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Automated pipeline for denoising,
missing data processing, and
feature extraction for signals
acquired via wearable devices in
multiple sclerosis and amyotrophic
lateral sclerosis applications
Luca Cossu, Giacomo Cappon and Andrea Facchinetti*

Department of Information Engineering, University of Padova, Padova, Italy
Introduction: The incorporation of health-related sensors in wearable devices
has increased their use as essential monitoring tools for a wide range of
clinical applications. However, the signals obtained from these devices often
present challenges such as artifacts, spikes, high-frequency noise, and data
gaps, which impede their direct exploitation. Additionally, clinically relevant
features are not always readily available. This problem is particularly critical
within the H2020 BRAINTEASER project, funded by the European Community,
which aims at developing models for the progression of Multiple Sclerosis
(MS) and Amyotrophic Lateral Sclerosis (ALS) using data from wearable devices.
Methods: The objective of this study is to present the automated pipeline
developed to process signals and extract features from the Garmin Vivoactive 4
smartwatch, which has been chosen as the primary wearable device in the
BRAINTEASER project. The proposed pipeline includes a signal processing step,
which applies retiming, gap-filling, and denoising algorithms to enhance the
quality of the data. The feature extraction step, on the other hand, utilizes clinical
partners’ knowledge and feedback to select the most relevant variables for analysis.
Results: The performance and effectiveness of the proposed automated pipeline
have been evaluated through pivotal beta testing sessions, which demonstrated
the ability of the pipeline to improve the data quality and extract features from
the data. Further clinical validation of the extracted features will be performed
in the upcoming steps of the BRAINTEASER project.
Discussion: Developed in Python, this pipeline can be used by researchers for
automated signal processing and feature extraction from wearable devices. It
can also be easily adapted or modified to suit the specific requirements of
different scenarios.

KEYWORDS

smartwatches, processing, feature extraction, health data, wearable devices, long-term
health monitoring

1 Introduction

Multiple Sclerosis (MS) and Amyotrophic Lateral Sclerosis (ALS) are chronic conditions

characterized by a progressive decline in motor and cognitive neurological functions.

Although they are distinct diseases, they present similar challenges for patients and the

healthcare system (1). Individuals with either condition must transition between receiving
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care in clinical facilities and managing daily care at home to monitor

disease progression and treat acute episodes. This constant physical

and psychological burden, coupled with an uncertain future, is

shared by both patient groups. Clinicians, on the other hand,

require tools that can effectively support patients with ALS and MS

by providing personalized therapeutic decisions based on the

patient’s conditions, identifying critical interventions, and providing

insight into the status of the disease and the overall clinical

situation. In recent years, significant efforts have been made to

estimate the progression of ALS and MS and to develop tools that

can assist both patients and clinicians in managing the disease (2, 3).

BRAINTEASER (BRinging Artificial INTelligencE home for a

better cAre of amyotrophic lateral sclerosis and multiple

SclERosis) (www.brainteaser.health) is a project funded by the

European Horizon 2020 initiative, which aims to deploy Artificial

Intelligence (AI)-based technologies for the daily home care of MS

and ALS. In this context, AI is considered a key element in

meeting the needs of both patients and clinicians. Specifically, AI

methodologies can be utilized to analyze the progression of MS

and ALS, allowing for the capture and handling of patients’ inter-

variability, and providing tools for forecasting disease evolution

(4). For AI methods to be effective, they need to be trained on

large quantities of heterogeneous data from various sources, such

as patient-specific medical history, environmental data, and signals

potentially derived from commercially available wearable devices.

Currently, wearable devices are widely available and they are

becoming an essential instrument to monitor patients’ health-

related signals in an almost continuous, noninvasive, and painless

way, moving the collection process from limited controlled in-

clinic sessions to daily life. Among wearable devices, commercial

smartwatches allow users to easily track several important signals

such as heart rate, step counts, physical exercise, and pulse

oximetry, which can be used to evaluate the general health

condition of the wearer (5). These functionalities can be

particularly beneficial for patients with chronic diseases, who can

use them to monitor the status of their disease, while clinicians

can utilize these data to gain insight into disease progression.

However, there are two main problems with using commercially

available smartwatches to collect health-related signals. The first is

that these health signals often cannot be directly used as provided

by the device, mainly because of the noise of collected signals and

elements tied to the use of the device itself. In fact, the wearer’s

movement during usage might lead to artifacts in the signals, in

the form of spikes, high-frequency noise, or gaps. Moreover, the

device must be user-friendly and with an appropriate form factor,

to avoid dropouts in use, thus ensuring continuous data collection.

Finally, the device battery has to be recharged periodically,

inevitably leading to data loss in that specific period. The second

problem is that clinically relevant features, essential for monitoring

chronic diseases such as ALS and MS, are not currently available

through these devices. To solve these problems, many solutions

have been proposed in the literature to process and analyze

wearable data, but most of them have been applied only to non-

consumer/experimental devices or to signals with different

characteristics than the one collectible from consumer wearable

devices like smartwatches (6, 7). Some previous works have
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focused on the processing of wearable data. For example, the

works by Beyer et al. (8) and Vega et al. (9) present two

processing pipelines for various wearabale devices, but lack

the support for the Garmin Vivoactive 4 smartwatch, used for the

project. Others like the works by Bent et al. (10) do not support

all the required signals or don’t extract the features needed for the

study. Lastly, the work by Foell et al. (11), while supporting

the specific device, requires the data to be in the raw extracted

format, which was not available during the project. Therefore, this

work aims to present the automated pipeline to process health-

related signals and extract clinically relevant features for ALS and

MS that we developed within the BRAINTEASER project, in

which signals are acquired via Garmin Vivoactive 4 smartwatch.

Our solution has been meticulously crafted to meet the distinct

needs, peculiarities, and requirements of the BRAINTEASER

project. Briefly, the automated pipeline is composed of two steps:

the signal processing step applies retiming, gap filling and

denoising algorithms to improve data quality, whereas the feature

extraction step selects the most important variables for ALS and

MS according to clinical partners’ knowledge and feedback. The

proposed automated pipeline, developed in Python, can be of help

to researchers for the preliminary automated processing of the

large amount of data that can be collected from wearable devices

and can be easily adapted/modified to suit the specific needs of

each scenario.

The structure of the paper is the following. We will start by

presenting the BRAINTEASER project and its aims, and the

rationale behind the selection of the Garmin Vivoactive 4

smartwatch and, by exploiting the feedback received from the

clinical teams in the project, we will show the procedure we

applied to identify the most useful signals and features. Then, we

will illustrate in detail the automated pipeline we developed to

obtain signals with improved quality and extract relevant features

for AI-based models employed in BRAINTEASER. Finally, we

will conclude by thoroughly defining all the extracted features,

and in the last section, we will present the effectiveness of the

automated pipeline by evaluating the result of its application to

pivotal beta testing sessions.
2 Materials and methods

2.1 Wearable device selection for ALS/MS
model development in BRAINTEASER

The BRAINTEASER project aims at exploiting clinically relevant

features extracted from wearable devices to feed AI-based models to

monitor and predict the progression of ALS and MS chronic

diseases. Before selecting the wearable device, there was the need

to better understand which signals could be potentially relevant,

from the clinical point of view, for the two considered diseases.

2.1.1 Wearable device data of interest for ALS/MS
AI-based model development

Both ALS and MS have multiple degradation effects on many

vital functions of patients, especially related to respiration, blood
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oxygenation, and fatigue. These symptoms have been studied and

analyzed in recent years by many research teams, to better

understand their connection with the disease and its

progression. Heart rate and related features have been identified

as significantly different between individuals with each

respective disease and healthy subjects (12–14). Thus this signal

has been identified as relevant to track in both diseases, to

investigate possible insight into patients’ status, even in the

early stages. Respiration rate has proven to be an easy-to-collect

signal that is highly correlated to more invasive clinical tests to

predict survival in ALS patients (15, 16), and for MS

respiratory dysfunction is one of the main outcomes of the

disease (17). Moreover, sleep time is critical for both diseases.

In fact, it has been shown how sleep quality and fatigue are

relevant for both diseases, and SpO2 tracking during sleep can

show important patterns and apnoea periods (18–20). The final

clinical relevance of HRV and SpO2 features as key info to

monitor the progression of ALS and MS diseases will be

available only at the end of the AI-based model development

stage. However, it is important to note that the ultimate clinical

relevance of HRV and SpO2 features as crucial information for

monitoring the progression of ALS and MS diseases will only

be determined at the conclusion of the development stage of

the AI-based models.

To further validate these findings with hands-on input, we

asked the clinical partners of the BRAINTEASER project to

provide a list of desired features to collect from the wearable

device, their priority, and the ideal sampling rate. For MS,

Fondazione Istituto Neurologico Nazionale Casimiro Mondino

(IT) and Servicio Madrileño de Salud (ES) are the clinical

partners involved in BRAINTEASER and their teams identified a

very high priority for activity-related signals, such as daily steps,

burnt calories, and the raw accelerometer data. They also

identified the tracking of respiration rate and SpO2 during sleep

as crucial to monitor the patient’s disease status. For ALS, the

clinical partners (University of Turin (IT), Instituto De Medicina

Molecular João Lobo Antunes (PT), and Servicio Madrileño de

Salud (ES)) identified respiration rate and SpO2 as crucial too,

with the addition of the heart rate and beat-to-beat intervals with

the request of the highest sampling rate possible. This list of

desired signals is in line with the literature and allowed us to

define a list of candidate wearable devices compliant with both

clinical and technical requirements.
TABLE 1 Compared wearable devices with a brief summary of the identified

Brand & Model Advantages
Garmin Vivoactive 4/4s Extensive health, sleep & stress tracking sensors, including pu

oximeter, long battery life (8 days without GPS)

ASUS VivoWatch BP Extensive health, sleep & stress tracking, medical grade ECG
sensors, excelling battery life, blood pressure measurement

Fitbit Versa 2 Extensive health, sleep & stress tracking sensors, including pu
oximeter, good battery life

Withings ScanWatch Extensive health, sleep & stress tracking sensors, including pu
oximeter and ECG sensor, very long battery life (up to 30 da

Polar Ignite Health, sleep, fitness, activity and & very accurate HR trackin
light weight, slender design
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2.1.2 Candidate wearable devices and critical
requirements for their integration

The clinical input provided expert-based information for

identifying the device’s requirements. Subsequently, a more

technical analysis of the available devices was conducted. We

focused on wrist-worn devices because of their ease of use, small

impact on the patient’s life, wide availability, and ability to

collect signals such as heart rate, sleep patterns, and blood

oxygen concentration. We conducted a comprehensive literature

search in order to identify the devices utilized in similar studies.

Additionally, we thoroughly explored the manufacturer websites

to obtain a more profound understanding of the capabilities and

functionalities of each device.

Table 1 reports the devices that have been considered for the

project together with the pros and cons of their potential

adaptation. The considered devices collect all the required

signals. As such, the device of choice has been selected

revolving around the maximization of the battery life, user

experience, and possibility of accessing the collected data via a

dedicated Application Programming Interface (API) or Software

Developer Kit (SDK). Indeed, while a short battery life would

imply a high burden for the patient to charge the device and

data loss during the charging period, poor user experience

threatens user compliance to wear the device and the absence of

an API/SDK undermines the possibility of automatically

collecting data and eases the development of AI-based

methodologies within the project.

After considering all previously listed aspects, the

BRAINTEASER project agreed to select the Garmin Vivoactive

4/4s as the one that best fits the clinical and technical needs.

2.1.3 Garmin Vivoactive 4/4s
The Garmin Vivoactive 4/4s (Garmin Ltd, Olathe, KS, USA) is

a smartwatch that comes in two sizes and allows collecting all the

signals identified in Section 2.1.1. It guarantees up to 8 days of

battery life, which lowers the burden on the patient. The

availability of two form factors improves the range of patients

who will be able to wear the device without aesthetic and

bulkiness concerns. Data collection can be automated via either

via web API or via dedicated SDK, which would allow direct

Bluetooth Low Energy (BLE) communication with the device

from a mobile application. It is important to note that the device

is not intended for clinical use, and the accuracy of the
advantages and disadvantages.

Disadvantages
lse- Inbuilt GPS not useful for the project requirements

and PPG Small screen, the device’s size is bulky due to ECG sensor spot for the
finger at the front, which is not required for the project

lse- Inbuilt GPS not useful for the project requirements. No direct Bluetooth
SDK available, only web API

lse-
ys)

Hybrid analog/smartwatch with a small digital display

g sensors, Relatively short battery life (4 days), no pulse-oximeter
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measurements was not directly quantified in this study. Our focus

has been on exploring the potential use of a non-clinical-grade

smartwatch as a means to gather relevant information for the

BRAINTEASER project. Moreover, it has some important

features to improve the user experience such as built-in

notifications to encourage wearers healthy habits, like hourly

stand time and drinking water.

Table 2 reports the sampling rate of each signal that can be

collected from the Garmin Vivoactive 4/4s. Given this

information on types of signals and their sampling rate, the next

step was to investigate whether to use or discard their collection

based on the specific needs of the BRAINTEASER project.

Of course, as discussed in Section 2.1.1, we retained heart rate,

respiration rate, sleep, and SpO2 given their key role evidenced by

clinical partners.

As far as the accelerometer signal is concerned, its high sampling

rate would potentially lead to a high amount of data management and

processing. Furthermore, its continuous collection greatly reduces the

battery life to a few hours. Due to these considerations, we chose to

drop this signal. However, the inclusion of accelerometer data in

future studies remains relevant to these diseases. Despite the

difficulties associated with its ongoing collection, it has the potential

to enhance the understanding of these conditions and should be

considered whenever feasible. For this project, we have chosen to

use steps and calories as a proxy for physical activity information

since they are readily obtainable from the device. These two specific

data types represent the cumulative sum of steps performed and

calories burned up to the current moment.

Regarding Stress and Body battery signals, all clinical partners

agreed that they would be beneficial to track. However, these

signals are computed by Garmin and there is neither information

nor validation on how these variables are calculated by the

manufacturer, as well as no info on their clinical validity. The

previous considerations led all the partners to agree on

discarding these signals as well.

Finally, an additional note on the SpO2 signal is needed.

Enabling its collection for the whole day allows collecting only a

few more points due to the user’s movement since the arm

should be at rest, but has the drawback of critically reducing the

duration of the battery life. For this reason, we chose to collect

the SpO2 signal during nighttime only.

The final list of signals to be collected, analyzed, and processed

with the pipeline presented in this work (see Section 2.2 is reported

in Table 3. Table 3 also reports the minimum sampling rate for

each signal that is clinically relevant, according to clinical teams’
TABLE 2 List of health-related signals available from the Garmin
Vivoactive 4/4s.

Signal Sampling
rate

Signal Sampling rate

Steps 60 s Accelerometer 1/4 s

Calories 60 s Stress 10 s

Intensity minutes 60 s SpO2 30 s

Floors climbed 60 s Respiration rate 10 s

Heart rate 15 s Body battery 10 min

Beat-to-beat interval 15 s Battery percentage 60 min
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feedback (this may be higher than the minimum value provided

by the device as reported in Table 2).
2.2 Pipeline for signal processing and
feature extraction

The AI models require as input clinically relevant features that

are computed from the signals collected with the Garmin

Vivoactive 4/4s and allow for a summary of the most important

signal characteristics. In this section, we present the processing

pipeline that has been designed and developed in Python aimed

at extracting clinically relevant features. Figure 1 shows the

overall structure of the pipeline, which is composed of three

blocks of signal processing (retiming, gap filling, and denoising)

aimed at making data usable to extract the features (last block).
2.2.1 Wearable device data preparation and
denoising

All the collected signals need to be processed before being

usable for feature extraction. In our pipeline, the signal

processing consists of three steps specifically tuned to deal with

the characteristics of each signal.

The first step is the retiming of the signal, which aims at

bringing all data points to a uniform time grid. Indeed, input

data might have a non-constant sampling grid and this may bias

the calculation of the features. Being our final aim of feature

extraction, this aspect represents a clear problem. Retiming is

implemented by an algorithm that averages all input data points

to the closest output grid point. In this way, the original data are

preserved and only translated to the constant time grid. The

average is reduced to a sum in the case of cumulative data types,

such as daily calories and steps.

The second step is gap-filling. Indeed, the data can have

missing values, and the presence of missing values can bias the

calculation of the features and any further analysis. Several

strategies have been investigated to reliably fill data gaps. Since a

priori information on wearable-derived data was not available, it

has been decided to employ a simple but effective strategy, i.e.,

fill missing values by linear interpolation of nearby values. This

choice is also functional since it allows performing all the feature

extraction algorithms without introducing major changes in the

dynamics of the wearable-derived data. It is also worth noting

that there is no difference between gaps caused by the sensor
TABLE 3 Final list of health-related signals and the selected sampling rate
exploited in the BRAINTEASER project after the device capabilities analysis
and usability considerations.

Signal Sampling rate Notes
Steps 15 min

Calories 15 min

Intensity minutes Daily summary

Heart rate 15 s

Beat-to-beat interval 15 s

SpO2 60 s During sleep period

Respiration rate 60 s During sleep period
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TABLE 4 For each signal, the maximum time gap that allows linear
interpolation is reported.

Signal Maximum time gap
Steps No gap filling

Calories No gap filling

Heart rate 60 s

Beat-to-Beat interval 60 s

Pulse Oximetry 120 s

Respiration rate 300 s

Cossu et al. 10.3389/fdgth.2024.1402943
itself and by non-wearing periods. The ad-hoc procedure we

developed consists first of automatically identifying fillable gaps

for each input signal, then filling them by linear interpolation

only those whose duration is equal or inferior to the limits

reported in Table 4. These thresholds have been meticulously

established through multiple iterations of a trial-and-error process

aimed at striking an optimal balance between preserving signal

dynamics and mitigating the introduction of excessive artificially

generated values. Importantly, these values have undergone

scrutiny and received approval from our clinical project partners.

For instance, the respiration rate during nighttime, which is not

expected to significantly change in less than 5 min, dictates a

maximum time gap for filling set at 300 s. Similarly, the heart rate

and beat-to-beat signal, projected to undergo negligible alterations

in less than one minute during nighttime, have prompted the

establishment of a maximum time gap for filling at 60 s. The

blood oxygen concentration, not anticipated to experience

significant shifts in less than 2 min during nighttime, has

influenced the setting of a maximum time gap for filling at 120

s. Importantly, this duration deliberately maintains a lower

threshold than the respiration rate, guided by valuable insights

from clinical teams emphasizing the criticality of SpO2

levels, particularly during nighttime and periods of diminished

oxygen concentration.

Note that not all signals can be processed with the gap-filling

procedure, e.g., steps and calorie signals skip the gap-filling block

because of their non-continuous nature, both being aggregated

samples over their sampling period.

Finally, the third processing step is denoising. Due to the

sensor’s characteristics, some noise overlapped with the true

signal is always expected. In the case of wearable devices, this

might be caused, for example, by device movement on the user’s

wrist, sweating, jumps, etc., which all lead to outliers and general

noise in the collected data. To improve the quality of the signals

before performing the feature extraction, since no a priori
FIGURE 1

Complete processing pipeline. It can be divided into two parts: the first three
data by retiming the input to a fixed sampling grid, filling data gaps, and rem
relevant features.
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information on wearable-derived data was available, we decided

to adopt a very robust methodology for denoising that does not

require any a priori information on the wearable-derived data,

i.e., a moving average algorithm. The algorithm works by

calculating the average of data points within a sliding window.

This sliding window moves through the time series data, and at

each position, it computes the average value of the data points

within the window. This process effectively smooths out

variations and reduces high-frequency noise in the data, making

it a suitable choice for enhancing data quality without requiring

prior information about the characteristics of the wearable-

derived data. The default window is three samples wide, but it

can be easily customized in the code and passed as parameter to

the processing functions.
2.2.2 Feature extraction
The output of the data processing pipeline (i.e., the first three

blocks in Figure 1) is a signal that is now suitable to be used for

the extraction of clinically relevant features. Each signal has been

treated separately, to exploit all the relevant characteristics that

are of interest for ALS and MS. All the features have been

validated by the clinical partners of the project. Similar works in

the literature on the two diseases (21–23) have served as
blocks are devoted to signal processing, to improve the quality of the raw
oving noise, whereas the last block performs the extraction of clinically-
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additional confirmation of the features selected in this study. All

the features are computed for the full daily data.

The explored features focus on the time, frequency, and

geometric domains. In particular, the latter domain is explored

by resorting to the Poincaré plot, which allows easy visualization

and analysis of recursive signals like heart rate. This method and

the geometric features that can be extracted from the plot are

widely used in heart rate variability analysis, thus those features

have been included in the list of important features for the

project (24, 25). In our case, the Poincaré plot has been applied

to heart and respiration rate signals only.
TABLE 5 Complete list of features for heart rate and beat-to-beat signals. Th

Feature
HR_Baseline The baseline heart rate.

HR_Max The maximum heart rate.

HR_Min The minimum heart rate.

HR_Mean The mean heart rate.

HR_SD The standard deviation of the heart rate.

HR_Max_Time The time at which maximum heart rate occurs.

HR_Min_Time The time at which minimum heart rate occurs.

HR_Trend_Linear The parameter corresponding to the linear trend of heart rate.

HR_Trend_Quadratic The parameter corresponding to the curvature of heart rate.

HR_Trend_R2 The quality of the quadratic model.

MeanNN The mean of the RR intervals.

SDNN The standard deviation of the RR intervals.

SDANN1-2-5 The standard deviation of average RR intervals extracted from n-m

SDNNI1-2-5 The mean of the standard deviations of RR intervals extracted f

RMSSD The square root of the mean of the sum of successive difference

SDSD The standard deviation of the successive differences between RR

CVNN The standard deviation of the RR intervals divided by the mean

CVSD The root mean square of the sum of successive differences divid

MedianNN The median of the absolute values of the successive differences

MadNN The median absolute deviation of the RR intervals.

HCVNN The median absolute deviation of the RR intervals (MadNN) di
(MedianNN).

IQRNN The interquartile range (IQR) of the RR intervals.

pNN50 The proportion of RR intervals greater than 50ms

pNN20 The proportion of RR intervals greater than 20ms

HTI The HRV triangular index: number of RR intervals divided the

SD1 Spread of RR intervals on the Poincaré plot perpendicular to th

SD2 Measure of the spread of RR intervals on the Poincaré plot alon

SD1SD2 The ratio between short- and long-term fluctuations of the RR

CSI The Cardiac Sympathetic Index (29)

CVI The Cardiac Vagal Index (29)

CSI_Modified The modified CSI (30)

PIP Percentage of inflection points of the RR intervals series.

IALS Inverse of the average length of the acceleration/deceleration seg

PSS Percentage of short segments

PAS Percentage of NN intervals in alternation segments

GI Guzik’s Index

SI Slope Index

AI Area Index: cumulative area of sectors corresponding to points ab
plot not on LI.

PI Porta’s Index: number of points below LI divided the number o

SD1d and SD1a Short-term variance of decelerations and accelerations, respectiv

C2d and C2a The contributions of heart rate decelerations and acceleration in

SDNNd and SDNNa Total variance of decelerations and accelerations, respectively (3

Cd and Ca The total contributions of heart rate decelerations and accelerat
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2.2.2.1 Heart rate and beat-to-beat interval features
Heart rate variability is correlated with the presence of ALS and

MS (12–14), especially its frequency domain features. To extract

features for this signal that can be relevant to the project, we

leveraged two main packages, Neurokit (26) and HRVAnalysis

(27). The packages focused on signals with higher sampling

rates, and thus some adjustments before being applied were

needed, such as refactoring functions and changing their

parameters. For instance, some functions in the packages

required a large number of points to work on, so we had to

remove that constraint. Table 5 shows the list of the extracted
e latter is derived by the inversion of the heart rate signal.

Description

inute segments of time series data (1, 2 and 5 by default).

rom n-minute segments of time series data (1, 2 and 5 by default).

s between adjacent RR intervals.

intervals.

of the RR intervals.

ed by the mean of the RR intervals.

between RR intervals.

vided by the median of the absolute differences of their successive differences

height of the RR intervals histogram.

e line of identity (28).

g the line of identity. It is an index of long-term RR interval fluctuations.

intervals (SD1/SD2).

ments.

ove LI divided by the total area of sectors corresponding to all points in the Poincaré

f points in Poincaré plot not on LI.

ely (31).

long-term HRV, respectively (31).

1).

ions to HRV.
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features from the heart rate and beat-to-beat interval signals,

respectively, and their description.

2.2.2.2 Pulse oximeter and respiration rate features
Sleeping hours are a vital time to watch. Numerous physiological

indicators, including respiratory rate and SpO2 (32, 33), are

important to monitor during sleeping. Given that blood oxygen levels

and sleep quality both reflect weariness and sleep apnoea, these

signals are extremely important for both disorders being studied (18–

20). Furthermore, since breathing is one of the vital processes that is

most commonly hampered by disease development (16, 17, 34), it is

essential to monitor respiration rate and related features to identify

trends and predict disease-related events in the future. For the

purpose of extracting features from pulse oximeter signals, the

Neurokit2 package has been used as a starting point. The extracted

features from the spO2 signal concentrate on the temporal domain,

with a particular emphasis on the mean characteristics of

desaturation occurrences, defined as values less than 90%. The

features of the respiration signal use both the time and frequency

domains, with an emphasis on the timing and characteristics of

breath-to-breath intervals. The full description of the features that

were extracted from SpO2 and respiration rate is reported in Tables 6

and 7, respectively.
3 Results

The pipeline for signal processing and feature extraction has

been validated using sample data collected during the project’s

development period and the initial phase of patient enrollment.

This data was obtained from 10 subjects participating in the

BRAINTEASER clinical trial, including both ALS and MS

patients. The subjects wore the Garmin Vivoactive 4s device in

an outpatient setting without any specific tasks for data

collection. The subjects gave their informed consent for inclusion
TABLE 6 Complete list of features for pulse oximetry signal.

Feature Description
AV Average of the pulse oximetry.

MED Median of the pulse oximetry.

Min Minimum value of the pulse oximetry.

SD Standard deviation of the pulse oximetry.

RG SpO2 range (difference between the max and min value).

P Percentile (90th)

Mx Percentage of the pulse oximetry 90% below median oxygen
saturation.

ZC Number of zero-crossing points.

DI Delta Index.

CA Integral SpO2 below the 90% SpO2 level normalized by the total
recording time

CT Percentage of the time spent below the 90% oxygen saturation level.

POD Percentage of oxygen desaturation events

AODmax The area under the oxygen desaturation event curve, using the
maximum SpO2 value as baseline and normalized by the total
recording time

AOD100 Cumulative area of desaturations under the 100% SpO2 level as
baseline and normalized by the total recording time

ODI The average number of desaturation events per hour (int).
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before they participated in the study. The study was conducted

following the Declaration of Helsinki, and the protocol was

approved by the Ethics Committee of A.O.U. Città della salute e

della scienza di Torino (314/2021). In this work, we present the

results on a representative subject with ALS, who used the device

for 7 days to acquire a comprehensive data set that encompasses

both daytime and nighttime periods. During this period, this

individual engaged in various physical activities, which enabled the

verification of the collected data’s quality and the assessment of the

efficiency of the processing pipeline in eliminating potential artifacts

resulting from the device’s movement on the wrist. The data

presented here, as well as additional sample data, can be found in

the repository linked as Supplementary Material. This data is

representative of future datasets that will be collected using the

wearable device, during the BRAINTEASER clinical trial and the

pipeline will be further tested on the complete dataset when available.

The sample dataset contains some of the expected artifacts that

the processing pipeline is asked to remove/correct. For instance, the

sleeping time signal presents some peaks that could be a

consequence of the wrong positioning of the device or

compression of the sensor due to movement during sleep.

Moreover, all signals present data gaps of different durations,

which need to be identified and filled by linear interpolation if the

gap duration is lower or equal to the limits previously. The results

of the signal processing pipeline, comprising the initial three

blocks outlined in Figure 1, are illustrated in Figure 2 for heart rate

(top), SpO2 (middle), and respiration (bottom) signals. Each figure

depicts a segment of the available data to demonstrate the effects

of each processing step. The input retimed signal is represented by

the blue dashed line, the outcome of gap filling is displayed as

green dots, and the denoised signal is depicted in red.

These results illustrate the varying susceptibility of different

signals to artifacts. Specifically, the heart rate signal obtained

from the wearable device was found to be suitable for feature

extraction without the need for further processing. Conversely,

the SpO2 and respiration rate signals exhibited a significant

number of missing data points and artifacts, requiring pre-

processing prior to feature extraction. The proposed automatic

processing pipeline demonstrates the capability to effectively

identify and correct the prevalent issues in health-related signals

obtained from wearable devices. The results presented in Figure 2

illustrate that the application of the signal processing steps leads

to an enhancement in the usability of the acquired time-series,

and subsequently, the quality of the extracted features. This is

achieved through the reconstruction of missing data and the

removal of artifacts through denoising.

The cleaned sample was utilized to extract sample features that

will serve as input to the AI models. As an example, Table 8

presents a list of sample features that were extracted from the

heart rate signal.

Tables 9 and 10 showan example of the features extracted from the

sleeping time signals. These focus on overall summary values and,

especially for the SpO2 signal, some of the features highlight

important events such as time in desaturation and its characteristics.

In this study, the validity and impact of the extracted features

on model performance have not been directly evaluated. This
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TABLE 7 Complete list of features for respiration rate signal.

Features Description
SDBB The standard deviation of the breath-to-breath intervals.

RMSSD The root mean square of successive differences of the breath-to-breath intervals.

SDSD The standard deviation of the successive differences between adjacent

VLF Spectral power density pertaining to very low frequency band i.e., 0 to .04 Hz by default.

LF Spectral power density pertaining to low frequency band i.e., .04 to .15 Hz by default.

HF Spectral power density pertaining to high frequency band i.e., .15 to .4 Hz by default.

LFHF The ratio of low frequency power to high frequency power.

LFn The normalized low frequency, obtained by dividing the low frequency power by the total power.

HFn The normalized high frequency, obtained by dividing the low frequency power by total power.

SD1 A measure of the spread of breath-to-breath intervals on the Poincaré plot perpendicular to the line of identity. It is an index of short-term variability.

SD2 SD2 is a measure of the spread of breath-to-breath intervals on the Poincaré plot along the line of identity. It is an index of long-term variability.

SD2SD1 The ratio between short- and long-term fluctuations of the breath-to-breath intervals (SD2 divided by SD1).

ApEn The approximate entropy

SampEn The sample entropy

DFA_alpha1 The “short-term” fluctuation value generated from Detrended Fluctuation Analysis (DFA) i.e., the root mean square deviation from the fitted trend of the
breath-to-breath intervals.

DFA_alpha2 The long-term fluctuation value.

alpha1_ExpRange Multifractal DFA of short-term fluctuations. ExpRange is the range of singularity exponents, corresponding to the width of the singularity spectrum.

alpha2_ExpRange Multifractal DFA of long-term fluctuations. ExpRange is the range of singularity exponents, corresponding to the width of the singularity spectrum.

alpha1_ExpMean Multifractal DFA of short-term fluctuations. ExpMean is the mean of singularity exponents.

alpha2_ExpMean Multifractal DFA of long-term fluctuations. ExpMean is the mean of singularity exponents.

alpha1_DimRange Multifractal DFA. DimRange is the range of singularity dimensions, corresponding to the height of the singularity spectrum.

alpha2_DimRange Multifractal DFA. DimRange is the range of singularity dimensions, corresponding to the height of the singularity spectrum.

alpha1_DimMean Multifractal DFA. Dimmean is the mean of singularity dimensions.

alpha2_DimMean Multifractal DFA. Dimmean is the mean of singularity dimensions.
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evaluation is important to understand the effect of the pipeline on

model performance. However, such an analysis would necessitate

the complete development of dedicated ALS/MS models to fully

leverage the features extracted by our pipeline, which is a matter

of ongoing research and is out of the scope of the present

manuscript. Of course, once these models are finalized within the

framework of the BRAINTEASER project, future investigations

will explore the impact of our processing and feature extraction

steps on their performance.
4 Discussion

Health signals obtained from wearable devices present a

valuable source of monitoring data for chronic diseases, and AI

models can leverage this information to predict disease

progression. In the context of the BRAINTEASER project, the

Garmin Vivoactive 4 was selected as the device for training the

AI models for monitoring the progression of MS and ALS. This

paper presents the processing pipeline developed and intended

for deployment in the BRAINTEASER project. This pipeline

incorporates state-of-the-art techniques and addresses the

requirements for analyzing these signals in a real-world

consumer scenario. While numerous current techniques

concentrate on high-frequency data obtained from specialized

and case-specific sensors, this approach utilizes a readily

accessible consumer device and their built-in sensors and

features, such as optical sensors and pulse-oximeters. During the

development and signal selection process, it was crucial to

incorporate input from clinicians to ensure the extraction of
Frontiers in Digital Health 08
necessary features and focus on the most relevant signals for the

specific situation. The selection process also considered

additional engineering and usability factors. However, as a result,

the accelerometer data was discarded. It is worth noting that the

readings from the accelerometer can be valuable for a variety of

functionality assessments, particularly those related to motor

skills. This interdisciplinary approach is of paramount

importance to guarantee that the processing is performed on

valuable signals for the specific case. This process results in the

extraction of useful features that can be utilized in subsequent

analysis steps or, for example, displayed in a monitoring interface.

The proposed pipeline has been developed to work on data

covering one day, but it can also process data in shorter time

windows. However, when using shorter time windows, the

consistency of certain features should be ensured the consistency

of certain features. Regardless of the time window, patterns over

multiple days can be analyzed at a later stage by comparing the

extracted features and metrics as necessary. The proposed pipeline

will be implemented in the BRAINTEASER project and

continuously refined to meet the specific requirements of its

application in the project. Future work will involve examining the

noise characteristics of data obtained from wearable devices and

evaluating various advanced noise-filtering approaches. One

possible approach is to utilize Kalman filtering, as investigated in

the study cited in (35), to assess its potential to enhance the heart

rate signal in this processing pipeline. Additionally, new features

will be explored and developed to expand the capabilities of the

pipeline beyond the current processing task. One specific area of

improvement is the gap-filling technique, particularly in sleep-

related signals. By using Bayesian approaches based on imputation
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TABLE 8 List of the extracted features from the heart rate and beat-to-beat sample signal.

Feature Sample value Feature Sample value Feature Sample value
Mean 72.000 PNN20 2.8220 SI 50.018

Std 6.7750 Sdsd 7.5264 AI 50.021

MaxTime 81,045 Rmssd 7.5264 PI 50.268

MinTime 6,315 CvNN 0.08856 Cvsd 0.00900

LinearTrend 0.00015 C1d 0.5691 C1a 0.4309

QuadraticTrend 0.00000 TiNN Null SD1d 4.0151

R2 0.28265 HTI 10.2046 SD1a 3.4939

MeanNN 836.31703 Sd1 5.3224 C2d 0.49549

SdNN 74.05639 Sd2 104.6061 C2a 0.50451

SdaNN1 73.63064 Sd1sd2 19.6538 SD2d 73.6146

SdNNI1 5.65448 Cvi 3.9498 SD2a 74.28125

SdaNN2 73.39248 Csi 19.6538 Cd 0.49568

SdNNI2 5.77449 CsiModified 8223.61677 Ca 0.50432

SdaNN5 75.46535 Lf 169.14553 SDNNd 52.13075

SdNNI5 5.52205 Hf 13.24997 SDNNa 52.58284

MedianNN 0.00000 Lf_hf_ratio 12.76573 PIP 0.32728

MadNN 47.84689 Lfnu 92.73558 IALS 0.33282

HcvNN Infinity Hfnu 7.26442 PSS 0.00691

IqrNN 122.99020 Total_power 1037.26770 PAS 0.00090

PNN50 0.05682 Vlf 854.87221 Baseline 61.000

GI 50.01960 Minimum 56.000 Maximum 99.000

FIGURE 2

Example of the outcome of the application of the signal processing pipeline (first three blocks of Figure 1) to heart rate (top), SpO2 (middle), and
respiration (bottom) signals. The blue dashed line is the input retimed signal, the result of the gap filling is shown as green dots and the denoised
signal is in red. (A) Example of heart rate signal after each step of the processing pipeline, (B) Example of SpO2 signal after each step of the
processing pipeline, (C) Example of respiration rate signal after each step of the processing pipeline.
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TABLE 9 List of the extracted features from blood oxygen saturation signal.

Feature Sample value Feature Sample value Feature Sample value
AV 87.613 DI 1.8754 M 34.072

MED 88.333 CA 1.2772 ODI 43.636

Min 78.833 CT 78.4848 ZC 26.000

SD 3.1469 POD 0.45758 AOD100 6.8152

RG 14.6667 AODMAX 2.7152 P 80.0278

TABLE 10 List of the extracted features from the respiration rate sample
signal.

Feature Sample
value

Feature Sample
value

Mean 14.208 DFA_ALPHA1 1.2824

Var 0.16493 DFA_ALPHA1_EXPRANGE 0.73360

SDBB 0.40612 DFA_ALPHA1_EXPMEAN 0.66226

SDSD 0.06744 DFA_ALPHA1_DIMRANGE 0.68977

RMSSD 0.06744 DFA_ALPHA1_DIMMEAN 0.33348

SD1 0.04775 DFA_ALPHA2 0.83493

SD2 0.15723 DFA_ALPHA2_EXPRANGE 14.89034

SD1SD2 3.29271 DFA_ALPHA2_EXPMEAN 8.06556

AP_En 0.20313 DFA_ALPHA2_DIMRANGE 5.53735

Sam_PEn 0.08336 DFA_ALPHA2_DIMMEAN 1.59306
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of earlier periods, it may be possible to take into account patient

habits and routines, which could enable the development of a

priori information that is relevant for both imputation and long-

term statistics. This could allow for better exploration of signal

patterns, and more accurate analysis of the signals. Furthermore,

the long-term statistics generated by the pipeline could provide a

deeper understanding of the signals and could potentially aid in

the detection of outliers, which may indicate significant health

events. The developed pipeline is a useful tool for effectively

utilizing consumer smartwatches in health monitoring, and it

might enable improved monitoring and signal analysis of both

sick and healthy individuals in various scenarios.
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