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Continuous remote monitoring
of neurophysiologic Immersion
accurately predicts mood
Sean H. Merritt1 and Paul J. Zak2*
1Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, CA, United States,
2Center for Neuroeconomics Studies and Drucker School of Management, Claremont Graduate
University, Claremont, CA, United States
Mental health professionals have relied primarily on clinical evaluations to identify
in vivo pathology. As a result, mental health is largely reactive rather than proactive.
In an effort to proactively assess mood, we collected continuous neurophysiologic
data for ambulatory individuals 8–10 h a day at 1 Hz for 3 weeks (N= 24). Data
were obtained using a commercial neuroscience platform (Immersion
Neuroscience) that quantifies the neural value of social-emotional experiences.
These data were related to self-reported mood and energy to assess their
predictive accuracy. Statistical analyses quantified neurophysiologic troughs by
the length and depth of social-emotional events with low values and
neurophysiologic peaks as the complement. Participants in the study had an
average of 2.25 (SD= 3.70, Min = 0, Max = 25) neurophysiologic troughs per day
and 3.28 (SD = 3.97, Min = 0, Max = 25) peaks. The number of troughs and
peaks predicted daily mood with 90% accuracy using least squares regressions
and machine learning models. The analysis also showed that women were
more prone to low mood compared to men. Our approach demonstrates that a
simple count variable derived from a commercially-available platform is a viable
way to assess low mood and low energy in populations vulnerable to mood
disorders. In addition, peak Immersion events, which are mood-enhancing, may
be an effective measure of thriving in adults.
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1 Introduction

Depression and anxiety disorders are a growing health concern globally. For example,

in the US, one in five people will face clinical depression in their lifetimes while one in 20

have had a depressive episode in the last year (1). Relatedly, 6.8 million U.S. adults

annually experience an anxiety disorder while suicide rates have risen by about 30%

since 2000 (2). Most recently, the COVID-19 pandemic was associated with substantial

increases in depression (8.7% to 18.3%) and anxiety disorders [8.9%–22.6%; (3, 4)].

Mental health disorders are unequally distributed in the population. For example,

anxiety and depression in adolescents increased by 10 percentage points from 2012 to

2018 (5, 6). Older populations do not fare much better with an estimated 20%–40% of

the elderly experiencing depressive symptoms (7) and 17.1% suffering from anxiety (8).

In the U.S. alone, the annual cost of depression exceeds $326 billion (9) while anxiety

disorders drain between $20 and $45 billion from economic output (10).

Major depression occurs when one has low mood and a loss of interest in activities of

daily living for at least two weeks (11). However, those with depression also have difficulty

regulating their moods (12, 13). That is, people with clinical depression experience mood
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variability even while their average mood is low. Documenting

mood variability is an important part of clinical practice because

patients whose moods show less variability respond better to

therapy (14). Similarly, those with anxiety disorders have been

found to exhibit greater mood variability than individuals

without this malady (15–17). Thus, mood variability may be a

predictive indicator for the severity of depression and anxiety

disorders. But, asking individuals to self-report moods hourly or

more often is unlikely to produce useful data due to an inability

to accurately report one’s emotional states, the lack of an

objective metric, and survey fatigue (18–20).

In addition to depression and anxiety, mood variability is

associated with a number of detrimental behaviors including

nicotine dependence (21, 22), alcohol abuse (23), and other

substance abuse cravings (24). Those with mood variability are

more likely to experience cognitive decline, including dementias,

as they age (25). The incidence of suicidal ideation during a first

or second psychotic episode increases with mood instability (26).

Relatedly, swings in moods predict violent outbursts in psychiatric

patients (27) and occurs in attention deficit hyperactivity disorder

(28). Mood variability is also the prodrome for a variety of

medical disorders including autoimmune diseases (29), heart

failure (30, 31), Parkinson’s Disease (32), Huntington’s Disease

(33), epilepsy (34), schizophrenia (35), and bulimia nervousa (36).

Quantifying mood variability may thus predict multiple mental

health and medical disorders (37).

The relationship between mood disorders and neural activity

has been extensively researched (38–42). Irritable mood has been

associated with increased amygdala activity (43) while sad mood

has been related to increased activity in the ventrolateral

prefrontal cortex (VLPFC), the anterior cingulate cortex (ACC)

and related brain regions (44). Conversely, acute positive mood

has been related to activity in the dorsolateral prefrontal cortex

(DLPFC) and ACC (44). While it is important to know the

neural sources of moods, these studies have limited clinical use

as measurements are made using functional MRI for short

periods in a laboratory setting.

There is substantial need for a predictive remote patient

monitoring (RPM) solution for mood variations so that those at

risk of mental health disorders can obtain help before they have a

crisis. Yet, what should be measured and how often are unknown.

Herein we report the results of a prospective observational study

that sought to construct a predictive neurophysiologic measure for

mood variations. Our goal is to provide clinicians with an

objective, predictive measure indicating when individuals have pre-

depressive symptoms, enabling early interventions. Catching

disorders early nearly always improves treatment outcomes as well

as reduces costs and patient distress (45). Yet, this has not been

possible for mental health disorders because of the lack of

diagnostic bioassays (46). We seek to empower patients and

clinicians to better manage and treat mental health disorders by

developing a predictive digital bioassay that is deployable at scale.

In order to make this clinically useful, our analysis focused

developing a simple metric that identifies when someone has the

pre-depressive symptoms of low mood and low energy that can be

tracked by patients and clinical teams.
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We collected data from study participants at 1 Hz for 8–10 h a

day, necessitating nontraditional analytical approaches as such data

are typically random walks (47, 48). Machine learning (ML) is well-

suited to such analytical challenges (49). ML models have been

used to identify clinical depression using multiple behavioral and

physiologic data with 70% to 80% accuracy (49, 50). Importantly,

in prior research previous mood was a poor predictor of current

mood indicating that self-reported data alone are unlikely to

have sufficient predictive value (51).

Another challenge in predicting mood is the large number of

possible variables that could be captured. For example, trait anxiety,

diet, physical activity, stress, cognition, and sleep were found to be

the most important features in a saturated model of depressed

college students (52). Typically, in order to achieve high accuracy,

ML models collect hundreds of measures. Most of these contribute

little to predictive accuracy and increase the cost of data collection

and processing. Moreover, such a broad-based approach makes it

difficult to interpret the putative causal drivers of variations in

mood states. Worse, the gold standard of predicting mood,

variations out-of-sample, is rarely done in these analyses, adding

uncertainty to the clinical value of such approaches (48).

A recent advance in predicting mood states used two

neurophysiologic variables collected from a commercial

neuroscience platform. These data predicted daily mood out-of-

sample with 98% accuracy using ML (48). Parsimonious models

using passive and continuous data collection provide clear

indicators that identify pre-depression thresholds (48). Such

linear indicators can trigger interventions that seek to alleviate

persistent mood troughs.

The present contribution seeks to generate a clinically-useful

indicator of mood variation using neurophysiologic data that we

characterize by number and depth as well as by sex, age, time of

day, and day of week. This level of detail is essential to

understand who is at risk for low moods and when these are

most likely to occur. To wit, women suffer a greater incidence of

clinical depression compared to men (53–55) which is

attributable to hormone variations, social factors, and in some

cases the abuse women face (54, 55). A clinically-useful measure

should be able to capture such factors by identifying differences

in neurophysiologic responses. The approach we take here

identifies neurophysiologic troughs and peaks statistically and

then uses counts of these in order to predict of mood states. The

use of a widely-available commercial neuroscience platform and

a simple metric like counts of troughs and peaks is an effort to

move our findings from research to clinical practice.
2 Methods

2.1 Procedure

Participants were recruited from a Texas residential living

facility via flyers. Texas was as a convenient location with

reasonably diverse population characteristics. A number of senior

living residences in Texas were contacted for this study and the

facility chosen was the one most open to recruitment of their
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residents for research. This project was approved by the

Institutional Review Board of Claremont Graduate University

(#1255) and follows the conditions in the Declaration of

Helsinki. The research team arrived at the facility prior the

commencement of the study and monitored data collection

remotely thereafter. All participants who started the study

completed it. Candidate participants provided written informed

consent and were excluded if they had serious health issues; no

exclusions were made.

Each participant was provided with an Apple Watch 6 with the

Immersion Mobile app installed to collect neurophysiologic data

during activities of daily living. Neurophysiologic data was

collected over 20 days between January 18 and February 24, 2021

for 8–10 h per day. The data were averaged into daily observations

(N = 480). Self-reported mood (“Mood”) and energy (“Energy”)

were measured daily (see below), although some participants failed

to make these reports, leaving a final sample of 404 observations

obtained from 24 participants (72% female). The data collection

burden for participants in this study was fairly high because they

had to remember to charge their watches overnight every night,

start the Immersion Mobile app every morning, and had to

respond daily to surveys. As a result, only critical data were

collected. The neurophysiologic data used in this study is the same

as used in Merritt et al. (48) and the size effects from that paper

result in a power of test for the present analysis of 0.99.
2.2 Self-reports

Two self-reported outcome measures were used in order to

demonstrate robustness: Mood and Energy (capitalized to denote

that these are variables). These data were collected each morning

via email that requested the previous day’s value in order to

reduce the recency effect when reporting a daily average. Mood

was measured by averaging four questions (cheerful, stressed,

lonely, energy) on a 5 point Likert scale. Stressed and lonely were

reverse coded using an abbreviated version of the Profile of Mood

States [POMS (56, 57);] that has been extensively examined for its

psychometrics properties (56). Averaging reduces variation, so as

in previous research we isolated the variable Energy because it is a

key indicator of depressive symptoms (58). Energy was measured

with a single question. We defined a person having low Mood or

Energy if their score was less than 3 (i.e., 1 or 2). A binary control

variable measuring sickness (“Sick”) on the previous day was

also collected.
2.3 Neurophysiology

Neurophysiologic responses were measured using a commercial

platform (Immersion Neuroscience, Henderson, NV; https://www.

getimmersion.com). Neurologic Immersion measures the value the

brain obtains from social-emotional experiences by applying

algorithms to data from the cranial nerves (48, 59, 60). Immersion

has two main components, attention to the experience one is

having, associated with dopamine binding to the prefrontal cortex,
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and the emotional resonance of the experience associated with

oxytocin release from the brainstem (60–62).

The Immersion Neuroscience platform captures neuroelectrical

activity associated with dopamine and oxytocin on the cranial

nerves using a photoplethysmogram (PPG) sensor and algorithms

applied to cardiac data (60, 63). These signals are convolved into a

single measure called Immersion that was designed to accurately

and consistently predict behaviors (59, 60, 64) The data were sent

to the cloud continuously via participants’ mobile phones and

were also viewable in real-time. The Immersion Neuroscience

platform provided an output file used in the analysis and no

native data from participants’ wearables were used in order to

build parsimonious models.

We chose to measure neurologic Immersion for this study

because of the well-established relationship between social

interactions and mood (65). Moreover, by accessing

neurophysiologic signals from smartwatches, continuous

nonintrusive data were obtained from participants without

affecting their daily activities (48, 60). In addition, the Immersion

Neuroscience platform removes baseline physiologic responses

each time it starts, automatically removes motion artifact, and

interpolates missing data if collection is lost for less than one

minute, thereby reducing the need for data cleaning.

The first step in this analysis was to characterize Immersion

troughs and peaks as previous research identified these as accurate

predictors of mood (48). We focus on peaks and troughs because

physiologic systems, including the nervous system, have a strong

tendency to return to baseline. As a result, averaging Immersion

over 8–10 h would not be expected to be predictive as the data

would show strong mean reversion (66). There is little guidance in

the published literature identifying when the value of a peripheral

neurologic measure is considered atypical. As a result, we

performed a grid search across the entire dataset to establish the

length and depth of variations in Immersion that had the highest

correlation with low Mood. This approach yielded a definition of

an Immersion trough that will be used throughout the analysis:

Trough = Immersionit<mi – 1.5 ∗ SDi for at least 3 min, where

Immersionit indicates the Immersion of person i at time t, mi is

the median Immersion of person i, and SDi is the standard

deviation of Immersion for person i. For consistency, an

Immersion peak was defined as Peak = Immersionit >mi− 1.5 ∗ SDi

for at least 3 min. The analytical details can be found in the

Appendix (Figure A1).
2.4 Statistical approach

A variety of statistical methods were used to fully examine how

the frequency and depth of peaks and troughs were related to Mood

variations. The analyses began with t-tests, ANOVAs, and ordinary

least squares (OLS) regressions and report measures of size effects

(Cohen’s d and η2). Participants with less than 4 h of data for a

day were excluded. Daily variables included: the number of

troughs, average trough time, average trough depth, average

Immersion, number of peaks, average peak time, average peak

height, whether person was sick, time between troughs, and time
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between peaks. The OLS models included daily fixed effects since

troughs and peaks were constructed as differences from individual

medians. Similarly we clustered the standard errors by day to

avoid heteroskedasticity. OLS models were estimated in order to

determine which candidate neurophysiologic variables to include

in further analyses. The OLS estimations also examined the effects

of sickness (Sick) and biological sex (Male) on Mood and Energy.

Next, ML models were estimated in order to quantify the

predictive accuracy of the constructed neurophysiologic variables.

Four different machine learning algorithms were tested:

regularized logistic regression (logit), support vector machines

(SVM), random forests (RF), and extreme gradient boosted trees

(XGB). All machine learning models were done in Python with

the Sklearn [version 1.1.2 (67);] and XGBoost [version 1.4.2

(68);] packages. A logit was included as it is the simplest model

and serves as a baseline for fit and predictive accuracy. We also

estimated SVM and RF models as they more effectively capture

nonlinear responses as found in neurophysiologic data (69). XGB

extends RF by training the parameter estimates on the residuals,

generally improving accuracy (70). We assessed the most

important features using a permutation technique in which a

feature is randomly removed and the average decrement in

accuracy is measured for 1,000 iterations (71).

The ML models were trained by transforming predictors into

Z-scores. We then split the data into a training set (75%) and

test set (25%). The current data were unbalanced for both low

Mood (5%) and low Energy (21%). To address this, a synthetic

minority oversampling technique was employed [SMOTE (72);]

on the training set to avoid data leakage. We then tuned the

hyper-parameters for each algorithm on the SMOTE training

data using 5-fold cross validation (GridSearchCV function in the

Sklearn package). The tuned hyperparameters can be found in

the Appendix (Table A1).

The area under the receiver operator characteristic curve

(AUC) was reported to compare ML models, as were accuracy

(ACC), precision, and recall. AUC compares the true positive

rate to the false positive rate and provides a balanced measure of

model performance. ACC, the percentage of correctly identified

observations, is the standard measure of model usefulness. The

other two measures of model performance are precision, the true

positive rate, and recall, the true negative rate. We report model

performance for both the test set and the pre-SMOTE training

data. A 5-fold cross validation (CV) was used to ensure that

models were not over-fit using the entire SMOTE data. The

5-fold cross validation analysis measures the variation in

performance of the model by splitting the data into 5 equal

parts. The model is then trained with one split left out. The

average score and standard deviation (SD) is reported for all

models. In addition, to test if the model performed better than

chance, a permutation test is used that randomly selects rows

from 70% of the data (without replacement to avoid data

leakage). A 5-fold cross-validation is then used to train the

model which is used to predict the test data with the AUC

recorded. We repeated this 100 times and performed a t-test to

compare the distribution to random chance (AUC = .50).

The data are available at OpenICPSR-197830.
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3 Results

The average daily number of troughs was 2.25 (SD = 3.70,

Min = 0, Max = 25), while the average number of peaks was 3.28

(SD = 3.97, Min = 0, Max = 25). The number of troughs per day

was positively correlated with the time spent in a trough (r = .63,

p < .001) and negatively related to the depth of a trough (r = -.79,

p < .001). Similarly, the number of peaks was correlated with

peak height (r = .65, p < .001) and peak time (r = .72, p < .001).

The number of peaks and troughs was negatively correlated

showing consistency (r = -.27, p < .001).

We next tested if average trough depth and trough frequency varied

by day of the week, time of day, and biological sex. We defined time of

day as morning (7AM to 11 AM), afternoon (11 to 3PM), and evening

(3 to 7PM). There were no differences for trough depth [F (6,211) =

1.14, p = .340, η2 = .003] or number of troughs [F (6,221) = 1.41,

p = .213 η2 = .004] for different days of the week. The number of

troughs varied by time of day [F (2,916) = 16.30, p < .001, η2 = .03]

while average trough depth did not [F (2,916) = 2.36, p = .095,

η2 = .005]. Participants had fewer troughs in the evening compared to

other times of the day (p < .001; p < .001). There was also greater

variation in number of troughs in the morning compared to the

afternoon [F (361,368) = 0.593, p < .001] or evening [F (187,403) =

0.115, p < .001]. Evening and morning had similar variance in trough

depth [F (187,368) = 0.856, p = 0.230] but troughs were larger in the

afternoon [F (3,661,368) = 0.710, p = .001]. Finally, men and women

did not differ in number of troughs [t (193.26) =−0.045, p = .964,

d = 0.005] or depth of troughs [t (305.65) =−1.85, p = .066,

d = −0.16], though women had more variation in number of troughs

[F (280,87) = 1.79, p = .002] and average trough depth [F (280,87) =

4.28, p < .001] compared to men.

The daily characteristics of peaks were similar to troughs. The

number of peaks [F (6,221) = 0.56, p = .762, η2 = .016] and average

peak height [F (6,211) = 0.303, p= .935, η2 = .009] did not differ

across days of the week, though the number of peaks varied

throughout the day [F (2,916) = 10.45, p < .001, η2 = 0.02]. Morning

and afternoon had the same number of peaks (p= .168) and both

times had more peaks than evening (p < .001; p = .008). Average peak

height did not vary by time of day [F (6,916) = 1.69, p= .186, η2

= .003]. The variation in number of peaks during morning was

greater than the evenings [F (187,368) = 0.53, p < .001], but not the

afternoon [F (361,368) = 1.11, p = .301]. Average peak height had

higher variation in the morning than afternoon [F (361,368) = 1.69,

p < .001] and evening [F (187,368) = 2.75, p < .001]. Men had a higher

average peak height than women [t (365.31) = 4.42, p < .001,

d = 0.33], but not more peaks [t (201.48) = 1.56, p = .120, d = 0.16],

while women had greater variation in number of peaks [F (280,87) =

1.94, p < .001] and average peak height [F (280,87) = 12.15, p < .001].
3.1 Mood

Table 1 shows the average number of peaks and troughs for

each Mood interval. As confirmed by the forthcoming statistical

analysis, the Table shows the expected positive and increasing

relationship between Mood and the number of Immersion peaks.
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Similarly, the number of Mood troughs is highest for low Mood

and declines as Mood improves.

There was a significant negative correlation between the number

of troughs and Mood (r = -.19, p < .001). The reciprocal relationship

was also significant with the number of Immersion peaks being

positively associated with Mood (Mood: r = .20; p < .001).

To further examine these relationships and to identify which

candidate neurophysiologic trough and peak variables to include

in the machine learning models, six OLS models were estimated.

Each neurophysiologic variable was evaluated separately to avoid

multicollinearity and all six of the models control for sickness

and sex. Consistent with our expectations, the number of troughs

(b =−0.023, p = .037, CI = [−0.003,−0.04) and the number of

peaks (b = 0.031, p = .003, CI = [0.013, 0.048) were related to

Mood and carried the anticipated signs. Mood was also

associated with the average time spent in troughs (b =−0.036,
p = .015, CI = [−0.0097, −0.062) and peaks (b = 0.068, p = .022,

CI = [0.015, 0.121) but was unrelated to average trough depth

(b =−5.45, p = .264, CI = [−14.72, 3.82) or average peak height

(b = 3.62, p = .259, CI = [−2.47, 9.71). In all six specifications,

men were less likely to have low Mood than were women (Table 2).
3.2 Energy

The number of Immersion troughs had a negative correlation with

Energy (r = -.19, p < .001) while the number of peak events increased

Energy (r = .23, p < .001). Next, the same six OLS specifications as
TABLE 1 Average peaks and troughs by mood level showing that higher
moods are associated with a greater number of peaks and a fewer
number of troughs.

Mood Number of peaks Number of troughs
1–1.9 0 6.00

2–2.9 2.29 2.43

3–3.9 2.61 2.82

4–4.9 3.78 1.93

5 3.76 1.20

TABLE 2 Ordinary least squares regressions relating neurophysiologic trough
male. The counts of troughs and peaks were significantly associated with Mo

D

(1) (2) (3
Number of troughs −0.023∗∗ (0.010)

Number of peaks 0.031∗∗∗ (0.009)

Avg. time in trough −0.036∗
Avg. time in peak

Avg. trough depth

Avg. peak height

Sick −1.024∗∗∗ (0.196) −1.050∗∗∗ (0.186) −1.049∗∗
Male 0.202∗∗∗ (0.032) 0.222∗∗∗ (0.030) 0.210∗∗
Observations 369 369 3

R2 0.220 0.236 0.2

Adjusted R2 0.173 0.190 0.1

**p < .01.

***p < .001.
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above were estimated using Energy as the dependent variable. As

with Mood, number of troughs (b =−0.039, p= .004, CI = [−0.016,
−0.062) and the number of peaks (b = 0.050, p < .001, CI = [−0.025,
−0.075) were both statistically related to Energy levels and had

the correct signs. Energy was also associated with average trough

time (b =−0.054, p = .010, CI =−0.017, −0.092), average peak time

(b = 0.105, p= .002, CI = [0.16, 0.049), and average trough depth

(b =−13.83, p= .022, CI = [−24.69, −3.04). Only average peak time

was unrelated to Energy (b = 7.572, p= .153, CI = [−2.38, 17.52).

There was no sex difference for Energy levels (Table 3).
3.3 Machine learning

The significant variables in the OLS models were included in an

ML estimation to assess their predictive accuracy using high or low

Mood and Energy as dependent variables. Below we report the AUC

for performance on the training set and observed (test) data. The full

results can be found in Tables A2, A3 in the Appendix.
3.3.1 Mood

The ML models predicted Mood accurately, with all four

models having AUCs of 0.81 and higher for the training set. The

predictive accuracy of the ML estimations on the test set for

Mood fell for most models, but improved for the logit estimation

(Figure 1). The logit model had an AUC of 0.95 and predicted

Mood with 90% accuracy. This model also had perfect precision

(1.00) and excellent recall (.90) (Table A2). Cross-validation

confirmed that the logit model’s performance was better than

chance (t = 28.02, p < .001), as were the RF (t = 35.67, p < .001),

and XGB (t = 26.99, p < .001) models.
3.3.2 Energy

The models classifying Energy using neurophysiologic variables

performed well on the training set but under-performed the Mood
and peak variables to mood while including the control variables sick and
od and carry the correct signs. Values in parentheses are standard errors.

ependent variable

Mood

) (4) (5) (6)

∗ (0.014)

0.068∗∗ (0.027)

−5.448 (4.728)

3.619 (3.106)

∗ (0.193) −1.058∗∗∗ (0.188) −1.047∗∗∗ (0.195) −1.087∗∗∗ (0.192)

∗ (0.032) 0.200∗∗∗ (0.029) 0.195∗∗∗ (0.033) 0.219∗∗∗ (0.035)

69 369 369 369

24 0.229 0.207 0.208

77 0.182 0.160 0.160
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TABLE 3 Ordinary least squares regressions relating neurophysiologic trough and peak variables to energy, including the control variables sick and male.
The number of troughs and peaks were significantly associated with energy and carry the correct signs. Values in parentheses are standard errors.

Dependent variable

Energy

(1) (2) (3) (4) (5) (6)
Number of troughs −0.039∗∗∗ (0.012)

Number of peaks 0.050∗∗∗ (0.013)

Avg. time in trough −0.054∗∗ (0.019)

Avg. time in peak 0.105∗∗∗ (0.028)

Avg. trough depth −13.863∗∗ (5.524)

Avg. peak height 7.572 (5.077)

Sick −0.847∗∗∗ (0.174) −0.890∗∗∗ (0.177) −0.892∗∗∗ (0.163) −0.905∗∗∗ (0.169) −0.862∗∗∗ (0.165) −0.957∗∗∗ (0.186)

Male −0.0002 (0.062) 0.032 (0.063) 0.011 (0.063) −0.004 (0.059) −0.018 (0.063) 0.035 (0.061)

Observations 369 369 369 369 369 369

R2 0.126 0.146 0.127 0.133 0.119 0.116

Adjusted R2 0.073 0.095 0.074 0.081 0.065 0.062

**p < .01.

***p < .001.
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models on the test set (AUCs 0.58–0.65; Table A3). Accuracy

predicting Energy was similarly moderate at 67% for the logit

model and 76% for the RF model. Cross-validation and

permutation tests showed that the models’ results were not due

to chance (ps < .001).
FIGURE 1

The attributes of the machine learning model estimations on the test
set. All four models performed well for accuracy (ACC), fit the data
well with high areas under the curve (AUC), and had high precision
and recall. Bars are SEs.
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4 Discussion

The analysis herein has demonstrated that continuous remote

monitoring of mood using a commercial Neuroscience as a

Service (NaaS) platform is feasible and highly accurate for this

sample. Participants had their Immersion measured for 8–10 h a

day at 1 Hz and had, on average, 2.25 troughs per day. As the

number of troughs increased, the likelihood of experiencing low

Mood increased linearly (r = -.19). This is confirmed by the linear

relationship between the number of Immersion troughs and low

Energy (r = -.19). Episodes of high Mood and high Energy were

positively and linearly related to the number of peak Immersion

events (Mood: r = .20; Energy: r = .23). Estimating a trained logistic

regression model that included the number of peaks and troughs,

sex, and a binary sickness indicator predicted Mood with 90%

accuracy and was not overfit. Our SVM, RF, and XGB models

performed well on the training model, but had large decreases in

AUC and ACC in the test set. Given the results from the cross-

validation, this is likely due to the randomized draw of the test

set. The CV shows these models (with the exception of SVM)

performed well on a held-out data set on average. Our findings

for Energy confirmed the Mood results, but the predictive

accuracy of Immersion peaks and troughs for Energy was lower.

We believe that having a continuous, passive, and accurate

neurophysiologic indicator of low mood has significant clinical

applications for psychiatrists and psychologists as well as primary

care clinicians who are increasingly asked to evaluate patients’

mental health (73) Indeed, our goal in developing a count

variable for troughs was to make mood evaluations for clinicians

rapid and unambiguous. In addition to accuracy, the use of an

objective continuous measure of mood removes the recency bias

inherent during in-person or telehealth visits (74).

Trough count data can be quickly reviewed for runs of days

with, for example, the number of troughs at five or more

indicating very low Mood and Energy. The clinician can

inquire about these specific times to evaluate if pre-depression
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symptoms have arisen or if an outside factor has led to a

temporarily low mood. For example, we showed that a clinician

needs to inquire if the patient had been sick which can account

for low Mood. We also showed that men are less likely to have

low Mood compared to women consistent with findings for sex

differences in depression (75). This initial analysis did not find

differences by day of week, but did find more morning and

afternoon peaks and fewer evening troughs. This shows the

importance of all day data collection as truncated data may

produce inaccurate indicators.

More generally, we posit that the number of peak Immersion

events one has may be an adult measure of thriving. Immersion

appears to be a neural measure of social-emotional value (48,

59, 60, 64). Social interactions increase Immersion and can

induce peak Immersion events that we have shown improve

Mood and Energy. By measuring the number of peak

Immersion events, individuals and clinical teams may be able to

assess if patients are thriving and, by offering ways to increase

the neural value of social-emotional experiences, improve

emotional fitness. Moreover, social withdrawal is a prodrome

for a variety of disorders, including depression (12, 13), anxiety

(15–17), schizophrenia (35), autoimmune diseases (29), heart

failure (30, 31), Parkinson’s Disease (32) and many others. At-

risk patients could be invited to measure their Immersion and

share the data with their clinical teams to assess when

inventions are necessary; that is, when the number of peak

events sufficiently declines indicating social withdrawal. In

addition, the number of peak Immersion events could also be

used to objectively evaluate whether clinical inventions improve

patients’ quality of life.

While the findings reported here are compelling and

applicable, there are several limitations of the present study that

require extensions. First, a larger and more diverse sample

should be collected to confirm the predictors and thresholds

we have reported. The Immersion Neuroscience platform

removes baseline physiology from measurements, but this

may be insufficient to control for variations in age, ethnicity,

and personality traits. A larger sample will begin to resolve this

issue. In addition, the length of data collection needs to be

extended. Previous research using these data showed that Mood

and Energy were predicted with high accuracy (≥92%) two

days in advance of reporting (48). Immersion data collected for

months or years could extend the accurate predictions of

mood troughs to weeks or even months so that individuals

who are vulnerable to mood disorders could share these data

with friends or clinical teams to prompt check-ins. The

ability of individuals to know, and have goals to build, their

emotional fitness may be the most immediate extension of

this work.

Additional research is also warranted before neurologic

Immersion is ready for clinical use. For example, a baseline

for Immersion troughs needs to be established for patients,

starting with those suffering from mental health disorders,

including those on selective serotonin reuptake inhibitors,

serotonin and norepinephrine reuptake inhibitors, and related

medications. Trough count thresholds for clinical depression
Frontiers in Digital Health 07
are essential to transition psychiatry from reactive to

proactive. Similar baselines and threshold should also be

developed for those diagnosed with anxiety disorders, bipolar

disorder, and medical syndromes associated with social

withdrawal. Such data can lead to earlier medical

interventions that are typically more efficacious than later

treatments. Continuous digital bioassays, as we have shown

here, are an effective way to reduce suffering and reduce

medical expenditures.
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TABLE A1 Hyperparameters of the ML models.

ML Parameter Values
Logit C 1, 10, 100

SVM Regularization C l1, l2, elasticnet
1, 10, 100

Kernal linear, polynomial, radial, sigmoid

RF Min. sample slit 1, 2, 5, 10

Min. sample per leaf 2, 5, 10, 15, 30

XGB Max features number of estimators sqrt, log2
100, 500, 1,000

Learning rate 0.05, 0.01

Max depth 2, 4, 8

Min child weight 1, 3, 5

gamma 0.0, 0.15, 0.3

Subsample 0.6, 0.75, 0.9

sample of columns by tree 0.6, 0.75

regularization of alpha 0.01, 0.1, 1
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The definition of a trough was established by identifying the

relationship between Immersion and Mood. Individual i’s

median Immersion (mi) was used to calculate immersionit <mi −

λSDi on day t for at least X minutes. The values of parameter λ

and time X were found using a 2-D grid search that identified

the highest correlations with mood. The value of λ was varied

from 0.1 to 2 in intervals of 0.1 and X was set to an integer as 1,

2, 3, or 4 min. The results from this grid search are shown in

Figure A1. The grid search identified the optimal value for λ as

1.5. The Mood-trough relationship varied little with time, so

3 min was used as a reasonable mid-range value. This approach

resulted in the definition of an Immersion trough as:

immersionit , mi � 1:5�SDi for at least 3minutes (1)

As shown in Figure A1 the same grid search yielded nearly

identical values when examining correlations with Energy.
FIGURE A1

A graphic of the correlation with different trough definitions for a grid searc
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TABLE A2 The following covariates were used to predict mood: number of
troughs, average trough time, average trough depth, average immersion,
number of peaks, average peak time, average peak height, whether
person was sick, time between troughs, and time between peaks. Values
in parentheses are standard deviations from the cross validation. The
figure shows permutation importance of the saturated model for Mood.

AUC ACC Precision Recall
Logit Train 0.81 0.83 0.98 0.84

SVM 0.96 0.96 0.96 0.95

RF 1.00 1.00 1.00 0.99

XGB 1.00 0.99 1.00 0.99

Logit Test 0.95 0.90 1.00 0.90

SVM 0.46 0.90 0.98 0.92

RF 0.47 0.92 0.98 0.95

XGB 0.71 0.90 0.99 0.91

Logit CV 0.79 0.94 0.95 0.99

(0.188) (0.017) (0.008) (0.013)

SVM 0.74 0.95 0.95 0.99

(0.203) (0.017) (0.012) (0.013)

RF 0.78 0.95 0.95 1.00

(0.154) (0.0) (0.0) (0.0)

XGB 0.78 0.94 0.95 0.99

(0.161) (0.011) (0.001) (0.012)

TABLE A3 The following covariates were used to predict energy: number of
troughs, average trough time, average trough depth, average Immersion,
number of peaks, average peak time, average peak height, whether
person was sick, time between troughs, and time between peaks. Values
in parentheses are standard deviations from the cross validation. The
figure shows permutation importance of the saturated model for Energy.

AUC Accuracy Precision Recall
Logit Train 0.69 0.71 0.89 0.72

SVM 0.80 0.80 0.83 0.75

RF 1.00 1.00 1.00 1.00

XGB 1.00 1.00 1.00 1.00

Logit Test 0.65 0.67 0.88 0.68

SVM 0.57 0.66 0.83 0.72

RF 0.66 0.76 0.86 0.84

XGB 0.58 0.71 0.83 0.80

Logit CV 0.67 0.80 0.80 0.98

(0.1) (0.03) (0.021) (0.023)

SVM 0.54 0.79 0.80 0.99

(0.135) (0.026) (0.019) (0.023)

RF 0.66 0.76 0.79 0.95

(0.089) (0.078) (0.016) (0.145)

XGB 0.69 0.76 0.79 0.95

(0.105) (0.072) (0.013) (0.125)
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