The rest of this paper is organised as follows. In the subsequent

section, we present the design for this study, followed by

descriptions of the algorithms. Section 3 showcases the study’s

results, and Section 6 presents a comprehensive discussion of the

results and highlights avenues for future research.
FIGURE 1

Outcome variable description. (A) A Time series plot showing the
number of transplant cases and proportion of graft failure in the
three eras and over the study period. The dashed lines show the
study period for pre-CYA, CYA and New-GEN. (B) A barplot
2 Materials and methods

In this section, we offer insights into the dataset, starting with our

approach to data acquisition. We then transition into the methods

used for data preprocessing and developing ML models. Next, we

present LIME, an explainability ML method used to interpret

and understand the predictions made by the predictive models.

Finally, we apply permutation feature importance to evaluate and

rank the contribution of each feature to the model’s predictions.

illustrates the number of transplant cases and the distribution of
graft failure across the transplant era.
2.1 Study design and population

This study is a retrospective analysis of patients who underwent

kidney transplants at Charlotte Maxeke Johannesburg Academic

Hospital (CMJAH), South Africa, from 1966 to 2014. This time

frame encompasses three distinct immunosuppressive eras: the

pre-cyclosporine era (1966–1983), the cyclosporine era (1984–

2000), and the new-generation era (2001–2014). For easy

mentioning of the eras, as we advance in this study, we have

denoted these eras as pre-CYA, CYA and new-GEN. Ethical

approval for this study was received from the University of

Witwatersrand Faculty of Health Sciences Research Ethics

Committee [M121186]. More details of this study can be seen in

previous studies, including Pitcher et al. (11), Fabian et al. (18).

The analysis was limited to patients aged 18 or above who

received their first kidney transplant and were followed up for at

least one year after surgery. Patients were excluded if the exact

age at the transplant or date of transplant was unknown. The

final dataset contains 1,738 cases, including 458, 916 and 364

transplant cases in the pre-CYA, CYA and New-GEN eras.

Figure 1A shows the number of transplant cases and the

proportion of graft failure across the three immunosuppressive

eras. The trend in this plot suggests that the number of kidney

transplant cases was highest during the CYA era compared with

other eras. The highest and lowest proportions of graft failure
Frontiers in Digital Health 03
were observed in pre-CYA and New-GEN eras, respectively. The

number of recipients with a failed graft ten years post-kidney

transplant is lower than those whose graft survived, with a

proportion of 41.5%, 35.8% and 15.1%, respectively, across the

three eras (Figure 1B).
2.2 Transplant overview

The dataset encompasses a total of 1,738 kidney transplant records,

split into three distinct eras: pre-CYA (458 entries), CYA (916

entries), and New-GEN (364 entries), as summarised in Table 1.

The median recipient age was approximately 38 (18–68) years,

with a slight variation among the eras, as New-gen recipients

tended to be a bit older than recipients in other eras. Overall, the

median age of the recipients who experienced graft failure is

higher than that of those who did not experience graft failure.

The overall median donor age was 27 (1–72) years. For the

recipient with a failed graft, the median age of the kidney donor

was 28, while the median donor age for those who did not

experience graft failure was 25 years. The Mann–Whitney U test

showed that recipient and donor age significantly differed

between recipients who experienced graft failure and those who
frontiersin.org
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TABLE 1 Demographic and clinical characteristics of study participants across the transplant eras.

Patient characteristics (n[%]
unless otherwise indicated)

Pre-CYA
Graft status

CYA
Graft status

New-Gen
Graft status

Overall
Graft status

p-value

Failed
(N ¼ 268)

Survived
(N ¼ 190)

Failed
(N ¼ 588)

Survived
(N ¼ 328)

Failed
(N ¼ 309)

Survived
(N ¼ 55)

Failed Survived

Donor type
Deceased 213 (79.5) 175 (92.1) 484 (82.3) 296 (90.2) 232 (75.1) 50 (90.9) 929 (79.7) 521 (90.9) <0.001

Living 54 (20.1) 15 (7.9) 103 (17.5) 31 (9.5) 76 (24.6) 4 (7.3) 233 (20.0) 50 (8.7)

Missing 1 (0.4) 0 (0) 1 (0.2) 1 (0.3) 1 (0.3) 1 (1.8) 3 (0.3) 2 (0.3)

Donor age (median[range]) 24.0 [5.00, 63.0] 25.0 [4.00, 63.0] 27.0 [1.00, 65.0] 24.0 [1.0, 61.0] 32.0 [1.0, 72.0] 43.0 [5.0, 72.0] 28.0 [1.0, 72.0] 25.0 [1.0,
72.0]

<0.001

Missing 33 (12.3) 25 (13.2) 50 (8.5) 29 (8.8) 32 (10.4) 6 (10.9) 115 (9.9) 60 (10.5)

Recipient age (median[range]) 35.0 [18.0, 65.0] 40.0 [19.0, 58.0] 36.0 [18.0, 63.0] 41.0 [18.0, 68.0] 39.0 [18.0, 66.0] 47.0 [19.0, 64.0] 37.0 [18.0, 66.0] 41.0 [18.0,
68.0]

<0.001

Donor-recipient sex match
No 104 (38.8) 77 (40.5) 261 (44.4) 144 (43.9) 138 (44.7) 22 (40.0) 503 (43.2) 243 (42.4) 0.955

Yes 144 (53.7) 89 (46.8) 297 (50.5) 170 (51.8) 140 (45.3) 25 (45.5) 581 (49.9) 284 (49.6)

Missing 20 (7.5) 24 (12.6) 30 (5.1) 14 (4.3) 31 (10.0) 8 (14.5) 81 (7.0) 46 (8.0)

Recipient ethnicity
Black 6 (2.2) 7 (3.7) 148 (25.2) 123 (37.5) 203 (65.7) 46 (83.6) 357 (30.6) 176 (30.7) 0.791

Others 32 (11.9) 15 (7.9) 78 (13.3) 49 (14.9) 42 (13.6) 4 (7.3) 152 (13.0) 68 (11.9)

White 227 (84.7) 168 (88.4) 362 (61.6) 153 (46.6) 64 (20.7) 5 (9.1) 653 (56.1) 326 (56.9)

Missing 3 (1.1) 0 (0) 0 (0) 3 (0.9) 0 (0) 0 (0) 3 (0.3) 3 (0.5)

Donor-recipient blood match
No 53 (19.8) 43 (22.6) 63 (10.7) 27 (8.2) 27 (8.7) 4 (7.3) 143 (12.3) 74 (12.9) 0.862

Yes 195 (72.8) 139 (73.2) 514 (87.4) 292 (89.0) 255 (82.5) 49 (89.1) 964 (82.7) 480 (83.8)

Missing 20 (7.5) 8 (4.2) 11 (1.9) 9 (2.7) 27 (8.7) 2 (3.6) 58 (5.0) 19 (3.3)

Delayed graft function
No 152 (56.7) 89 (46.8) 361 (61.4) 204 (62.2) 230 (74.4) 36 (65.5) 743 (63.8) 329 (57.4) 0.007

Yes 107 (39.9) 90 (47.4) 214 (36.4) 118 (36.0) 62 (20.1) 19 (34.5) 383 (32.9) 227 (39.6)

Missing 9 (3.4) 11 (5.8) 13 (2.2) 6 (1.8) 17 (5.5) 0 (0) 39 (3.3) 17 (3.0)

Diabetes mellitus
No 236 (88.1) 167 (87.9) 543 (92.3) 296 (90.2) 277 (89.6) 47 (85.5) 1,056 (90.6) 510 (89.0) 0.097

Yes 20 (7.5) 9 (4.7) 32 (5.4) 28 (8.5) 15 (4.9) 8 (14.5) 67 (5.8) 45 (7.9)

12 (4.5) 14 (7.4) 13 (2.2) 4 (1.2) 17 (5.5) 0 (0) 42 (3.6) 18 (3.1)

cause of KF (primary renal)
No 81 (30.2) 50 (26.3) 318 (54.1) 201 (61.3) 247 (79.9) 46 (83.6) 646 (55.5) 297 (51.8) 0.170

Yes 187 (69.8) 140 (73.7) 270 (45.9) 127 (38.7) 62 (20.1) 9 (16.4) 519 (44.5) 276 (48.2)

cause of KF (hypertension-associated)
No 254 (94.8) 185 (97.4) 422 (71.8) 207 (63.1) 137 (44.3) 18 (32.7) 813 (69.8) 410 (71.6) 0.482

Yes 14 (5.2) 5 (2.6) 166 (28.2) 121 (36.9) 172 (55.7) 37 (67.3) 352 (30.2) 163 (28.4)

(Continued)
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TABLE 1 Continued

Patient characteristics (n[%]
unless otherwise indicated)

Pre-CYA
Graft status

CYA
Graft status

New-Gen
Graft status

Overall
Graft status

p-value

Failed
(N ¼ 268)

Survived
(N ¼ 190)

Failed
(N ¼ 588)

Survived
(N ¼ 328)

Failed
(N ¼ 309)

Survived
(N ¼ 55)

Failed Survived

cause of KF (urological)
No 234 (87.3) 180 (94.7) 537 (91.3) 310 (94.5) 295 (95.5) 53 (96.4) 1,066 (91.5) 543 (94.8) 0.019

Yes 34 (12.7) 10 (5.3) 51 (8.7) 18 (5.5) 14 (4.5) 2 (3.6) 99 (8.5) 30 (5.2)

cause of KF (inherited)
No 253 (94.4) 174 (91.6) 522 (88.8) 307 (93.6) 295 (95.5) 55 (100) 1,070 (91.8) 536 (93.5) 0.246

Yes 15 (5.6) 16 (8.4) 66 (11.2) 21 (6.4) 14 (4.5) 0 (0) 95 (8.2) 37 (6.5)

Surgical complication Yes 126 (47.0) 114 (60.0) 222 (37.8) 125 (38.1) 141 (45.6) 22 (40.0) 489 (42.0) 261 (45.5) 0.172

No 142 (53.0) 76 (40.0) 366 (62.2) 203 (61.9) 168 (54.4) 33 (60.0) 676 (58.0) 312 (54.5)

Egfr (median[range]) 63.8 [9.73, 249] 55.5 [11.7, 208] 56.8 [3.40, 123] 54.6 [6.87, 179] 60.9 [6.4, 168] 44.8 [26.4, 113] 59.4 [3.4, 249] 54.0 [6.9, 208]

Missing 85 (31.7) 78 (41.1) 171 (29.1) 130 (39.6) 123 (39.8) 379 (32.5) 230 (40.1) 0.005

Induction therapy (Methylprednisolone)
No 37 (13.8) 32 (16.8) 71 (12.1) 34 (10.4) 27 (8.7) 4 (7.3) 135 (11.6) 70 (12.2) 0.762

Yes 231 (86.2) 158 (83.2) 517 (87.9) 294 (89.6) 282 (91.3) 51 (92.7) 1,030 (88.4) 503 (87.8)

Acute rejection diagnosis (biopsy)
No 238 (88.8) 171 (90.0) 498 (84.7) 297 (90.5) 260 (84.1) 41 (74.5) 996 (85.5) 509 (88.8) 0.065

Yes 30 (11.2) 19 (10.0) 90 (15.3) 31 (9.5) 49 (15.9) 14 (25.5) 169 (14.5) 64 (11.2)

Chronic rejection diagnosis (biopsy)
No 250 (93.3) 182 (95.8) 522 (88.8) 311 (94.8) 251 (81.2) 49 (89.1) 1,023 (87.8) 542 (94.6) <0.001

Yes 18 (6.7) 8 (4.2) 66 (11.2) 17 (5.2) 58 (18.8) 6 (10.9) 142 (12.2) 31 (5.4)

Rejection treatment (IVI steroid pulse)
No 76 (28.4) 50 (26.3) 236 (40.1) 118 (36.0) 280 (90.6) 45 (81.8) 592 (50.8) 213 (37.2)

Yes 192 (71.6) 140 (73.7) 352 (59.9) 210 (64.0) 29 (9.4) 10 (18.2) 573 (49.2) 360 (62.8) <0.001
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did not experience graft failure. Approximately 84% of these

patients received a kidney from deceased donors. Regarding self-

reported ethnicity, most recipients were White, followed by Black

and other ethnicities. Primary glomerular disease emerged as the

predominant cause of end-stage kidney disease, especially in the

pre-CYA era. The New-GEN era was marked by a higher

prevalence of hypertension as a cause. Treatment-wise,

methylprednisolone as an induction therapy was predominant in

the New-GEN era. A notable number of patients experienced

delayed graft function, with the CYA era having the most

observed cases. The Chi-square test showed significant

associations between graft survival status and variables, including

donor type and delayed graft function, acute rejection and

chronic rejection at a 5% significance level.
2.3 Data pre-processing

In this study, graft survival is the time from transplant to failure of

the graft, defined as the earliest time to return to dialysis. Death

with a functioning graft and a few patients lost to follow-up were

censored based on the time of death or date last seen. A patient

graft was classified as “graft failure” if the graft had been

recorded as failed in the database, as per the definition above;

otherwise, the graft status was classified as “survived”.

Information relating to patients who underwent more than one

transplant was excluded from this study; in other words, the

scope of this study was restricted to first graft failure.

We retrieved 1,207 pre-, peri and post-transplantation

information from the database. The pre-transplant measures

include the cause of kidney failure (KF), donor type, donor and

recipient sex and blood group, recipient age, recipient self-

reported ethnicity, and donor age, as shown in Table 1. The

peri-transplant features are those measured during the transplant,

which are estimated glomerular filtration rate and Induction

therapy. The post-transplantation characteristics considered in

this study are delayed graft function (DGF), surgical

complications, biopsy-proven acute or chronic rejection, and

rejection treatment. Repeated information measured months or

years post-transplant was dropped from the analysis. We also

dropped features with empty records and variables relating to

data-capturing details alone. Only 39 features measured across

the three transplant eras were extracted for pre-processing.

Descriptive statistics and data visualisation were used to assess

the data quality and understand the study features’ patterns and

relationships. Overall, approximately 1% of the case records are

missing in the dataset, which was contributed by eight features,

including systolic blood pressure at transplant, diabetes at

transplant and delayed graft function. To render the data more

applicable to this study, we have addressed the problem of

missingness using the missForest imputation algorithm, which

uses a random forest approach to predict missing values in a

database. missForest is an ML technique that has shown good

performance in predicting missing values in mixed data types

across different fields of study (38, 39) and performs better than

other imputation methods.
Frontiers in Digital Health 06
Feature engineering was conducted by grouping each feature

category with low frequency with their related category. For

instance, donor type original class “deceased”, “living related”,

and “living unrelated” donors were recategorised as “deceased”

and “living” donors. This addresses the problem of

representativeness of each factor variable category and enables

the model to sufficiently learn from each feature category to

improve each feature discriminative power and avoid bias in

prediction. Donor and recipient blood groups were matched to

create a single variable “donor-recipient blood group match”.

Also, the donor and recipient sex were matched to generate the

“donor-recipient sex match” variable.
2.4 The kidney transplant analysis

The process of kidney transplant analysis is a multifaceted

procedure with several steps, each playing a pivotal role in

generating meaningful insights. It begins with data preprocessing

as presented in Figure 2. During this stage, the raw data

undergoes various transformations. Techniques such as data

cleaning, feature engineering, data sub-selection, imputation, and

applying the Synthetic Minority Over-sampling Technique

(SMOTE) are utilised. These methods collectively work towards

refining the data, eliminating noise and irrelevant information,

addressing missing values, and achieving a balanced dataset.

After preprocessing, the data is organised into three distinct

categories: pre-CYA, CYA, and New-Gen. This division is crucial

for the following phases of feature selection and model

construction. Three feature selection techniques were employed:

the One-Rule, Random Forest and the Least Absolute Shrinkage

and Selection Operator (LASSO). These techniques aid in

pinpointing the most significant features from the data, which

have the utmost predictive power for the target variable.

We utilised internal and external validation techniques during

the study to ensure our models’ robustness and generalisability.

Internal validation, often termed “resampling” validation, refers

to the process of evaluating the model’s performance on a subset

of the training data. This is typically achieved using techniques

like k-fold cross-validation, where the data is partitioned into

“k ¼ 10” subsets. The model is trained on k� 1 of these subsets

and tested on the remaining one. This process is repeated k

times, each subset serving as the test set once. The primary

advantage of internal validation is that it provides a more robust

estimate of the model’s performance, minimising the risk of

overfitting by ensuring the model performs well across multiple,

varied subsets of the training data. This stage encompasses

utilising various ML models, such as Logistic Regression, Extra

Trees, Adaboost, Gradient Boosting, Random Forest, Support

Vector Machine, K-nearest neighbours, Neural Network, and

Decision Tree.

After the models’ construction and internal validation are

assessed on an external validation dataset. External validation, on

the other hand, assesses the model’s performance on an entirely

separate dataset that it has never seen during training. This

dataset is not used in any phase of the model-building process.
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FIGURE 2

The framework of the kidney transplant analysis.
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The essence of external validation is to gauge the model’s

real-world applicability and its potential performance on new,

unseen data.

Once the models are built and internally validated, they seem

like black boxes, making predictions that are hard to understand.

Imagine a complex model that predicts whether a kidney

transplant will be successful or not. It considers numerous

factors, such as the donor’s age, the compatibility of donor and
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recipient, the health of the recipient, and many others. However,

once the prediction is made, it is not immediately clear which

factors were most influential in making that prediction. This is

problematic because clinicians and patients might need to

understand the rationale behind the prediction to make informed

decisions. LIME addresses this issue by approximating the

complex model with a simpler, interpretable model (e.g., a

logistic regression model) locally around the prediction (40). This
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simpler model can then be studied to understand how each feature

influences the prediction. For example, the LIME explanation

might reveal that the model predicted a high chance of

transplant success mainly because the donor and recipient were

highly compatible and the recipient was in good health.

In the subsequent section, a comprehensive discussion on the

various models utilised for this research is provided. This

includes an explanation of the functioning of each model. A

thorough understanding of the models is indispensable for

accurately interpreting the results and making well-informed

decisions based on the analysis.
2.5 Machine learning classification models

In this section, we describe the ML models specifically tailored for

the classification tasks used for this study.

2.5.1 AdaBoost
In our study, we applied a technique called AdaBoost to enhance

the performance of our machine learning model. Adaptive

Boosting, short for AdaBoost, is an ensemble learning algorithm

designed to enhance the performance of ML models (41, 42).

According to Freund and Schapire (43), AdaBoost works by

combining several simple models, known as weak learners, into a

single, more accurate model. Each weak learner is trained on our

dataset and contributes to the final prediction. Initially, all data

points in our dataset were treated equally. As we trained each

weak learner, we paid more attention to the examples that were

difficult to classify correctly. This means that the model focused

on getting the hard cases right.

We repeated this process for multiple iterations, adjusting the

importance of each data point based on the previous models’

performance. Misclassified examples were given more weight, so

the next weak learner would focus more on them. After several

rounds, we combined the weak learners into a single strong

model. Each weak learner had a say in the final prediction, but

the more accurate learners had a bigger influence. By using

AdaBoost, we were able to create a model that performed better

on our dataset compared to using just a single simple model.

This approach helped us achieve more accurate and reliable results.

2.5.2 Extreme gradient boosting
We applied extreme gradient boosting or XGBoost to our dataset to

enhance the accuracy and efficiency of our machine learning

model. XGBoost is an advanced ensemble technique that

combines the predictions of multiple models to produce a more

accurate final prediction (25, 44). We started by dividing our

dataset into training and testing sets, using the training set to

build the model and the testing set to evaluate its performance.

XGBoost iteratively trained a series of decision trees on the

training set, with each tree focusing on correcting the errors

made by the previous ones. This iterative process continuously

improved the model’s accuracy.

XGBoost’s versatility allowed us to handle different types of

prediction tasks, such as regression and classification, by using
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appropriate loss functions for each task. For instance, we used

squared error loss for regression and logistic loss for

classification. Additionally, XGBoost includes a regularization

term that penalizes overly complex models to prevent overfitting.

This term considers the number of terminal nodes in the trees

and the scores assigned to these nodes. By applying XGBoost, we

created a robust model that accurately captured the patterns in

our data, significantly improving the model’s performance and

reliability for our prediction tasks.

2.5.3 Random forest
We utilized the Random Forest algorithm to analyze our dataset.

Random Forest is an ensemble learning method that constructs

multiple decision trees to perform both classification and

regression tasks (29, 45, 46). For classification, it predicts the

class that is chosen by the majority of the trees, and for

regression, it averages the predictions of all the trees. This

technique helps to address the problem of overfitting often

encountered with individual decision trees. Random Forest works

by creating each tree from a different bootstrap sample of the

data, and generally, increasing the number of trees enhances the

accuracy of the model (29). Additionally, Random Forest

performs automatic feature selection, which improves the

performance of traditional decision tree algorithms (47).

In applying Random Forest to our dataset, we divided the data

into training and testing sets. The algorithm built numerous

decision trees using different subsets of the training data. For

classification tasks, the final prediction was determined by the

majority vote from all the trees, while for regression tasks, the

average prediction of all the trees was used. This approach not

only improved the accuracy of our model but also made it more

robust and less prone to overfitting. The ability of Random

Forest to automatically select relevant features further enhanced

the efficiency and effectiveness of our analysis, leading to more

reliable and interpretable results.

2.5.4 Decision trees
Decision Trees are a widely used supervised learning method for

classification and regression tasks (48, 49). They work by creating

a model that predicts the value of a target variable using simple

decision rules derived from the data’s features. The core idea is

to split the dataset into subsets based on specific criteria,

ensuring that each split results in more homogeneous subsets

(50). This splitting process continues until the model can make

accurate predictions. Decision Trees rely on various metrics to

determine the best splits, such as entropy, information gain, and

Gini impurity. These metrics measure the disorder or impurity

within the data and help guide the tree-building process to create

effective and accurate models.

We used Decision Trees to analyze our dataset by dividing it into

training and testing sets. The Decision Tree algorithm built the

model by learning decision rules from the training data, using

metrics like entropy to determine the best splits. For instance,

entropy measures the randomness or unpredictability in the data,

and information gain represents the reduction in entropy after a

split. Gini impurity, another metric, quantifies how often a
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randomly selected item would be incorrectly classified. By applying

these metrics, the Decision Tree algorithm iteratively split the data

into smaller, more uniform subsets, leading to a model that could

accurately predict outcomes. This method provided a clear and

interpretable structure for understanding the relationships in our

data, making it a valuable tool for our analysis.

2.5.5 Extra trees
Extra Trees, also regarded as Extremely Randomised Trees, is an

ensemble method designed for supervised classification and

regression tasks (51). As an ensemble method, the Extra Trees

introduce a higher level of randomness in the tree-building process

(52). Unlike traditional tree methods that identify the optimal

decision split for a given attribute, Extra Trees randomises the

choice of attributes and their respective cut points. This double

layer of randomness—both in attribute and split point selection—

often results in a more diversified set of base trees, which can

enhance the model’s generalisation capabilities.

This method can sometimes outperform more deterministic

algorithms, especially in scenarios with a lot of noise. In the

Extra Trees Classifier, decision trees are utilised. The parameter k

determines the number of features selected in a random sample

from the feature set.

To apply Extra Trees to our dataset, we divided the data into

training and testing sets. The algorithm then constructed

numerous decision trees using random subsets of features and

split points for each tree. This process involves training the

model with these randomly generated trees and combining their

predictions to produce a final outcome. By averaging the

predictions of all the trees in the ensemble, Extra Trees provided

a more stable and accurate model. This approach allowed us to

capture complex patterns in the data and make reliable

predictions, enhancing the overall performance of our analysis.

2.5.6 Logistic regression
Logistic regression was applied to our dataset to evaluate the

relationship between a categorical outcome variable and multiple

predictor variables (21, 53, 54). This method is particularly useful

for binary classification tasks, where the goal is to predict one of

two possible outcomes (27, 55, 56). In our analysis, logistic

regression was used to model the likelihood of a specific

outcome based on various input features.

To implement logistic regression on our dataset, we first

identified the target variable and the predictor variables. The

model was then trained using the data to find the best-fit logistic

curve, which represents the probability of the target variable

occurring given the predictor variables. This approach allowed us

to make predictions about the categorical outcome, providing

insights into how different factors influence the likelihood of the

outcome in our dataset.

2.5.7 Support vector machine
Support Vector Machine (SVM) is a supervised learning technique

used for both classification and regression tasks. Its primary goal is

to find the best boundary that separates different classes in the

dataset. This boundary, known as the decision boundary, is
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determined by maximizing the margin between the closest data

points from each class, ensuring that the model can effectively

distinguish between positive and negative instances (57, 58).

SVM is particularly effective when the data is linearly separable,

meaning there is a clear dividing line between the classes.

In our dataset, SVM was applied to classify instances based on

the features provided. By training the SVM model on the dataset,

we identified the optimal decision boundary that separates

different classes. This boundary was used to predict the class

labels for new data points, helping us understand how the

features influence the classification outcome. The SVM model’s

ability to maximize the margin between classes contributed to its

effectiveness in accurately classifying the data in our analysis.

2.5.8 K-nearest neighbour
K-Nearest Neighbour (KNN) is a simple and widely used

classification algorithm that works on the idea that similar data

points are close to each other in the feature space. This makes it

effective for tasks where it’s difficult to describe the relationship

between features and outcomes using more complex models.

KNN is commonly applied in areas like image recognition,

recommendation systems, and medical diagnosis (59–61). In our

dataset, we used KNN to classify data points by identifying the

’k’ closest neighbors to each point and predicting its class based

on the majority class among these neighbors. This approach

allowed us to classify new data based on the patterns observed in

the nearest existing data points.

2.5.9 MLP neural network
The Multilayer Feedforward Perceptron (MLP) is a popular

neural network architecture used for tasks like classification

and regression. It consists of layers of neurons where each

neuron is connected to all neurons in the next layer, with no

connections within the same layer. During training, the

network adjusts its weights and biases to minimize the

difference between the predicted and actual outcomes (62, 63).

In our dataset, we applied MLP to model complex relationships

between features and the target variable by learning from

patterns in the data, allowing us to make accurate predictions

based on these learned patterns.
2.6 Machine learning explainability
with LIME

The local interpretable model-agnostic explanations (LIME)

framework is a model-agnostic technique designed to investigate

a ML model’s decision-making process on a per-instance basis

(40, 64). LIME works by tweaking the input parameters of an

already trained model while observing how these tweaks affect

the model’s predictions. This process allows LIME to create a

simplified, interpretable model that approximates the behaviour

of the original complex model within a local region around a

specific instance.

According to (65), LIME distinguishes itself from other

interpretable models by centring its focus on providing
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explanations for individual predictions rather than attempting to

elucidate the entirety of the model’s behaviour. In simpler terms,

LIME adopts a localised approach instead of striving to explain

the entire model. While numerous interpretable models aim to

approximate the decision boundaries of a ML model globally,

LIME recognises that understanding every facet of a complex

model’s behaviour across all instances might be impractical. The

mathematical formulation of LIME can be written as:

LIMEexplanation(x) ¼ argmin
g[G

L(f , g, px)þV(g)½ � (1)

Where LIMEexplanation(x) represents the explanation provided by

LIME for the instance x. f is the original ML model whose

predictions we want to explain. g is the local surrogate model,

chosen from a family of interpretable models, G. L(f , g, px) is

the loss function that quantifies the difference between the

predictions of f and g, for instance, x, weighted by a proximity

measure px . V(g) is a complexity penalty term that encourages

simpler explanations provided by g. px is a proximity measure

that captures how similar an instance, z is to x, often using a

kernel-based approach to define the neighbourhood around x.

The minimisation process aims to find the best-fitting surrogate

model, g, that balances prediction fidelity and interpretability.
2.7 Evaluation metrics

Evaluation metrics provide quantifiable measures to assess the

performance of ML models in categorising data into different

classes (66–68). These metrics offer insights into a model’s

accuracy, precision, sensitivity, specificity, area under the curve

(AUC), F1-score, and more.

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(2)

Precision ¼ TP
TPþ FP

(3)

Sensitivity (recall) ¼ TP
TPþ FN

(4)

Specificity ¼ TN
TNþ FP

(5)
TABLE 2 Performance evaluation of the models on the pre-CYA.

Model Accuracy Precision
Logistic regression 0.65 0.61

Extra Trees 0.86 0.87

AdaBoost 0.87 0.88

Random Forest 0.86 0.89

Gradient Boosting 0.86 0.89

Support Vector Machine 0.79 0.75

K-Nearest Neighbors 0.71 0.66

Neural network 0.69 0.65

Decision Trees 0.73 0.69

Frontiers in Digital Health 10
F1 measure ¼ 2 � precision � recall
precisionþ recall

(6)

Understanding True Positive (TP), True Negative (TN), False

Positive (FP), and False Negative (FN) is crucial for this study.

TP denotes the model correctly identifying positive results, TN

signifies the correct identification of negative results, FP

represents incorrect positive labelling, and FN indicates a missed

positive identification. For instance, a TP could involve accurately

predicting graft failure, while a TN might involve identifying

non-failure cases. Conversely, FP could misclassify graft failure,

and FN might overlook actual failures.

The assessment of the model’s performance in the Kidney

Graft Study encompasses several key metrics. Accuracy

quantifies the overall correctness of predictions, reflecting both

true positive and true negative rates. Precision gauges the ratio

of true positive predictions to all positive predictions,

emphasizing correctness in positive classifications. Sensitivity

measures the model’s ability to correctly identify true positives,

highlighting its effectiveness in capturing actual positive cases.

Specificity evaluates the model’s aptitude in identifying true

negatives, accentuating its proficiency in recognizing actual

negative cases. The area under the curve (AUC) provides a

comprehensive overview of the model’s discriminative power

across varying thresholds. It elucidates the model’s ability to

rank positive instances above negative ones. The F1-score

harmonises precision and sensitivity, striking a balance between

the two metrics. These metrics are pivotal for evaluating the

model’s performance and drawing meaningful conclusions.
2.8 Permutation-based feature importance

We quantified the contribution of each feature in the predictive

model using permutation-based feature importance (69–71) and

graphically visualized the results using a combination of bar plot

and box plot. This analysis employed Extra Tree models across

different eras, assessing feature importance by permuting each

feature and measuring the resulting change in model

performance. Initially, model performance was measured using

all features, referred to as the “full model performance.” Each

feature’s values were then randomly permuted, and the model’s

performance was reassessed. A feature was deemed “important”
AUC F1 Sensitivity Specificity
0.68 0.49 0.40 0.82

0.95 0.82 0.78 0.92

0.95 0.83 0.78 0.93

0.95 0.81 0.75 0.93

0.94 0.81 0.75 0.94

0.86 0.75 0.75 0.83

0.78 0.63 0.61 0.78

0.73 0.60 0.56 0.78

0.77 0.66 0.63 0.80
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if permuting its values significantly increased the model’s

prediction error, as indicated by an increase in 1� AUC,

showing reliance on that feature. Conversely, a feature was

considered “unimportant” if the permutation caused little change

in 1� AUC, suggesting the model did not rely on that feature.

Model performance was evaluated using 1� AUC as the loss

function, with a larger increase indicating greater feature

importance. To account for randomness in the permutation

process, we computed the mean values of the loss function over

10 permutations. The bars’ lengths correspond to each feature’s

average contribution or importance, while the boxplot represents

the distribution and variability of each feature’s importance

across different permutations. This approach quantified

variability in feature importance and provided a robust ranking

of feature contributions.
3 Results

This section presents the results of our experimental and model

explanation studies. All experiments utilised the preprocessed

data as outlined in Section 2. The experiment used the R (72)

programming language, which is equipped with various statistical
TABLE 3 Performance evaluation of the models on the CYA era.

Model Accuracy Precision
Logistic regression 0.66 0.55

Extra Trees 0.84 0.85

AdaBoost 0.83 0.86

Random Forest 0.82 0.86

Gradient Boosting 0.84 0.87

Support Vector Machine 0.79 0.77

K-Nearest Neighbors 0.69 0.57

Neural network 0.69 0.61

Decision Trees 0.73 0.65

FIGURE 3

AUC of the classifiers for the pre-CYA era.
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and graphical techniques for highly extensible machine-learning

tasks. The experiments were performed on an AMD

Threadripper 3990X 4.3 GHz GT 1,030 2 GB PRO high-

performance workstation (288 MB Cache, 64x Cores, 128

Threads, 4.3 GHz Turbo), with an MSI TRX40 PRO 10G AMD

Ryzen Threadripper motherboard, a GeForce RTX 2,070 8 GB

GDDR6 graphics card a 3,200 MHz 64 GB gaming RAM, 1 TB

M.2 SSD with up to 3.5 GB/s speed, and a 4TB HDD. This

device provided the computational power necessary to handle the

various stages of data preprocessing, model building, and

evaluation involved in the analysis.
3.1 Performance evaluation of the classifiers

Table 2 presents a comprehensive overview of model performance

during the pre-CYA era, complemented by the ROC curve depicted

in Figure 3. These results offer valuable insights into the

effectiveness of the models. The ensemble classifiers exhibited

superior performance, boasting an AUC of 94% and above and

an Accuracy of 86% and above. Notably, the AdaBoost model

demonstrated particularly high performance across several

evaluation metrics. Conversely, the Logistics regression model

showed relatively lower performance in the pre-CYA era. The

enhanced performance of ensemble classifiers can be attributed

to their adeptness in mitigating overfitting and effectively

handling noisy data. This resilience positions them as a robust

choice for this particular era.

Table 3 presents another model performance during the CYA

era. The ensemble classifiers also performed the best overall, with

Extra Trees showing the highest scores in AUC (0.95), accuracy

(0.84), and sensitivity (0.68). At the same time, Logistic

regression had the lowest scores across all metrics except for

specificity, where it scored 0.87, which was higher than

K-Nearest Neighbors and Decision Trees. Figure 4 presents the

ROC curve of the classifiers in the CYA era.

Table 4 provides an evaluation of model performance in the

New-Gen era. Based on the AUC score and other metrics listed

in the table, Extra Trees outperforms other models, followed by

Random Forest, AdaBoost, and SVM. Logistic Regression and

Decision Trees performed the worst according to the AUC score.

The high specificity values across all models indicate their

effectiveness in identifying true negatives. Figure 5 presents the
AUC F1 Sensitivity Specificity
0.67 0.38 0.29 0.87

0.95 0.75 0.68 0.93

0.92 0.74 0.65 0.94

0.93 0.70 0.58 0.95

0.90 0.75 0.65 0.95

0.82 0.68 0.60 0.90

0.73 0.54 0.50 0.79

0.70 0.47 0.38 0.87

0.74 0.59 0.54 0.84
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ROC curves and AUC scores of the different classifiers in the New-

Gen era.
3.2 Model comparisons and historical
transportability assessment

The primary evaluation metric shows that the Ensemble classifiers,

especially the Extra trees algorithm, are the best-performing models

across the three eras. We further evaluated the validity of this

claim by assessing whether the observed differences in the model

performances are statistically significant. Statistical significance was

ascertained using the Wilcoxon signed-rank test at a 5%

significance level. Figure 6A shows that the Extra Trees model had

a narrower range in the AUC scores for the 10-fold CV compared

to other models. It is shown that the distribution of the Extra

Trees model significantly differs from the non-ensemble classifiers.

Comparing the model performance distribution in CYA and New-

Gen (Figures 6B,C), there are statistical differences between the

Extra Trees and other models, except for Random Forest in the

CYA era. As the experimental results confirmed the reproducibility
FIGURE 4

AUC of the classifiers for the CYA era.

TABLE 4 Performance evaluation of the models on the New-Gen.

Model Accuracy Precision
Logistic regression 0.84 0.42

Extra Trees 0.92 0.82

AdaBoost 0.90 0.80

Random Forest 0.91 0.84

Gradient Boosting 0.89 0.64

Support Vector Machine 0.91 0.74

K-Nearest Neighbors 0.85 0.84

Neural network 0.89 0.62

Decision Trees 0.88 0.71
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of the selected models using the re-sampling technique, we further

assessed the transportability of the New-Gen model to other eras

(Figure 7). The external validation of the Extra Trees model in the

New-Gen era shows a lower discriminative power in the CYA

(AUC: 0.59) and pre-CYA (AUC: 0.58) eras.
3.3 Explanation of the outcomes

The Extra Trees classifier was chosen to develop the LIME model

across all three eras to ensure interpretability and transparency.

The LIME model is a valuable tool for interpreting predictions

from any classifier in an understandable and interpretable

manner. A feature importance bar plot was employed to

elucidate predictions in the local region. Visual representations of

the LIME results are presented in Figures 8, 9, and 10, where

blue and red colours signify contributing factors. Specifically,

blue denotes features that increase the likelihood of graft survival

or failure. At the same time, red indicates features that negatively

influence the likelihood of graft survival or failure. The length of
AUC F1 Sensitivity Specificity
0.81 0.42 0.15 0.96

0.97 0.82 0.59 0.98

0.94 0.80 0.50 0.98

0.94 0.84 0.49 0.98

0.87 0.74 0.45 0.97

0.92 0.84 0.48 0.98

0.82 0.62 0.15 0.98

0.85 0.71 0.45 0.97

0.79 0.64 0.46 0.95

FIGURE 5

AUC-ROC of the classifiers for the New-Gen.
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FIGURE 6

Box plot of model performance evaluation on the test-folds, based on the distribution of the AUC for each model. The Extra Trees was used as the
benchmark for comparison with other models. (A) pre-CYA, (B) CYA and (C) New-Gen. The significant difference was based on the Wilcoxon Signed-
Rank Test at a 5% level of significance.

FIGURE 7

AUC curves demonstrating the historical transportability of the Extra
Tree model in the New-Gen (Derivation) to the CYA (Validation 1)
and pre-CYA (Validation 2).
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the bars in the LIME summary plot indicates the magnitude of a

feature’s influence on the model’s prediction for that particular

case, with longer bars representing a more significant impact and

shorter bars representing minimal influence. Understanding these

contributing factors is paramount for identifying potential risks

and making informed patient care and treatment planning

decisions. The figures display predicted probabilities assigned by

the Extra Tree model for each sample case categorised as

“Survived” or “Failed”. Additionally, the explanation fit indicates

how well the interpretable model approximates the behaviour of

the underlying Extra Tree model for both the “Survived” and

“Failed” classes. These values are explicitly presented in each figure.

Figure 8 presents the LIME results for the Pre-CYA era,

showcasing the influence of different factors on graft survival or

failure in four randomly selected patients. In Figure 8 (Case 1),

factors that negatively influenced graft survival, include low

estimated glomerular filtration rate (EGFR), presence of surgical

complication, unmatched donor-recipient blood group type and

donors aged approximately 34 to 48 years or deceased donors.

Conversely, being a younger recipients or white recipient and

having no inherited cause of KF contributed positively to graft
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survival. The influence of these features on graft survival follows a

similar pattern in Case 2, even when considering different

categories of the features. In Figure 8 (Cases 3), contributing

factors to graft failure include non-living donors, low EGFR,

surgical complication, DGF and presence of primary renal cause

of KF. Similar trend and patterns are observed in Figure 8 Case 4.

In Figure 9 (Cases 1 and 2), the model identifies several factors

that increase the likelihood of graft survival. These include being a

non-diabetic or white recipient, being a younger recipient,

receiving a kidney from donors between the ages of 33 and 49,

and not having hypertension as a cause of KF. Other factors,

such as delayed graft function (DGF), that positively influence

survival may not be significant, as shown in the plot. Conversely,

in cases of graft failure (Figure 9 - Cases 3 and 4), factors

contributing to graft failure include being a black recipient, being

a recipient between 43 and 56 years, not having an inherited

cause of KF, and receiving kidneys from donors aged

approximately 17 to 33 years.
FIGURE 8

LIME model plots explaining individual predictions for four randomly selecte
based on the Extra Tree model and show the features that support (blue ba
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In Figure 10, Cases 1 and 2, classified as “Survived,” and Cases

3 and 4, classified as “Failed” by the Extra Tree model in the New-

Gen era, are depicted. The figure illustrates that specific factors,

such as being a non-diabetic recipient, not receiving IVI steroids

as rejection treatment, the absence of acute rejection, having a

high EGFR, or experiencing surgical complications, as well as

other feature categories shown in the blue bars, positively

influence graft survival in Cases 1 and 2. Conversely, in Cases 3

and 4, we observed the reverse effects of these features on

graft failure.
3.4 Feature importance

For the pre-CYA era (Figure 11A), the feature importance plot

shows recipient age and EGFR are the most significant features,

with recipient age demonstrating the highest importance for

predicting graft failure in this era. Notably, EGFR shows a
d patients who underwent transplants in the pre-CYA era. The plots are
rs) or contradict (red bars) the predicted probability.
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FIGURE 9

LIME model plots explaining individual predictions for four randomly selected patients who underwent transplants in the CYA era. The plots are based
on the Extra Tree model and show the features that support (blue bars) or contradict (red bars) the predicted probability.
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narrower boxplot than recipient age, suggesting it has less

variability and a more stable contribution to the model’s

predictions. Meanwhile, features such as surgical complication,

donor age, and donor type contribute moderately to the model

prediction, whereas other features including primary renal causes

of KF, DGF and recipient ethnicity have minimal influence on

predictions. The recipient age feature is the most influential in

the CYA era (Figure 11B), exhibiting the highest mean

importance and moderate variability. Recipient ethnicity and

donor age are also significant contributors. The other features,

such as hypertension or renal as a cause of KF, have moderate

importance with relatively low variability. In contrast, DGF , IVI

steroids as rejection treatment and inherited cause of KF have

minimal impact on model performance. For the New-Gen era
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(Figure 11C), the feature importance plot shows that EGFR,

recipient age, and donor age are the most influential features,

with EGFR showing the highest mean importance. Features such

as IVI steroids as rejection treatment and biopsy-proven acute

rejection and diabetes also contribute to the model, though with

less significance. The remaining features, including biopsy-proven

chronic rejection, DGF, and donor type, have minimal influence

on the model’s predictive capabilities.
4 Discussion

This study evaluates nine machine learning (ML) models to

predict the 10-year risk of graft failure after kidney
frontiersin.org
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FIGURE 10

LIME model plots explaining individual predictions for four randomly selected patients who underwent transplants in the New-Gen era. The plots are
based on the Extra Tree model and show the features that support (blue bars) or contradict (red bars) the predicted probability.
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transplantation. Advances in medical practices, including

immunosuppressive drugs and supportive therapies, have

positively impacted graft survival post-transplant. Exploratory

data analysis revealed substantial improvement in graft survival

rates from the pre-CYA to the New-Gen transplant eras,

indicating reduced risk of graft failure over time. Specific

patient or donor characteristics influencing graft survival have

also improved, leading us to hypothesise varying prognostic

factors across the three transplantation eras and prompting the

modelling of graft failure during each era. We aimed to develop

an optimisable platform for predicting graft failure post-

transplant, with adaptable methodological strategies for future

studies using more recent data to identify risk factors and

support clinical decision-making (34).

We internally validated nine models for each transplant era,

both with and without data augmentation. Given the study’s

relatively small sample size, we addressed potential issues related

to model reproducibility and overfitting. Results indicate that all
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nine selected algorithms demonstrated good discrimination

ability measured by the AUC metric. Ensemble algorithms

consistently outperformed others in predicting graft failure,

benefitting from additional samples and diversity introduced by

augmented data (Table A1), aligning with studies emphasising

the importance of large datasets for accurate ML (73). While

direct comparison with prior studies modelling era-specific graft

survival in kidney transplants was not possible, our best-

performing models achieved an AUC score of 97%, which is

comparable to or higher than AUC scores reported in studies

modelling long-term graft survival, which ranged from 64.4% to

89.7% (30, 32, 74–77). As depicted in Table 5, the variation in

these scores among studies can be attributed to several factors,

including differences in data size, study periods, risk associations,

and modeling strategies.

Top features influencing graft survival showed inconsistency

across the three eras, except for recipient and donor age, which

consistently demonstrated global importance. This highlights the
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FIGURE 11

Permutation-based feature importance measures across eras: The plot displays the permutation-based feature importance measures for study
features included in the Extra Trees models for each era: A ¼ Pre-CYA, B ¼ CYA, and C ¼ New-Gen. Feature importance is measured using 1-
AUC as the loss function, where higher values indicate greater impact on model performance when the feature is permuted.

TABLE 5 Comparison with other existing studies.

Reference Method Accuracy AUC Sensitivity Specificity
Yoo et al. (77) Decision Tree Ensemble 80.0 – – –

Pahl et al. (74) Random Forest – 64.4 – –

Badrouchi et al. (30) Multiple ML models 91.5 89.7 91.9 87.5

Naqvi et al. (32) Multiple ML models – 82.0 – –

Salaun et al. (76) RF and other models – 84.4 – –

Paquette et al. (75) Artificial Neural Networks 66.1 – – –

Our Study Extra Trees, together with other models 92.0 97.0 78.0 98.0
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variation in graft survival factors across eras. LIME models

provided interpretable results for features influencing graft

survival within each era, emphasizing the necessity for

continuous adaptation and validation of predictive models in

different contexts. Incorporating interpretable ML models like

LIME into clinical decision-making can lead to more informed

and individualized treatment plans, improving patient outcomes

and graft survival rates (40, 64).

Our study also evaluated the transportability of the New-Gen

model to other eras, revealing challenges due to changing disease

severity over time (28). Differences in survival rates and risk

factors across the three eras indicate that historical
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transportability may only be achieved if the same features

consistently impact graft survival. Despite these challenges, our

models exhibited reproducibility and consistency in predicting

outcomes within each era, underscoring the potential of ML

approaches to enhance understanding and prediction of graft

survival across diverse settings.

In conclusion, this study concurrently explores graft

survival across three transplant eras, providing valuable

insights into post-kidney transplant outcomes. Acknowledging

limitations, including reliance on data from a single centre

with a relatively small patient cohort, is crucial. While findings

may not fully capture the entire landscape or current state of
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kidney transplants in South Africa, they provide a foundation

for future studies.

Further ML-based investigations into graft survival, utilising

current data from diverse regions, are essential to deepen

our understanding. The study’s comprehensiveness could

have been enhanced by incorporating pivotal variables,

which, unfortunately, were excluded due to missing data or

inconsistencies in the data collection process.

Looking forward, our objective is to refine and assess the

geographical applicability of the models developed within a

different transplant unit in South Africa, with a primary focus on

improving transportability within the same transplant era.
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Appendix A

Additional results Appendix A.
TABLE A1 Results from the analysis taken without SMOTE.

Era Model Accuracy Precision AUC F1 Sensitivity Specificity
New-Gen Logistic regression 0.84 0.31 0.73 0.12 0.07 0.97

Extra Trees 0.84 0.45 0.75 0.37 0.31 0.93

AdaBoost 0.83 0.40 0.75 0.32 0.27 0.93

Random Forest 0.85 0.48 0.73 0.32 0.24 0.96

Gradient Boosting 0.85 0.52 0.73 0.34 0.26 0.96

Support Vector Machine 0.85 0.54 0.70 0.21 0.13 0.98

K-Nearest Neighbors 0.84 0.25 0.75 0.03 0.02 0.99

Neural network 0.84 0.45 0.70 0.31 0.24 0.95

Decision Trees 0.83 0.41 0.64 0.33 0.27 0.93

CYA Logistic regression 0.66 0.56 0.66 0.38 0.29 0.87

Extra Trees 0.61 0.45 0.58 0.42 0.40 0.73

AdaBoost 0.59 0.42 0.57 0.40 0.38 0.70

Random Forest 0.64 0.47 0.63 0.20 0.13 0.92

Gradient Boosting 0.66 0.55 0.66 0.40 0.32 0.85

Support Vector Machine 0.65 0.55 0.64 0.22 0.14 0.94

K-Nearest Neighbors 0.63 0.46 0.60 0.26 0.18 0.88

Neural network 0.67 0.59 0.66 0.33 0.23 0.91

Decision Trees 0.58 0.39 0.56 0.34 0.31 0.73

pre-CYA Logistic regression 0.60 0.52 0.65 0.45 0.40 0.74

Extra Trees 0.64 0.57 0.66 0.56 0.56 0.70

AdaBoost 0.61 0.53 0.67 0.51 0.49 0.70

Random Forest 0.62 0.54 0.66 0.52 0.50 0.70

Gradient Boosting 0.62 0.54 0.66 0.53 0.52 0.69

Support Vector Machine 0.60 0.53 0.65 0.44 0.37 0.77

K-Nearest Neighbors 0.61 0.53 0.65 0.57 0.61 0.62

Neural network 0.62 0.56 0.67 0.51 0.47 0.73

Decision Trees 0.60 0.52 0.62 0.50 0.47 0.69
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